JPS60222848A - Formation of pattern - Google Patents

Formation of pattern

Info

Publication number
JPS60222848A
JPS60222848A JP7847184A JP7847184A JPS60222848A JP S60222848 A JPS60222848 A JP S60222848A JP 7847184 A JP7847184 A JP 7847184A JP 7847184 A JP7847184 A JP 7847184A JP S60222848 A JPS60222848 A JP S60222848A
Authority
JP
Japan
Prior art keywords
film
pattern
development
photosensitive
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7847184A
Other languages
Japanese (ja)
Other versions
JPH067545B2 (en
Inventor
Munehisa Mitsuya
三矢 宗久
Toshiharu Matsuzawa
松澤 敏晴
Morio Taniguchi
彬雄 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59078471A priority Critical patent/JPH067545B2/en
Publication of JPS60222848A publication Critical patent/JPS60222848A/en
Publication of JPH067545B2 publication Critical patent/JPH067545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/56Processes using photosensitive compositions covered by the groups G03C1/64 - G03C1/72 or agents therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enhance resolution and to suppress dispersion of finishing dimensions by depositing an org. photosensitive compd. through vacuum evaporation to form a thin photosensitive film on the substrate to be worked at the time of forming a pattern on said thin photosensitive org. film through exposure and development. CONSTITUTION:The thin photosensitive org. film layer is formed by evaporating and depositing an org. compd., such as omega-tricosenic acid, having a hydrophilic group on one terminal of the molecular structure and a hydrophobic group on the other terminal in vacuum on the substrate to be worked. This thin film is exposed in a prescribed pattern and plasma treated in a low-temp. gas plasma atm. essentially consisting of oxygen to execute development and to form an intended pattern. As a result, since the photosensitive compsn. layer can be reduced in thickness, a pattern high in resolution is obtained, and since layer is oriented in the film thickness direction, anisotropic development is executed and development can be enhanced in dimensional precision.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はパターン形成方法に係り、特に高解像度を有し
、かつ加工寸法バラツキを抑制するに適したパターン形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a pattern forming method, and particularly to a pattern forming method that has high resolution and is suitable for suppressing variations in processing dimensions.

〔発明の背景〕[Background of the invention]

従来のパターン形成方法においては、シリコンウェハな
どの基板上に感光性組成物の溶液を回転塗布して該組成
物の薄膜を形成し、これを現像処理して所望のパターン
を形成していた。ところで半導体の高集積化に伴なって
1μm以下の微細なパターンが要求されている。これを
達成するためには、感光性組成物層をうすくする必要が
あるが、回転塗布法では欠陥なしに0.1μm以下の薄
膜を形成することは困難である。
In conventional pattern forming methods, a solution of a photosensitive composition is spin-coated onto a substrate such as a silicon wafer to form a thin film of the composition, and this is developed to form a desired pattern. Incidentally, as semiconductors become more highly integrated, finer patterns of 1 μm or less are required. In order to achieve this, it is necessary to make the photosensitive composition layer thin, but it is difficult to form a thin film of 0.1 μm or less without defects using a spin coating method.

また半導体での配線の多層化にともない、あらかじめパ
ターンを形成しである。段差を有する基板上に感光性組
成物層をもうける必要がある。しかし回転塗布法では段
差を有する表面にそって均一な厚さに膜を形成すること
は不可能である。
In addition, as semiconductor wiring becomes multilayered, patterns must be formed in advance. It is necessary to form a photosensitive composition layer on a substrate having steps. However, with the spin coating method, it is impossible to form a film with a uniform thickness along a surface having steps.

更に従来のレジストパターン形成技術において、現像後
のレジストパターンの寸法バラツキを抑制する(寸法精
度を向上する)ためには、露光装置の解像度を向上する
こと、および現像条件の厳密な制御が主に必要である。
Furthermore, in conventional resist pattern forming technology, in order to suppress dimensional variations in the resist pattern after development (improve dimensional accuracy), it is mainly necessary to improve the resolution of the exposure device and strictly control the development conditions. is necessary.

しかし、高解像度化に伴いny6装置にかかわるコスト
の増加は避けられず、量産技術としての問題が生じる。
However, as the resolution becomes higher, the cost associated with the ny6 device inevitably increases, which poses a problem as a mass production technology.

また、現像条件を制御するにしても、現像にかかわる化
学種の流れや拡散についての制御はほとんど不可能であ
るから、早暁、現像寸法のバラツキの程度がパターン幅
に比して無視し得なくなることは明らかである。
Furthermore, even if the development conditions are controlled, it is almost impossible to control the flow and diffusion of chemical species involved in development, so the degree of variation in development dimensions cannot be ignored compared to the pattern width. That is clear.

有機薄膜を得る他の方法としてLangmuir −F
31 o d g e t; l;法(L B法)が知
られている。これは単分子層を展開させた水面上で基板
を上下させ、単分子膜を基板−にに順次移しとる方法で
ある。こうして作製された0、1μm以下の薄膜に電子
線を照射して微細パターンを形成することも可能であり
Mo1.Crys+:、l、iq、Crys七、96 
353 (’83) やJ、Materials Sc
i、182603 (’83)などにその記載がある。
Langmuir-F is another method for obtaining organic thin films.
31 o d get; l; method (L B method) is known. This is a method in which the monomolecular film is sequentially transferred onto the substrate by raising and lowering the substrate on the surface of water on which a monomolecular layer has been developed. It is also possible to form a fine pattern by irradiating the thin film of 0.1 μm or less produced in this way with an electron beam, and Mo1. Crys+:,l,iq,Crys7,96
353 ('83) ya J, Materials Sc
i, 182603 ('83), etc.

ところがこの方法で得られたパターンには欠陥が多く、
それらの欠陥には二種類あった。第一は空気中の塵埃に
よるものである。LB法では基板をゆっくり上下させる
ために基板は長時間空気中にさらされる。クラス10の
クリーンルームで上記実験を行なったが、膜形成中に空
気中の塵埃が基板に付着したものと推察される。
However, the patterns obtained using this method have many defects.
There were two types of these defects. The first is due to dust in the air. In the LB method, the substrate is exposed to air for a long time because it is moved up and down slowly. Although the above experiment was conducted in a class 10 clean room, it is presumed that dust in the air adhered to the substrate during film formation.

第二の欠陥は基板として用いたSiウェハの腐食による
ものであり、従来の回転塗布法では存在しなかったもの
である。3回蒸留した水を用いて膜形成を行なったが、
それでも電解質の混入が避けられず、これによってSi
が腐食したと考えられる。
The second defect is due to corrosion of the Si wafer used as the substrate, and does not exist in the conventional spin coating method. Film formation was performed using triple-distilled water, but
Even so, electrolyte contamination is unavoidable, and this causes Si
It is thought that it was corroded.

以上の結果からL B法を半導体プロセスに適用するに
は量産性の点で問題が多いことがわかった。
From the above results, it was found that there are many problems in terms of mass production when applying the LB method to semiconductor processes.

更に、このLB法もまた段差を有する基板上への膜形成
は困難である。
Furthermore, with this LB method, it is also difficult to form a film on a substrate having steps.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来技術の問題点を克服し、高い寸法精
度を有する微細パターン形成方法を提供することにある
。更に段差を有する基板上においても同様のパターン形
成を実現する方法を提供することにある。
An object of the present invention is to overcome the problems of the prior art and provide a method for forming fine patterns with high dimensional accuracy. Furthermore, it is an object of the present invention to provide a method for realizing similar pattern formation even on a substrate having steps.

〔発明の概要〕[Summary of the invention]

本発明者らの一部は、界面活性物質の真空蒸着によって
Langmujr、 Blodgett:法によるもの
と同等の配向膜が得られることを見出し本発明を得た。
Some of the inventors of the present invention have discovered that an alignment film equivalent to that obtained by the Langmujr and Blodgett method can be obtained by vacuum deposition of a surface-active substance, thereby obtaining the present invention.

真空蒸着法は簿膜を得るには格好な手段であり、また膜
中で各分子が配向しているために電子線。
The vacuum evaporation method is an excellent method for obtaining thin films, and because the molecules in the film are oriented, it is difficult to use electron beams.

X線あるいは紫外光の照射によって膜中での構造変化が
すみやかに進行する。更に真空中で膜形成するために塵
埃の影響や基板の腐食による欠陥発生の恐れがないとい
う利点も有している。
Structural changes in the film proceed rapidly by irradiation with X-rays or ultraviolet light. Furthermore, since the film is formed in a vacuum, it has the advantage that there is no fear of defects caused by the influence of dust or corrosion of the substrate.

〔発明の実施例〕[Embodiments of the invention]

実施例1 膜厚0 、1 mmのタンタルボートへの抵抗加熱によ
って下に示すω位に二重結合を有する一部カルボン酸(
ω−IZrjcosenoic acj、d)をSt基
板上に真空蒸着した。
Example 1 A partial carboxylic acid (shown below) having a double bond at the ω position was prepared by resistance heating a tantalum boat with a film thickness of 0 and 1 mm.
ω-IZrjcosenoic acj, d) was vacuum deposited on the St substrate.

CH2= CH(CH2) qo COOH真空装置内
の真空度は1.5X10 ”Paであり、Siウェハは
支持台と共に1100rpで回転させて膜厚の均一化を
図った。ウェハとボーととの最短距離は]Ocmである
。蒸着に際しては水晶振動子の固有振動数の変化をモニ
タし、蒸着速度が一定になるようにボートに流す電流値
を制御した。
CH2= CH(CH2) qo The degree of vacuum in the COOH vacuum apparatus was 1.5×10”Pa, and the Si wafer was rotated at 1100 rpm with the support stand to ensure uniform film thickness.The shortest distance between the wafer and the bow was The distance was ]Ocm.During the deposition, changes in the natural frequency of the crystal oscillator were monitored, and the value of the current flowing through the boat was controlled so that the deposition rate was constant.

60分かけて蒸着した後、装置内を大気圧にもどしてウ
ェハをとり出した。
After vapor deposition for 60 minutes, the inside of the apparatus was returned to atmospheric pressure and the wafer was taken out.

同時に有機薄膜を作製した複数のウェハのうち、一枚に
ついて多重干渉法で膜厚を測定したところ、0.35μ
mであった。他の一枚についてX線回折を行なったとこ
ろ、配向性を示す回折パターンが得られた。残りの試料
に対して電子線描画装置により解像度テストパターンを
描画した。照射量は】μc/Cm2である。描画を終え
た試料をエタノールで現像したところ、公称0.25μ
mラインー0.25μmスペースの最小くり返しパター
ンまでパターンが形成されていた。走査型電子顕微鏡で
m察した限りでは、得られたパターンには欠陥が存在し
なかった。
When we measured the film thickness of one of the multiple wafers on which organic thin films were simultaneously fabricated using multiple interference method, we found that it was 0.35 μm.
It was m. When the other sheet was subjected to X-ray diffraction, a diffraction pattern indicating orientation was obtained. A resolution test pattern was drawn on the remaining samples using an electron beam drawing device. The irradiation dose is .mu.c/Cm2. When the drawn sample was developed with ethanol, the nominal value was 0.25μ.
Patterns were formed up to the minimum repeating pattern of m lines and 0.25 μm spaces. As far as observation using a scanning electron microscope was concerned, there were no defects in the resulting pattern.

公称0.5μmの孤立ラインについて、寸法精度に及ぼ
す現像時間の影響を調べた。結果を第1図に示す。横軸
はエタノールへの浸漬時間であり、同一ウエバ内の50
点について測定したライン幅の平均値をたて軸に示した
。現像時間20秒以上では寸法バラツキは同一ウエバ内
で0.027μmであり、また平均ライン幅の現像時間
依存性が小さい。
The effect of development time on dimensional accuracy was investigated for isolated lines with a nominal diameter of 0.5 μm. The results are shown in Figure 1. The horizontal axis is the immersion time in ethanol, and 50% in the same web.
The vertical axis shows the average value of the line width measured for the points. When the development time is 20 seconds or more, the dimensional variation within the same web is 0.027 μm, and the dependence of the average line width on the development time is small.

従って本発明によって寸法精度が従来技術に比べて約1
桁向−トし、また現像時間の裕度も大きくなっている。
Therefore, according to the present invention, the dimensional accuracy is approximately 1
The development time has also become more flexible.

上記結果の理由は次の様に考えられる。蒸着膜において
は、各分子が基板に垂直な方向に配向している。従って
該薄膜を溶剤に浸漬した際に、溶剤の膜中への浸透速度
には異方性がある。即ち分子軸にそった厚み方向への浸
透速度は大きいが、側内方向へは容媒が浸透しにくい。
The reason for the above result can be considered as follows. In the deposited film, each molecule is oriented in a direction perpendicular to the substrate. Therefore, when the thin film is immersed in a solvent, there is anisotropy in the rate of penetration of the solvent into the film. That is, the permeation rate in the thickness direction along the molecular axis is high, but it is difficult for the medium to permeate in the lateral direction.

そのために寸法精度が向上すると共に、現像時間依存性
が小さいと考えられる。
Therefore, it is thought that the dimensional accuracy is improved and the dependence on development time is small.

実施例2 実施例1で蒸着に用いたω−I・リコセン酸は公知の方
法で合成したが、合成の一段階毎に精製をくり返して得
たものである。精製という過程を経ずに合成して得られ
たω−トリコセン酸を用いて実施例1と同様にパターン
を形成し、実施例1と同じ結果を得た。本実施例で用い
たωトリコセン酸は不純物を含むが、不純物によると思
われる記録感度や解像度の低下は認められなかった。
Example 2 The ω-I licosenic acid used for vapor deposition in Example 1 was synthesized by a known method, and was obtained by repeating purification at each stage of synthesis. A pattern was formed in the same manner as in Example 1 using ω-tricosenic acid synthesized without going through the process of purification, and the same results as in Example 1 were obtained. Although the omega-tricosenic acid used in this example contains impurities, no decrease in recording sensitivity or resolution, which may be caused by impurities, was observed.

実施例3 実施例1と同様の方法で形成したStウェハ+の一部カ
ルボン酸の蒸着膜に対し、電子線描画装置により解像度
テストパターンを描画した。照射量は0.5μc/cm
”であり、薄膜表面層のみが反応する照射量である。
Example 3 A resolution test pattern was drawn on a partially carboxylic acid vapor-deposited film of the St wafer+, which was formed in the same manner as in Example 1, using an electron beam drawing device. Irradiation dose is 0.5μc/cm
”, which is the dose at which only the surface layer of the thin film reacts.

描画を終えた5枚の試料を、円筒型プラズマ処理装置内
に設置し、02 : CF4=9 : 1の混合ガスを
導入して圧力を200Paに設定した後、13.56M
Hzの高周波電圧を印加してプラズマを発生させ、現像
処理を2分間行なった。
The five samples that had been drawn were placed in a cylindrical plasma processing apparatus, and a mixed gas of 02:CF4=9:1 was introduced and the pressure was set at 200 Pa, followed by 13.56M.
Plasma was generated by applying a high frequency voltage of Hz, and development was performed for 2 minutes.

現像後、形成されたパターンの残存膜厚を測定したとこ
ろ、0.41μmであった。現像されたパターンのうち
では公称0.2μmラインー0.2μInスペースの繰
り返しパターンが最小であった。公称0.5μmの孤立
ラインについて、寸法精度を測長用走査型電子顕微鏡で
測定した結果、Iウェハ内50点につき0.48±0.
021μm (平均値上標準偏差×3)、ウェハ5枚に
つき0.470±0.029pmの値が得られた。
After development, the remaining film thickness of the formed pattern was measured and found to be 0.41 μm. Of the developed patterns, the nominal 0.2 μm line-0.2 μIn space repeat pattern was the smallest. The dimensional accuracy of an isolated line with a nominal diameter of 0.5 μm was measured using a scanning electron microscope for length measurement, and the result was 0.48 ± 0.0 for 50 points within an I-wafer.
A value of 0.021 μm (average standard deviation x 3) and 0.470±0.029 pm for five wafers was obtained.

従来技術によれば、寸法バラツキ(寸法測定値の標準偏
差の3倍を以て評価する。)は、同様な条件下で0.2
μm程度あったので、本発明により、それが約1桁抑制
されて、格段に寸法精度が向上したことは明らかである
According to the prior art, the dimensional variation (evaluated by three times the standard deviation of the dimensional measurement values) is 0.2 under similar conditions.
It is clear that the present invention suppresses this by about one order of magnitude and significantly improves the dimensional accuracy.

円筒型プラズマ処理装置においては、プラズマの分布が
不均一であるのが通常であるにもかかわらず、同一ウエ
バ内におけるバラツキも、複数のウェハ間にわたるバラ
ツキもきわめて小さいことは、本発明の方法によれば現
像条件に対する制御が緩やかであっても、高精度の加工
が可能であることを示している。
Although plasma distribution is normally non-uniform in cylindrical plasma processing equipment, the method of the present invention has extremely small variations within the same wafer and between multiple wafers. This shows that even if the control over the development conditions is loose, highly accurate processing is possible.

実施例1の場合と同様に、プラズマによる現像プロセス
の場合においても現像の異方性が生じ、このために寸法
精度が向上したと考えられる。
As in the case of Example 1, anisotropy of development occurs also in the case of the plasma development process, and this is considered to be the reason for the improvement in dimensional accuracy.

前述の実施例においては電子線照射によってパターンを
形成したが、照射源としてはこれに限られるものではな
く、紫外線、X線、イオン線なども適用可能である。
In the above embodiments, the pattern was formed by electron beam irradiation, but the irradiation source is not limited to this, and ultraviolet rays, X-rays, ion beams, etc. can also be applied.

レジストを構成するために真空蒸着に供される有機物と
してはあらゆるものが用いられる。ただし高い記録感度
を得るためには該有機化合物が、その一端に極性基を有
し、他端に疎水基を有する界面活性物質であり、かつ分
子内に一つ以−Hの不飽和結合あるいは4級炭素を含む
ことが望ましい。
Any organic material can be used for vacuum deposition to form the resist. However, in order to obtain high recording sensitivity, the organic compound must be a surface active substance that has a polar group at one end and a hydrophobic group at the other end, and must have at least one -H unsaturated bond or It is desirable to contain quaternary carbon.

不飽和結合を有する界面活性物質としては、ω−トリコ
セン酸やジアセチレンモノカルボン酸などの不飽和モノ
カルボン酸及びその金属塩、α−オクタデシルアクリル
酸などのアクリル酸の長鎖誘導体、オクタデシルアクリ
レートやオクタデシルメタアクリレ−1−などのアクリ
ル酸やメタアクリル酸のエステルなどがあげられる。
Surface-active substances having unsaturated bonds include unsaturated monocarboxylic acids and their metal salts such as ω-tricosenic acid and diacetylene monocarboxylic acid, long chain derivatives of acrylic acid such as α-octadecyl acrylic acid, octadecyl acrylate, etc. Examples include esters of acrylic acid and methacrylic acid such as octadecylmethacrylate-1-.

また、光分解に伴い構造異性化をするたとえば、0−キ
ノンジアジド化合物の長鎖誘導体も本発明の実施に良好
な材料である。
Further, for example, long-chain derivatives of O-quinonediazide compounds, which undergo structural isomerization upon photolysis, are also suitable materials for carrying out the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明による効果を以下に列記する。 The effects of the present invention are listed below.

(1)本発明によれば感光性組成物層の膜厚を小さくで
きるため、解像度の高いパターンが得られる。従来の回
転塗布法では0.2μm幅が限界であったが、0.09
5μmの膜厚の蒸着膜から0.15μm幅のパターンが
得られた。膜厚を小さくすることによってより微細なパ
ターンの形成も可能である。
(1) According to the present invention, since the thickness of the photosensitive composition layer can be reduced, a pattern with high resolution can be obtained. The conventional spin coating method had a width limit of 0.2 μm, but the width of 0.09
A pattern with a width of 0.15 μm was obtained from a deposited film with a thickness of 5 μm. By reducing the film thickness, it is also possible to form finer patterns.

(2)感光性組成物層が膜厚方向に配向しているため現
像に異方性があり、寸法精度が従来技術に比べて約1桁
向上する。
(2) Since the photosensitive composition layer is oriented in the film thickness direction, there is anisotropy in development, and the dimensional accuracy is improved by about one order of magnitude compared to the conventional technology.

(3)真空という清浄な雰囲気内で膜を形成するため欠
陥の少ないパターンが形成される。欠陥の発生びん度は
従来技術と同程度かそれ以下であり、LB法に比べると
、1桁以上、向上している。
(3) Since the film is formed in a clean atmosphere such as vacuum, a pattern with fewer defects is formed. The degree of defect occurrence is the same as or lower than that of the conventional technique, and is improved by more than one order of magnitude compared to the LB method.

(4)不純物を含む蒸着材料からも、高感度でパターン
が形成される。LB法で配向膜を形成する際には、膜中
に不純物が含まれると配向が乱され感度が低下する。従
って充分に精製した材料を用いて膜を形成する必要があ
る。
(4) Patterns can be formed with high sensitivity even from vapor deposition materials containing impurities. When forming an alignment film using the LB method, if impurities are contained in the film, the alignment will be disturbed and the sensitivity will decrease. Therefore, it is necessary to form the membrane using sufficiently purified materials.

それに反して真空蒸着する際には、蒸気圧の高い不順物
は最初に蒸発し、蒸気圧の低い不順物はボートに残る。
On the other hand, during vacuum evaporation, contaminants with high vapor pressure evaporate first, and contaminants with low vapor pressure remain in the boat.

従って真空蒸着法では精製しながら膜を形成することに
なり、単一成分の薄膜が得られる。
Therefore, in the vacuum evaporation method, a film is formed while being purified, and a thin film of a single component can be obtained.

(5)実施例3に示したとおり、潜像形成のための照射
エネルギーとしてはレジスト表面層が反応するのに充分
な量であれば良いから、従来法における必要照射量の1
/2以下の照射量で良く、レジスト感度が向上したと同
等の効果が得られる。
(5) As shown in Example 3, the irradiation energy for forming a latent image only needs to be an amount sufficient to cause the resist surface layer to react;
It is sufficient to use an irradiation dose of /2 or less, and the same effect as that of improved resist sensitivity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、感光性有機薄膜層への露光と現像によるパターン形
成方法において、被加工基板上への該有機薄膜の形成が
有機化合物の真空蒸着法によることを特徴とするパター
ン形成方法。 2、上記有機薄膜を構成する有機化合物が、その一端が
親木基であり他端が疎水基であることを特徴とする特許
請求の範囲第1項記載のパターン形成方法。 3、上記現像プロセスが、酸素を主成分とする低温ガス
プラズマ雰囲気でのプラズマ処理であることを特徴とす
る特許請求の範囲第1項記載のパターン形成方法。
[Scope of Claims] 1. A pattern forming method by exposing and developing a photosensitive organic thin film layer, characterized in that the organic thin film is formed on a substrate to be processed by vacuum evaporation of an organic compound. Method. 2. The pattern forming method according to claim 1, wherein the organic compound constituting the organic thin film has a parent group at one end and a hydrophobic group at the other end. 3. The pattern forming method according to claim 1, wherein the developing process is plasma treatment in a low-temperature gas plasma atmosphere containing oxygen as a main component.
JP59078471A 1984-04-20 1984-04-20 Pattern formation method Expired - Lifetime JPH067545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078471A JPH067545B2 (en) 1984-04-20 1984-04-20 Pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078471A JPH067545B2 (en) 1984-04-20 1984-04-20 Pattern formation method

Publications (2)

Publication Number Publication Date
JPS60222848A true JPS60222848A (en) 1985-11-07
JPH067545B2 JPH067545B2 (en) 1994-01-26

Family

ID=13662927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078471A Expired - Lifetime JPH067545B2 (en) 1984-04-20 1984-04-20 Pattern formation method

Country Status (1)

Country Link
JP (1) JPH067545B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247356A (en) * 1986-02-10 1987-10-28 ロクタイト.(アイルランド).リミテツド Manufacture of evaporation photoresist of anionic polymerizable monomer and product thereof
JPS63240551A (en) * 1987-03-27 1988-10-06 Res Dev Corp Of Japan Thin organic film resist and perfect dry lithography

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112794A (en) * 1981-12-28 1983-07-05 Ricoh Co Ltd Optical information recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112794A (en) * 1981-12-28 1983-07-05 Ricoh Co Ltd Optical information recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247356A (en) * 1986-02-10 1987-10-28 ロクタイト.(アイルランド).リミテツド Manufacture of evaporation photoresist of anionic polymerizable monomer and product thereof
JPS63240551A (en) * 1987-03-27 1988-10-06 Res Dev Corp Of Japan Thin organic film resist and perfect dry lithography

Also Published As

Publication number Publication date
JPH067545B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US5512328A (en) Method for forming a pattern and forming a thin film used in pattern formation
EP0808481B1 (en) Photolithographic structure generation process
US4874632A (en) Process for forming pattern film
US4798740A (en) Polymerizable film and pattern forming method by use thereof
Anderson et al. Advances in nanolithography using molecular rulers
EP0101752B1 (en) Reversal process for the production of chromium masks
JPS60222848A (en) Formation of pattern
JPS58186935A (en) Pattern formation
JPS62263973A (en) Thin metallic film and its production
JP3219315B2 (en) Method for correcting white defect in phase shift mask
JPS5824937B2 (en) Electron beam resist development method
JP2579920B2 (en) Substrate processing method
JPH0661160A (en) Pattern forming method
Wang et al. Patterning SiO 2 thin films using synchrotron radiation stimulated etching with a Co contact mask
WO2020054131A1 (en) Phase shift mask blank, phase shift mask, light exposure method and method for producing device
Lu et al. Langmuir-Blodgett resist films for microlithography by exposure to a scanning electron microscope
Mednikarov et al. Photolithographic structuring with evaporated inorganic photoresist
Sapkov et al. Using a focused ion beam for the creation of a molecular single-electron transistor
JP2648144B2 (en) Complete dry lithography method
JP2002248338A (en) Evacuation equipment, particle beam equipment, optical ray equipment and x-ray equipment as well as method of manufacturing semiconductor integrated circuit device using these
Kozicki et al. Electron-beam exposure of self-assembled monolayers of 10-undecenoic acid
TW202200756A (en) Semiconductor processing liquid and method for processing substrate
CN115535956A (en) Patterning preparation method of micro-nano material self-assembled film
JP2005199180A (en) Film forming method and substrate treatment method
JPS59128B2 (en) Electron beam resist development method