JPS6022323B2 - Solid-state color image sensor and its manufacturing method - Google Patents

Solid-state color image sensor and its manufacturing method

Info

Publication number
JPS6022323B2
JPS6022323B2 JP56162870A JP16287081A JPS6022323B2 JP S6022323 B2 JPS6022323 B2 JP S6022323B2 JP 56162870 A JP56162870 A JP 56162870A JP 16287081 A JP16287081 A JP 16287081A JP S6022323 B2 JPS6022323 B2 JP S6022323B2
Authority
JP
Japan
Prior art keywords
filter
light
solid
base material
spectral transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56162870A
Other languages
Japanese (ja)
Other versions
JPS5795786A (en
Inventor
晃 笹野
寿夫 中野
謙 筒井
通晰 橋本
忠男 金子
彬雄 谷口
治男 松丸
章也 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56162870A priority Critical patent/JPS6022323B2/en
Publication of JPS5795786A publication Critical patent/JPS5795786A/en
Publication of JPS6022323B2 publication Critical patent/JPS6022323B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Description

【発明の詳細な説明】 本発明は、固体力ラー撮像素子に関し、更に詳述すれば
、色フィル夕を備えた固体カラー団体撮像素子に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state color image sensor, and more particularly to a solid-state color group image sensor equipped with a color filter.

最近、工業用あるいは家庭用のVTRの普及に伴って、
4・型、軽量で使い易いテレビカメラの需要が高まって
きている。
Recently, with the spread of industrial and household VTRs,
Demand for 4-inch, lightweight, and easy-to-use television cameras is increasing.

そこで、半導体集積回路(一般にIC又はLSI)を使
用した固体テレビカメラが注目されている。この固体テ
レビカメラは、従来の滋綾管の面板および電子ビーム発
生部分がIC基板に置き換わって、独立した固体撮像素
子になっている。これは電子ビームを使用しないため、
安定性がよく、消翼磁力が少なく、取り扱いが簡便であ
るなどの点で撮像管より優れており、次代のテレビカメ
ラとして期待されている。この固体撮像素子は層状に形
成され、半導体基板部分と、色(カラー)フィルタ部分
とからなっている。カラーフィル夕に、褐色フィル夕を
使用する場合、シアン、イエロー、緑、白の4組を使っ
て色再現を計る方式が一般にとられる。
Therefore, solid-state television cameras using semiconductor integrated circuits (generally IC or LSI) are attracting attention. In this solid-state television camera, the face plate and electron beam generating portion of the conventional cylindrical tube are replaced with an IC board, making it an independent solid-state imaging device. This does not use an electron beam, so
They are superior to image pickup tubes in that they are more stable, have less magnetic force, and are easier to handle, and are expected to be the next generation of television cameras. This solid-state imaging device is formed in a layered manner and consists of a semiconductor substrate portion and a color filter portion. When a brown filter is used as a color filter, a method is generally used in which four sets of cyan, yellow, green, and white are used to measure color reproduction.

その場合、第1図に示すごとく、緑は、シアン1とイエ
ロー2の積層によって製作する。なお、第1図は固体撮
像素子の要部断面図である。
In that case, as shown in FIG. 1, green is produced by laminating cyan 1 and yellow 2. Note that FIG. 1 is a sectional view of a main part of a solid-state image sensor.

図において、8は少なくとも受光領域が設けられた半導
体基板である。
In the figure, 8 is a semiconductor substrate provided with at least a light receiving area.

4〜7が受光領域で、この上部にカラー・フィルタ部が
設けられ各色フィルター領域が受光領域に対している。
Numerals 4 to 7 are light receiving areas, and a color filter section is provided above the light receiving area, with each color filter area facing the light receiving area.

一般に、フィル夕は、重クロム酸アンモニウムやビスア
ジド系等の感光剤を含むゼラチン、ポリビニルアルコー
ル等の水溶性ホトレジストを使用し、これを、マスクを
通して露光し、現像してパターン化し、その後、所定の
染色液に浸澄して染色する。第1色目のパターンを形成
した後、染色液によって染色されない有機物によって被
覆した後、同一工程を繰り返すことによって、第2色目
のフィル夕パターンを形成する。この際、フィル夕の分
光透過特性は、ゼラチン等の膜厚によって大きく変化す
る。
Generally, film filters use gelatin containing a photosensitizer such as ammonium dichromate or bisazide, or a water-soluble photoresist such as polyvinyl alcohol, which is exposed through a mask, developed and patterned, and then formed into a predetermined pattern. It is stained by immersion in a staining solution. After forming the pattern of the first color, it is coated with an organic material that is not dyed by the dyeing solution, and then the same process is repeated to form the filter pattern of the second color. At this time, the spectral transmission characteristics of the filter vary greatly depending on the thickness of the gelatin or the like.

従って良好な色フィル夕の実現には、フィルタ用母材の
膜厚を正確に形成する必要がある。
Therefore, in order to realize a good color filter, it is necessary to accurately form the film thickness of the filter base material.

しかし、フィルタ用母材の製造を上述の如くフィルタ母
材に感光特性を持たせて、この感光特性を利用して行な
う場合、フィルタ母材のパターンを露光する際の光量に
よってフィルタ用母材の膜厚が左右される。固体撮像素
子上に色フィルタ部分をこの様な方法で直接形成する場
合、通常のガラス等の透光性基板上に色フィル夕を形成
する場合と異なって基板面からの反射光が大きな問題と
なる。
However, when manufacturing a filter base material by imparting a photosensitive characteristic to the filter base material and utilizing this photosensitive characteristic as described above, the amount of light used to expose the pattern on the filter base material may vary depending on the amount of light used to expose the pattern on the filter base material. Depends on film thickness. When forming a color filter directly on a solid-state image sensor using this method, unlike when forming a color filter on a light-transmitting substrate such as ordinary glass, reflected light from the substrate surface becomes a big problem. Become.

これは固体撮像素子の基板はガラス等の透明基板とは異
なってく反射光量が大なるためである。固体撮像素子上
で露光する場合は、光源から直接入射する光の他に基板
面から反射して釆る光の和で露光の光量が決定される。
This is because the substrate of a solid-state image pickup device is different from a transparent substrate such as glass, and the amount of reflected light is large. When performing exposure on a solid-state image sensor, the amount of light for exposure is determined by the sum of light directly incident from the light source and light reflected from the substrate surface.

したがって、第1色目に、紫外線等の射照光を吸収する
色フィル夕(たとえばイエロー)を形成し、第1色目の
上部に第2色目としてシアンを形成すると、下地がシリ
コンの場合シアン用のフィル夕は、イエロー上では、ィ
ヱロ−でない場所と比較して約30%光量が不足する。
ゼラチンの感光特性は、光量をある程度以上強くすれば
飽和する煩向があるが、この飽和領域ではかぶりが多く
、精度の良いパターンが形成できない。飽和直前の光革
で露光するのが最適となるが、この場合、イエロー上と
そうでない場合でゼラチンの膜厚に約30%の差が出来
、第2図に示すごとき分光特性を示す。すなわち、単一
層として形成されたシアンフィル夕の分光透過率曲線は
25であるに対し、イエローフィルタ上では曲線23に
変化する。そのため、イエローとシアンの積層によって
形成された緑の透過率曲線は本釆24であるべきものが
長波長側のカーブが長波長にシフトし曲線22となる。
本発明の目的は、上記欠点を去して、光学的に良好な色
フィル夕を備えた固体力ラー撮像素子を提供することに
ある。
Therefore, if a color filter (for example, yellow) that absorbs irradiation light such as ultraviolet rays is formed on the first color, and cyan is formed as the second color on top of the first color, if the base is silicon, the cyan filter will be In the evening, the amount of light on Yellow is about 30% insufficient compared to non-Yellow areas.
The photosensitive properties of gelatin tend to become saturated if the amount of light is increased beyond a certain level, but in this saturated region there is a lot of fogging, making it impossible to form a highly accurate pattern. It is optimal to expose to light just before saturation, but in this case, there is a difference of about 30% in the gelatin film thickness between yellow and non-yellow, and the spectral characteristics shown in FIG. 2 are exhibited. That is, while the spectral transmittance curve of the cyan filter formed as a single layer is 25, it changes to the curve 23 on the yellow filter. Therefore, the green transmittance curve formed by the yellow and cyan layering should be the main button 24, but the curve on the longer wavelength side is shifted to the longer wavelength, and becomes the curve 22.
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a solid-state color imaging device having an optically good color filter.

本発明の園体撮像素子の要点は、少なくとも複数の受光
領域を有する固体撮像素子の基体上部に複数の色フィル
夕をとう致し、且つ第1色目と第2色目のフィルタ層の
重複部分により第3色目の色フィル夕を構成する場合、
基体に近い下層に形成するフィル夕をこのフィルタ層の
形成に使用する露光用光線を実質的に透過する分光透過
特性を有するものを配する点にある。
The key point of the Sonodai image sensor of the present invention is that a plurality of color filters are installed on the upper part of the substrate of the solid-state image sensor having at least a plurality of light receiving areas, and the overlapping portion of the first color filter layer and the second color filter layer is used to form a first color filter layer. When configuring the third color filter,
The point is that the filter formed in the lower layer close to the substrate has a spectral transmission characteristic that substantially transmits the exposure light beam used for forming the filter layer.

固体撮像素子基板上にゼラチンなどの有機材料を用いフ
オトリングラフィ技術によってカラを形成する場合には
、露光の光童は光源から直接入射する光の他に基板面か
ら反射して来る光の和で決定される。
When forming a color on a solid-state image sensor substrate using an organic material such as gelatin using photolithography technology, the exposure light is the sum of the light that is directly incident from the light source and the light that is reflected from the substrate surface. determined by

上記購成のように露光用光線である紫外線などの光を透
過する色例えばシアン色のカラーフィル夕を先に形成し
、その上部に一部重複させて藤光用光線を吸収する色例
えばイエロー色のカラーフィル夕を形成すると、重複部
分があっても上記イエローフィル夕は光源からの直接入
射光と基板からの反射光とにより適切に露光されること
になり重複部分も非重複部分も同じ膜厚に形成できる。
この様に、他のカラーフィル夕との間に重複部分を有し
ていてもカラーフィルタ届の膜厚を均等にできるので、
フィル夕の分光透過特性は良好で高品質の画像を提供す
ることができる。
As shown in the above purchase, a color filter that transmits light such as ultraviolet rays used for exposure, such as cyan, is first formed, and a color filter that absorbs the fuzzy light rays is partially overlapped on top of the color filter, such as yellow. When a color filter is formed, even if there is an overlapping area, the yellow filter will be properly exposed to the direct incident light from the light source and the reflected light from the substrate, so both the overlapping and non-overlapping areas will be the same film. Can be formed thickly.
In this way, even if there is an overlap between the color filter and other color filters, the film thickness of the color filter can be made uniform.
The filter has good spectral transmission characteristics and can provide high quality images.

以下実施例を用いて詳細に説明する。第1図は、本発明
の一実施例としての固体力ラー撮像素子の概略断面図で
ある。半導体基板は、Si基板8に、受光素子としての
受光領域4,5,6および7が形成され、さらに上記基
板8上に所定の絶案談漠(図示せず)および金属配線(
図示せず)、必要に応じてパッシベーション膜(図示せ
ず)が形成されてなる。
This will be explained in detail below using examples. FIG. 1 is a schematic cross-sectional view of a solid-state color imaging device as an embodiment of the present invention. In the semiconductor substrate, light receiving regions 4, 5, 6, and 7 as light receiving elements are formed on a Si substrate 8, and furthermore, predetermined discontinuities (not shown) and metal wiring (
(not shown), and a passivation film (not shown) is formed as necessary.

第3〜7図にキ斑略工程図を示す。Figures 3 to 7 show schematic process diagrams of the process.

第3図に示す半導体基板上に、ポリグリシジルメタクリ
レート層30を形成し、次いでシアン色染料で染色され
たシアンカラーフィル夕1をもうける。更にポリグリシ
ジルメタクリレート(略称PGMA)からなる混色防止
保護膜層30上に、第4図に示す様にゼラチン21を回
転塗布法で塗布する。ここでゼラチンの感光剤としては
重クロム酸アンモニウム(NH4仇207、一般にAD
Cと略称)の5%、40℃の溢水溶液が用いられる。こ
のゼラチン塗布層の厚さは約1〃とする。次に第5図に
示す様にクロム(Cr)マスク31を使用して紫外線弦
光ンを行ない上記ゼラチン層を重合硬化させ、現像処理
することにより染色可能なゼラチパターン層22を形成
する。次に第6図に示す様にイエロー色用の染色液を約
70午0に加熱し、この中へ上記素子を浸糟することに
より、上記ゼラチン層22をイエロー色に染色しイエロ
ーカラーフィル夕2を形成する。上記シアン色染料とし
てはチバク。ンターキツシュフルーの2.2%水溶液を
そしてイエロー色染料としてはカャノールィェローの5
%水溶液を用いる。本例では、カラーフィル夕に補色フ
ィル夕を使用しており、シアン、イエロー、緑、白の4
組を使って色再現を計る方式がとられる。シアンに対応
する受光領域は5、緑は6、イエローは7そして白は4
がそれぞれ対応する。次いで、第7図に示す様に上記フ
ィルタ層1および2上にポリグリシジメタクリレートか
らなる保護膜3を形成し固体カラ−撮像素子用カラーフ
ィル夕を構成する。
A polyglycidyl methacrylate layer 30 is formed on the semiconductor substrate shown in FIG. 3, and then a cyan color filter 1 dyed with a cyan dye is formed. Furthermore, gelatin 21 is coated on the color mixture prevention protective film layer 30 made of polyglycidyl methacrylate (abbreviated as PGMA) by a spin coating method, as shown in FIG. Here, as a photosensitizer for gelatin, ammonium dichromate (NH4-207, generally AD
A 5% solution of 40° C. (abbreviated as C) is used. The thickness of this gelatin coating layer is approximately 1 mm. Next, as shown in FIG. 5, using a chromium (Cr) mask 31, ultraviolet rays are applied to polymerize and harden the gelatin layer, and a dyeable gelatin pattern layer 22 is formed by development. Next, as shown in FIG. 6, the gelatin layer 22 is dyed yellow by heating a dyeing solution for yellow color at about 70:00 and soaking the above-mentioned element in it. form 2. The cyan dye mentioned above is Chibaku. A 2.2% aqueous solution of turmeric and a yellow dye of canol yellow.
% aqueous solution is used. In this example, a complementary color filter is used for the color filter, and four colors of cyan, yellow, green, and white are used.
A method is used to measure color reproduction using sets. The light receiving area corresponding to cyan is 5, green is 6, yellow is 7 and white is 4.
correspond to each other. Next, as shown in FIG. 7, a protective film 3 made of polyglycidimethacrylate is formed on the filter layers 1 and 2 to constitute a color filter for a solid-state color image sensor.

上述のカラーフィル夕の材料として、前記ゼラチンの他
に、ポリビニールアルコールあるいはグリュ−なども差
違なく使用できる。
In addition to the gelatin described above, polyvinyl alcohol or glue can also be used as the material for the color film.

この様にイエローカラーフィル夕2をシアンカラーフィ
ルターの形成の上層部に形成するので、カラーフィル夕
に重複部があっても露光用の紫外線の光量を不足するこ
となく蕗光に使用することができる。
In this way, since the yellow color filter 2 is formed on the upper layer of the cyan color filter, even if there is an overlapping part in the color filter 2, the amount of ultraviolet light for exposure can be used for flashing without running out of light. can.

また、基板からの反射光をも有効に露光に使用するので
、直接入射させる紫外光が不必要に光量を増加させ“か
ぶり現象”を発生させることなく精度の良いパターンを
形成することができる。第2図は、本発明と従来の素子
の分光透過特性を示す概略特性図で機軸に光の波長を、
縦軸に分光透過率Tを示たものである。
In addition, since the reflected light from the substrate is also effectively used for exposure, a highly accurate pattern can be formed without causing "fogging", which is caused by an unnecessary increase in the amount of directly incident ultraviolet light. Figure 2 is a schematic characteristic diagram showing the spectral transmission characteristics of the present invention and the conventional element, focusing on the wavelength of light.
The vertical axis shows the spectral transmittance T.

曲線25はシアンの分光透過率、曲線26はイエローの
分光透過率である。
Curve 25 is the spectral transmittance of cyan, and curve 26 is the spectral transmittance of yellow.

今、イエローを下層に、シアンを上層に形成して、緑色
をその重複部分で得る場合を考慮する。フィルタ層形成
のための露光用光線として一般に紫外線や、43跡m前
後の光を用いるが、この場合イエローの分光特性からみ
てこの露光用光線を透過しない。従って緑色を得るため
に配されたシアン色のフィルタ層は露光光量が減少し、
このフィルタ層の膜厚が薄くなる。結果としてこのシア
ン色の分光透過率は曲線23の如き特性を示す。この結
果、曲線24のイエローと曲線23のシアンで合成され
た緑色は曲線22の如き分光透過率となる。一方、下層
にイエローを形成されていない部分のシアンの分光透過
率は曲線25で示される。
Now, consider the case where yellow is formed in the lower layer and cyan is formed in the upper layer, and green is obtained in the overlapped area. Generally, ultraviolet rays or light with a wavelength of around 43 m are used as exposure light for forming a filter layer, but in this case, this exposure light is not transmitted due to the spectral characteristics of yellow. Therefore, the amount of exposure light for the cyan filter layer placed to obtain green color is reduced,
The thickness of this filter layer becomes thinner. As a result, the spectral transmittance of this cyan color exhibits a characteristic as shown by curve 23. As a result, the green color synthesized from the yellow of the curve 24 and the cyan of the curve 23 has a spectral transmittance as shown by the curve 22. On the other hand, the cyan spectral transmittance of the portion where yellow is not formed in the lower layer is shown by a curve 25.

色再現の場合はR(赤)=W(白)−Cy(シアン)十
Ye(黄)−G(緑)8(青)=W(白)−Ye(黄)
十Cy(シアン)一G(緑)G(緑)=G(緑) なる演算によって三原色を再現するのであるが、この演
算は、Cy(シアン)=B(青)十G(緑) Ye(黄)=G(緑)十R(赤) なる関係が成立していないと成り立たない。
In the case of color reproduction, R (red) = W (white) - Cy (cyan) 10 Ye (yellow) - G (green) 8 (blue) = W (white) - Ye (yellow)
The three primary colors are reproduced by the following calculation: 10 Cy (cyan) 1 G (green) G (green) = G (green) This calculation is as follows: Cy (cyan) = B (blue) 1 G (green) Ye ( Yellow) = G (green) + R (red) This cannot be true unless the following relationship is established.

すなわち、三原色中の緑色がシアン、黄色中に含まれて
いる緑成分と整合がとれない特性の場合、R,G,Bの
表示が所望に行なえない。一方、本発明の如く、露光用
光線を透過するシアンを下層に配した場合、各フィル夕
の特性曲線は第2図の曲線25(シアン)、24(緑)
、26(イエロー)の如くとなる。
That is, if green among the three primary colors has characteristics that do not match the green components contained in cyan and yellow, R, G, and B cannot be displayed as desired. On the other hand, when cyan, which transmits the exposure light, is disposed in the lower layer as in the present invention, the characteristic curves of each filter are curves 25 (cyan) and 24 (green) in FIG.
, 26 (yellow).

シアンを下層に配した場合、この上部に形成するフィル
夕は所定の露光がなされ所望の膜厚が得ることができる
からである。本発明の素子では撮像の際にも膜厚の相違
によって影響を受けないため波長がずれることなく良好
な分光特性が得られた。
This is because when cyan is disposed in the lower layer, the filter formed on the upper layer is exposed to a predetermined amount of light and a desired film thickness can be obtained. The element of the present invention was not affected by differences in film thickness during imaging, and therefore good spectral characteristics were obtained without wavelength shift.

本実施例では、イエローとシアンのカラーフィル夕につ
いてのみ述べたが、他の色のカラーフィル夕の組み合わ
せであっても重複部のフィルタ膜厚を非重複部と均等に
させる場合は本発明が適用されることは言うまでもない
In this embodiment, only yellow and cyan color filters have been described, but the present invention can be applied to a combination of color filters of other colors to make the filter film thickness in the overlapping part equal to that in the non-overlapping part. Needless to say, this applies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としての固体力ラー撮像素子
の概略断面図、第2図は本発明による素子の千鱗略特性
図、第3乃至7図は本発明の素子の概略部分工程図であ
る。 1…カラーフイルタ(Cy)、2…カラーフイルタ(Y
e)、3・・・混合防止保護膜、4〜7・・・受光領域
、8・・・Si基板。 牙ー図 対2図 治3函 弟ム図 第3図 冴S図 静7図
FIG. 1 is a schematic cross-sectional view of a solid-state color imaging device as an embodiment of the present invention, FIG. 2 is a schematic characteristic diagram of the device according to the present invention, and FIGS. 3 to 7 are schematic portions of the device according to the present invention. It is a process diagram. 1...Color filter (Cy), 2...Color filter (Y
e), 3... Mixing prevention protective film, 4-7... Light receiving area, 8... Si substrate. Fang diagram vs. 2 diagram Ji 3 box younger brother Mu diagram 3 Sae S diagram Shizuka 7 diagram

Claims (1)

【特許請求の範囲】 1 複数の受光部を少なくとも有する半導体基体と、該
基板上に上記受光部に対応してカラーフイルタ層が配置
され、該フイルタ層の各々は少なくとも二種の相異なる
分光透過性を有し、且上記受光部に対応して設けるフイ
ルタの分光透過特性として第1および第2のフイルタ層
の分光透過特性の合成によつて第3の分光透過特性を得
ている構成少なくとも有する固体カラー撮像素子であつ
て、上記第1および第2のフイルタ層の積層を行なうに
当つて当該フイルタ層の加工に用いるところの露光用光
線を実質的に透過する分光透過特性を有するフイルタ層
を下層に配してなることを特徴とする固体カラー撮像素
子。 2 前記下層に配されるフイルタ層はシアン色、上層に
配されるフイルタ層は黄色なることを特徴とする特許請
求の範囲第1項記載の固体カラー撮像素子。 3 複数の受光部を少なくとも有する前記半導体基体は
その表面に透光性有機高分子層を有することを特徴とす
る特許請求の範囲第1項〜第2項記載の固体カラー撮像
素子。 4 複数の受光部を少なくとも有する半導体基体上に、
所定の感光特性を有する第1のフイルタ母材を形成する
工程、この第1のフイルタ母材を所定形状に露光し加工
する工程、該第1のフイルタ母材に所定の分光透過特性
を有せしめ第1のフイルタ要素となす工程、前工程迄に
準備された半導体基体上に透光性有機高分子樹脂層を形
成する工程、該樹脂層上に所定の感光特性を有する第2
のフイルタ母材を形成する工程、前記第1のフイルタ母
材と重複する部分を少なくとも持つところの所定形状に
この第2のフイルタ母材を露光し加工する工程、該第2
のフイルタ母材に所定の分光透過特性を有せしめ第2の
フイルタ要素となす工程を少なくとも有し、且つ前記第
1のフイルタ要素の分光透過特性は前記フイルタ母材の
露光用光線を実質的に透過する特性なることを特徴とす
る固体カラー撮像素子の製造方法。 5 複数の受光部を少なくとも有する前記半導体基体は
その表面に透光性有機高分子層が形成されて成ることを
特徴とする特許請求の範囲第4項記載の固体カラー撮像
素子の製造方法。 6 前記第1のフイルタ要素はシアン色、第2のフイル
タ要素は黄色なるとを特徴とする特許請求の範囲第4項
〜第5項記載の固体カラー撮像素子の製造方法。
[Scope of Claims] 1. A semiconductor substrate having at least a plurality of light-receiving parts, and a color filter layer disposed on the substrate corresponding to the light-receiving part, each of the filter layers having at least two different types of spectral transmission. and has at least a configuration in which a third spectral transmission characteristic is obtained by combining the spectral transmission characteristics of the first and second filter layers as the spectral transmission characteristic of the filter provided corresponding to the light receiving section. The solid-state color imaging device includes a filter layer having spectral transmission characteristics that substantially transmits an exposure light beam used for processing the first and second filter layers when laminating the first and second filter layers. A solid-state color image sensor characterized by being arranged in the lower layer. 2. The solid-state color imaging device according to claim 1, wherein the lower filter layer is cyan, and the upper filter layer is yellow. 3. The solid-state color imaging device according to claim 1 or 2, wherein the semiconductor substrate having at least a plurality of light-receiving parts has a light-transmitting organic polymer layer on its surface. 4. On a semiconductor substrate having at least a plurality of light receiving parts,
a step of forming a first filter base material having predetermined photosensitive characteristics; a step of exposing and processing the first filter base material into a predetermined shape; and a step of making the first filter base material have predetermined spectral transmission characteristics. A step of forming a first filter element, a step of forming a transparent organic polymer resin layer on the semiconductor substrate prepared up to the previous step, and a step of forming a second filter element having predetermined photosensitive characteristics on the resin layer.
a step of exposing and processing this second filter base material into a predetermined shape having at least a portion overlapping with the first filter base material;
at least the step of imparting predetermined spectral transmission characteristics to the filter base material to form a second filter element, and the spectral transmission characteristics of the first filter element substantially transmit the exposure light of the filter base material. A method for manufacturing a solid-state color image sensor characterized by transmitting properties. 5. The method of manufacturing a solid-state color imaging device according to claim 4, wherein the semiconductor substrate having at least a plurality of light-receiving parts has a transparent organic polymer layer formed on its surface. 6. The method of manufacturing a solid-state color imaging device according to claim 4, wherein the first filter element is cyan and the second filter element is yellow.
JP56162870A 1981-10-14 1981-10-14 Solid-state color image sensor and its manufacturing method Expired JPS6022323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56162870A JPS6022323B2 (en) 1981-10-14 1981-10-14 Solid-state color image sensor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56162870A JPS6022323B2 (en) 1981-10-14 1981-10-14 Solid-state color image sensor and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5795786A JPS5795786A (en) 1982-06-14
JPS6022323B2 true JPS6022323B2 (en) 1985-06-01

Family

ID=15762824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56162870A Expired JPS6022323B2 (en) 1981-10-14 1981-10-14 Solid-state color image sensor and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6022323B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242403A (en) * 1984-05-16 1985-12-02 Mitsubishi Electric Corp Process for forming complementary color type color filter
DE3855833T2 (en) * 1987-04-30 1997-07-31 Toshiba Kawasaki Kk Color image sensor and its manufacturing process

Also Published As

Publication number Publication date
JPS5795786A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
US4721999A (en) Color imaging device having white, cyan and yellow convex lens filter portions
CN100533749C (en) Solid state image pickup device and manufacturing method thereof
CA1162297A (en) Solid-state color imager and method of manufacturing the same
US5336367A (en) Solid-state imaging device and method of manufacturing the same
JPS6022323B2 (en) Solid-state color image sensor and its manufacturing method
JP2678074B2 (en) Method for manufacturing solid-state imaging device
KR100293719B1 (en) Image sensor with improved light transmission for short wavelength light and its manufacturing method
JPH0381122B2 (en)
JPH06289217A (en) Color solid state image pickup device and its production
JPS5868970A (en) Color solid-state image sensing element and its manufacture
JPH0139272B2 (en)
JP3919671B2 (en) Color filter manufacturing method and alignment mark
JPH01149459A (en) Solid-state color image pickup element
JPH0493801A (en) Manufacture of color filer
JPS6064303A (en) Production of color filter
JPH0360154A (en) Solid-state color image sensing device
KR940002314B1 (en) Making method for color filter
JPS62264005A (en) Production of high precision color filter
JPH0442966A (en) Solid-state colored image sensing element
JPH07161950A (en) Solid-state image pick-up device and its manufacture
JPS60249102A (en) Color filter
KR100209753B1 (en) Fabricating method of color solid-state image sensing device
JP2558854B2 (en) Color solid-state imaging device
JPH0816725B2 (en) Color filter manufacturing method
JPH05183140A (en) Solid-state image pickup device and manufacture thereof