JP2002248338A - Evacuation equipment, particle beam equipment, optical ray equipment and x-ray equipment as well as method of manufacturing semiconductor integrated circuit device using these - Google Patents

Evacuation equipment, particle beam equipment, optical ray equipment and x-ray equipment as well as method of manufacturing semiconductor integrated circuit device using these

Info

Publication number
JP2002248338A
JP2002248338A JP2001048155A JP2001048155A JP2002248338A JP 2002248338 A JP2002248338 A JP 2002248338A JP 2001048155 A JP2001048155 A JP 2001048155A JP 2001048155 A JP2001048155 A JP 2001048155A JP 2002248338 A JP2002248338 A JP 2002248338A
Authority
JP
Japan
Prior art keywords
equipment
container
particle beam
chamber
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001048155A
Other languages
Japanese (ja)
Inventor
Masaomi Tanaka
優臣 田中
Shinichi Kato
慎一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001048155A priority Critical patent/JP2002248338A/en
Publication of JP2002248338A publication Critical patent/JP2002248338A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an evacuation equipment which suppresses the release of impurity gas from the inner peripheral surface and structures of a chamber 29 of the evacuation equipment and improves the vacuum degree in the chamber while maintaining a high vacuum, an optical ray equipment, a particle beam equipment, an exposure equipment and an X-ray equipment as well as to manufacture a semiconductor integrated circuit device which makes element dimensions finer by stably performing observation, etc., with high accuracy by using these equipments described above. SOLUTION: The evacuation equipment which has a vessel and evacuation means 28 in the vessel and is formed with a thin film of a platinum metal 12 on the inner. The equipment, more specifically, the particle beam equipment which has a particle beam source, a particle beam vessel having a lens to narrow down the particle beam and evacuation means of the particle beam vessel and housing vessel and performs >=1 of observing, working, drawing and inspecting of a workpiece 18 by irradiation with the particle beam, in which the thin films of the platinum metal are formed on at least one inner peripheral surface of at least either of the particle beam vessel and the housing vessel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規な真空排気装置
に関し、特に半導体集積回路装置の観察、加工、描画、
製造、検査等に用いる粒子線装置、光線装置又はX線装
置に関する。また、粒子線装置又は光線装置を用いて観
察、加工、描画、製造、検査等がされる半導体集積回路
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel vacuum pumping device, and more particularly to observation, processing, drawing, and the like of a semiconductor integrated circuit device.
The present invention relates to a particle beam device, a light beam device, or an X-ray device used for manufacturing, inspection, and the like. Further, the present invention relates to a semiconductor integrated circuit device that is observed, processed, drawn, manufactured, inspected, and the like using a particle beam device or a light beam device.

【0002】[0002]

【従来の技術】ターボ分子ポンプやイオンポンプ、ロー
タリーポンプなどの真空排気ポンプとチャンバを備える
真空装置は、チャンバ内に真空環境を創り出す装置であ
る。一般にチャンバには、ステンレス鋼材や炭素鋼材な
どが用いられる。真空環境下での試験を行う為に試料や
それらの担持物など被試験物をチャンバ内に入れる。こ
れら被試験物表面やチャンバから放出される不純ガスが
チャンバ内壁表面に付着し、付着した不純ガスが解離す
ることでチャンバ内の真空度や真空の質が低下する。ま
た、被試験物を挿入する際にチャンバを大気に開放する
と、チャンバ内壁に不純ガスが付着し、真空排気の際に
付着した不純ガスが解離することでチャンバ内の真空度
が低下する。不純ガスの付着を低減する手段として、チ
ャンバ内壁を紙鑢などで削る方法などが知られている。
機械的にチャンバ内壁を処理すると、チャンバ内に不純
物を発生する原因となり、被試験物への影響や真空の質
の低下などの面で不利となる。
2. Description of the Related Art A vacuum apparatus provided with a vacuum pump such as a turbo-molecular pump, an ion pump, and a rotary pump and a chamber is an apparatus for creating a vacuum environment in the chamber. Generally, stainless steel, carbon steel, or the like is used for the chamber. In order to perform a test in a vacuum environment, a test object such as a sample and their supports are put into a chamber. The impure gas released from the surface of the test object and the chamber adheres to the inner wall surface of the chamber, and the adhered impure gas is dissociated, thereby lowering the degree of vacuum and the quality of the vacuum in the chamber. In addition, when the chamber is opened to the atmosphere when the test object is inserted, the impure gas adheres to the inner wall of the chamber, and the impure gas adhering at the time of evacuation is dissociated, thereby lowering the degree of vacuum in the chamber. As a means for reducing the adhesion of the impurity gas, a method of cutting the inner wall of the chamber with a paper file or the like is known.
If the inner wall of the chamber is mechanically treated, it causes impurities to be generated in the chamber, which is disadvantageous in terms of the influence on the DUT and the deterioration of vacuum quality.

【0003】電子顕微鏡、イオンビーム装置、電子ビー
ム描画装置、中性子ビーム装置及びプラズマエッチング
装置に代表される粒子線装置は電子ビームやイオンビー
ムを試料上に照射して観察、加工、描画を行う装置であ
る。このうち半導体集積回路装置の製造、検査に用いら
れる電子ビーム描画装置や測長用走査電子顕微鏡は、対
象とする素子の寸法が年々微細になり、その結果、各装
置に要求される電子ビームの質が高くなっている。
A particle beam apparatus represented by an electron microscope, an ion beam apparatus, an electron beam lithography apparatus, a neutron beam apparatus and a plasma etching apparatus irradiates an electron beam or an ion beam onto a sample to perform observation, processing and drawing. It is. Among them, the electron beam lithography system and the scanning electron microscope for length measurement used in the manufacture and inspection of semiconductor integrated circuit devices are becoming increasingly smaller in the size of target elements year by year, and as a result, the electron beam required for each device is reduced. Quality is getting better.

【0004】電子ビーム描画装置では、ポイントビー
ム、可変成形ビーム、一括描画方式へとスループットを
向上させるために装置が発展してきた。この反面、電子
ビームの通路であるチャンバに内在する構造物の数が増
え、かつ形状も複雑となっている。これら構造物の複雑
化により、構造物に残留する炭化水素系化合物など汚染
物質が多くなり、長時間に渡って不純ガスを放出し、チ
ャンバ内の到達真空度を低下させる。汚染物質から放出
された不純ガスは、電子ビームと衝突することで電子ビ
ームの移動を阻害し、試料に到達する電子ビームの質を
劣化させる要因となっている。また、不純ガスと電子ビ
ームとの衝突により、不純ガスが活性化され、更に不純
ガスや汚染物質を生成する場合もある。これら構造物に
残留する汚染物質から放出される不純ガスにより電子ビ
ームの質の向上が阻まれることで、素子寸法の微細化の
進歩を緩慢なものとしている。
[0004] Electron beam lithography systems have been developed to increase the throughput to point beams, variable shaped beams, and batch writing systems. On the other hand, the number of structures inside the chamber, which is the passage of the electron beam, is increasing, and the shape is also complicated. Due to the complexity of these structures, contaminants such as hydrocarbon-based compounds remaining in the structures are increased, and impurity gases are released over a long period of time, reducing the ultimate vacuum in the chamber. The impure gas released from the contaminant impedes the movement of the electron beam by colliding with the electron beam, which is a factor of deteriorating the quality of the electron beam reaching the sample. Further, the collision between the impure gas and the electron beam may activate the impure gas, and may further generate an impure gas or a pollutant. Impurity gas emitted from contaminants remaining in these structures hinders improvement in electron beam quality, thereby slowing progress in miniaturization of device dimensions.

【0005】汚染物質を低減する手段として、例えば、
特開平11−154640のようにチャンバ内に白金属
金属触媒を担持する吸着板を配し、酸素ガスを導入し
て、酸化触媒作用により汚染物質をクリーニングする方
法が提案されている。しかし、白金属金属触媒の触媒作
用を用いてクリーニングすることで吸着板表面の汚染物
質は一時的に低減されるが、クリーニングしきれないチ
ャンバ内の汚染物質やクリーニング後にチャンバ内へ搬
入される試料などから不純ガスが放出される為、真空紫
外線との衝突により再度汚染物質が生長すると共に到達
真空度は低下する。また、クリーニングの際にチャンバ
内に酸素ガスを導入するため、チャンバ内は真空状態に
保持することができないばかりか、チャンバ内壁やチャ
ンバ内の構造物の表面で酸化反応を起こし、汚染物質や
不純ガス、酸化物などを生成して、ビームドリフト発生
の原因となる。更に、酸素ガスを導入する装置を搭載す
ると、装置は重く、大きく、複雑となり、メンテナンス
や振動抑制などの面で不利となる。
As means for reducing pollutants, for example,
As disclosed in Japanese Patent Application Laid-Open No. H11-154640, a method has been proposed in which an adsorption plate supporting a white metal catalyst is disposed in a chamber, oxygen gas is introduced, and contaminants are cleaned by an oxidation catalyst. However, by cleaning using the catalysis of a white metal catalyst, contaminants on the surface of the adsorption plate are temporarily reduced, but contaminants in the chamber that cannot be completely cleaned or samples that are carried into the chamber after cleaning As a result, impurity gas is released, and contaminants grow again by collision with vacuum ultraviolet rays, and the ultimate vacuum degree is reduced. In addition, since oxygen gas is introduced into the chamber during cleaning, the inside of the chamber cannot be maintained in a vacuum state, and in addition, an oxidation reaction occurs on the inner wall of the chamber and on the surface of a structure in the chamber, thereby causing contaminants and impurities. It generates gas, oxide, etc., and causes beam drift. Further, when a device for introducing oxygen gas is mounted, the device is heavy, large, and complicated, and disadvantageous in terms of maintenance and vibration suppression.

【0006】KrFステッパ、ArFステッパ及びX線露光装
置に代表される露光装置は、真空紫外線やX線など短波
長の光線を試料上に照射して観察、加工、描画を行う装
置である。これら、半導体集積回路装置の製造、検査に
用いられる露光装置は、対象とする素子の寸法が年々微
細になり、その結果、各装置に要求される光線の質が高
くなっている。ArFステッパでは、真空紫外線の通路で
あるチャンバに内在するレンズや構造物の数が増え、か
つ形状も複雑となっている。構造物の複雑化により、構
造物に残留する炭化水素系化合物など汚染物質が多くな
り、長時間に渡って不純ガスを放出し、チャンバ内の到
達真空度を低下させる。
An exposure apparatus typified by a KrF stepper, an ArF stepper, and an X-ray exposure apparatus irradiates a sample with a short-wavelength light such as vacuum ultraviolet ray or X-ray to perform observation, processing, and drawing. In these exposure apparatuses used for manufacturing and inspecting semiconductor integrated circuit devices, the dimensions of target elements are becoming smaller year by year, and as a result, the quality of light rays required for each device is higher. In the ArF stepper, the number of lenses and structures inside the chamber, which is a passage of vacuum ultraviolet rays, is increased, and the shape is complicated. Due to the complexity of the structure, contaminants such as hydrocarbon-based compounds remaining in the structure increase, and the impurity gas is released over a long period of time, lowering the ultimate vacuum in the chamber.

【0007】汚染物質から放出された不純ガスは、真空
紫外線と衝突することで真空紫外線の移動を阻害し、試
料に到達する真空紫外線の質を劣化させる要因となって
いる。また、不純ガスと真空紫外線との衝突により、不
純ガスが活性化され、更に不純ガスや汚染物質を生成す
る場合もある。これら構造物に残留する汚染物質から放
出される不純ガスにより真空紫外線の質の向上が阻まれ
ることで、素子寸法の微細化の進歩を緩慢なものとして
いる。
[0007] The impure gas released from the contaminants impedes the movement of the vacuum ultraviolet light by colliding with the vacuum ultraviolet light, which is a factor of deteriorating the quality of the vacuum ultraviolet light reaching the sample. Further, the impurity gas may be activated by the collision of the impurity gas with the vacuum ultraviolet rays, and may further generate an impurity gas or a pollutant. Impurities released from contaminants remaining in these structures hinder the improvement of the quality of vacuum ultraviolet light, thereby slowing the progress in miniaturization of device dimensions.

【0008】汚染物質を低減する手段として、例えば、
特開平11−154640のようにチャンバ内に白金属
金属触媒を担持する吸着板を配し、酸素ガスを導入し
て、酸化触媒作用により汚染物質をクリーニングする方
法が提案されている。しかし、白金属金属触媒の触媒作
用を用いてクリーニングすることで吸着板表面の汚染物
質は一時的に低減されるが、クリーニングしきれないチ
ャンバ内の汚染物質やクリーニング後にチャンバ内へ搬
入される試料などから不純ガスが放出される為、真空紫
外線との衝突により再度汚染物質が生長すると共に到達
真空度は低下する。また、クリーニングの際にチャンバ
内に酸素ガスを導入するため、チャンバ内は真空状態に
保持することができないばかりか、チャンバ内壁やチャ
ンバ内の構造物の表面で酸化反応を起こし、汚染物質や
不純ガス、酸化物などを生成して、ビームドリフト発生
の原因となる。更に、酸素ガスを導入する装置を搭載す
ると、装置は重く、大きく、複雑となり、メンテナンス
や振動抑制などの面で不利となる。
As means for reducing pollutants, for example,
As disclosed in Japanese Patent Application Laid-Open No. H11-154640, a method has been proposed in which an adsorption plate supporting a white metal catalyst is disposed in a chamber, oxygen gas is introduced, and contaminants are cleaned by an oxidation catalyst. However, by cleaning using the catalysis of a white metal catalyst, contaminants on the surface of the adsorption plate are temporarily reduced, but contaminants in the chamber that cannot be completely cleaned or samples that are carried into the chamber after cleaning As a result, impurity gas is released, and contaminants grow again by collision with vacuum ultraviolet rays, and the ultimate vacuum degree is reduced. In addition, since oxygen gas is introduced into the chamber during cleaning, the inside of the chamber cannot be maintained in a vacuum state, and in addition, an oxidation reaction occurs on the inner wall of the chamber and on the surface of a structure in the chamber, thereby causing contaminants and impurities. It generates gas, oxide, etc., and causes beam drift. Further, when a device for introducing oxygen gas is mounted, the device is heavy, large, and complicated, and disadvantageous in terms of maintenance and vibration suppression.

【0009】又、特開平4−47652号公報には、銅
等の金属からなる荷電粒子線鏡筒内の部品表面に金等の
貴金属をコーテングして長時間使用しても内部が汚れ難
いものとすることが示されている。しかし、公報には、
特定の金属を容器内周面に形成させることは示されてい
ない。
Japanese Unexamined Patent Publication No. Hei 4-47652 discloses a method in which a noble metal such as gold is coated on the surface of a component in a charged particle beam column made of a metal such as copper and the inside of the charged particle beam is hardly stained even when used for a long time. It is shown that. However, the gazette states that
It is not shown that a specific metal is formed on the inner peripheral surface of the container.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、粒子
線装置、光線装置及び露光装置等の真空排気装置のチャ
ンバ内周面やチャンバ内の構造物からの不純ガスの放出
を抑制し、常に高い真空状態を保持したまま、チャンバ
内の到達真空度を向上させる真空排気装置、粒子線装
置、光線装置及びX線装置並びにそれらを用いて安定し
て高精度で、観察、加工、描画され、素子寸法を微細化
する導体集積回路装置の製造法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to suppress the release of impurity gas from the inner peripheral surface of a chamber or a structure in a chamber of a vacuum exhaust device such as a particle beam device, a light beam device, and an exposure device. Vacuum evacuation device, particle beam device, light beam device, and X-ray device that improve the ultimate vacuum in the chamber while constantly maintaining a high vacuum state, and observation, processing, and drawing are performed stably and with high precision using them. It is another object of the present invention to provide a method for manufacturing a conductor integrated circuit device having a reduced element size.

【0011】[0011]

【課題を解決するための手段】本発明は、真空チャン
バ、粒子線チャンバ、光線チャンバの内周面に白金属金
属を蒸着、メッキ、又は塗布等によって形成する。チャ
ンバ内壁やチャンバ内の構造物に白金属金属膜が形成さ
れることにより、白金属金属自身の不活性でチャンバ内
壁やチャンバ内側の構造物の表面が安定となり、且つ、
適切な温度に制御された白金属金属膜が表面を覆うこと
で、チャンバやチャンバ内側の構造物から不純ガスの放
出が抑制され、常に真空状態を保持したまま、チャンバ
内の到達真空度を向上させることができる。また、チャ
ンバ内の到達真空度が向上されることにより、電子ビー
ムや真空紫外線の質の劣化を防ぎ、その結果、半導体集
積回路装置が安定して高精度で観察、加工、描画され
る。更に、半導体集積回路装置の素子寸法の微細化も促
進する。
According to the present invention, a white metal is formed on the inner peripheral surfaces of a vacuum chamber, a particle beam chamber, and a light beam chamber by vapor deposition, plating, coating, or the like. Since the white metal film is formed on the inner wall of the chamber or the structure inside the chamber, the surface of the inner wall of the chamber or the structure inside the chamber becomes stable due to the inertness of the white metal, and
By covering the surface with a white metal film controlled to an appropriate temperature, the release of impurity gases from the chamber and structures inside the chamber is suppressed, and the ultimate vacuum in the chamber is improved while always maintaining a vacuum state Can be done. Further, by improving the degree of ultimate vacuum in the chamber, the quality of the electron beam or vacuum ultraviolet rays is prevented from deteriorating. As a result, the semiconductor integrated circuit device is stably observed, processed, and drawn with high accuracy. Further, miniaturization of the element size of the semiconductor integrated circuit device is promoted.

【0012】本発明は、容器と、該容器内を真空排気す
る真空排気手段とを有する真空排気装置において、前記
容器の内周面に白金属金属の薄膜が形成されていること
を特徴とする。
According to the present invention, there is provided an evacuation apparatus having a container and evacuation means for evacuating the interior of the container, wherein a thin film of white metal is formed on the inner peripheral surface of the container. .

【0013】本発明の具体的な装置として、粒子線を発
生する粒子源と、該粒子源より出た前記粒子線を所定の
直径に絞るレンズを有する粒子線容器と、被加工物を収
納する収納容器と、前記粒子線容器及び収納容器を真空
排気する真空排気手段とを具備し、前記粒子線の照射に
よって前記被加工物の観察、加工、描画及び検査の少な
くとも1つを行う粒子線装置、又、光線を発生する光源
と、該光源より出た前記光線を所定の直径に絞るレンズ
を有する光線容器と、被加工物を収納する収納容器と、
前記光線容器及び収納容器を真空排気する真空排気手段
とを具備し、前記光線容器より出た前記光線を前記被加
工物に照射する光線装置、又、X線を発生するX線源
と、該X線源より出た前記X線を所定の直径に絞るマス
クを有するX線容器と、被加工物を収納する収納容器
と、前記X線容器及び収納容器を真空排気する真空排気
手段とを具備し、前記X線容器より出た前記X線を前記
被加工物に照射するX線装置において、前記粒子線容
器、光線容器、X線容器及び収納容器の少なくとも一方
の内周面に白金属金属の薄膜が形成されていることを特
徴とする。
As a specific apparatus of the present invention, a particle source for generating a particle beam, a particle beam container having a lens for narrowing the particle beam emitted from the particle source to a predetermined diameter, and a workpiece are stored. A particle beam apparatus comprising: a storage container; and a vacuum exhaust unit that evacuates the particle beam container and the storage container, and performs at least one of observation, processing, drawing, and inspection of the workpiece by irradiation with the particle beam. A light source that generates a light beam, a light beam container having a lens that narrows the light beam emitted from the light source to a predetermined diameter, and a storage container that stores a workpiece.
Vacuum means for evacuating the light container and the storage container, a light device for irradiating the workpiece with the light beam emitted from the light container, an X-ray source for generating X-rays, An X-ray container having a mask for narrowing the X-ray emitted from an X-ray source to a predetermined diameter, a storage container for storing a workpiece, and a vacuum exhaust unit for evacuating the X-ray container and the storage container are provided. An X-ray apparatus for irradiating the workpiece with the X-rays emitted from the X-ray container, wherein at least one of the particle beam container, the light beam container, the X-ray container and the storage container has a white metal Is formed.

【0014】前記粒子線が、電子ビーム、中性子ビー
ム、イオンビーム及びプラズマのいずれかであること、
前記光線が、レーザ光、真空紫外光、i線及びg線のい
ずれかであることを特徴とする。
The particle beam is one of an electron beam, a neutron beam, an ion beam, and plasma;
The light beam is any one of laser light, vacuum ultraviolet light, i-line and g-line.

【0015】更に、本発明は、前述の真空排気装置、粒
子線装置、光線装置及びX線装置のいずれかを用いて半
導体集積回路装置の観察、加工、描画、製造及び検査の
少なくとも1つを行うことを特徴とする半導体集積回路
装置の製造法にある。
Further, the present invention provides at least one of observation, processing, drawing, manufacturing and inspection of a semiconductor integrated circuit device by using any one of the above-described vacuum evacuation device, particle beam device, light beam device and X-ray device. And a method of manufacturing a semiconductor integrated circuit device.

【0016】特に、本発明に係る電子顕微鏡、イオンビ
ーム装置、電子ビーム描画装置、中性子ビーム装置及び
プラズマエッチング装置に代表される粒子線装置は電子
ビームやイオンビームを試料上に照射して観察、加工、
描画を行う際に、上述のように真空容器内面に白金属金
属膜を形成することにより、これら構造物の複雑化に対
して残留する炭化水素系化合物など汚染物質の吸着を低
め、長時間に渡って到達真空度を維持される。汚染物質
から放出される不純ガスが少ないので、電子ビームとの
衝突が少なく、電子ビームの質の向上が得られ、より素
子寸法の微細化が形成できるものである。
In particular, a particle beam apparatus represented by an electron microscope, an ion beam apparatus, an electron beam drawing apparatus, a neutron beam apparatus, and a plasma etching apparatus according to the present invention observes a sample by irradiating an electron beam or an ion beam onto a sample. processing,
When drawing, by forming a white metal film on the inner surface of the vacuum vessel as described above, adsorption of contaminants such as hydrocarbon-based compounds remaining for complicating these structures is reduced, and the The ultimate vacuum is maintained throughout. Since the amount of impurity gas released from the contaminants is small, the collision with the electron beam is small, the quality of the electron beam is improved, and the element size can be further reduced.

【0017】又、KrFステッパ、ArFステッパ及びX線露
光装置に代表される露光装置は、真空紫外線やX線など
短波長の光線を試料上に照射して観察、加工、描画を行
う装置であり、前述と同様に汚染物質から放出される不
純ガスが少ないので、光線との衝突が少なく、光線の質
の向上が得られ、より素子寸法の微細化が形成できるも
のである。
An exposure apparatus represented by a KrF stepper, an ArF stepper and an X-ray exposure apparatus is an apparatus for irradiating a sample with a short-wavelength light such as vacuum ultraviolet ray or X-ray to perform observation, processing and drawing. Since the amount of impurity gas released from the contaminant is small as described above, the collision with the light beam is small, the quality of the light beam is improved, and the element size can be further miniaturized.

【0018】白金属金属膜として、白金、ロジウム、オ
スムウム、パラジウム、イリジウムが用いられ、前述の
方法によって0.1〜5μmの厚さに形成される。
As the white metal film, platinum, rhodium, osmium, palladium, and iridium are used, and are formed to a thickness of 0.1 to 5 μm by the above-described method.

【0019】[0019]

【発明の実施の形態】(実施例1)図1は、本発明に係
る電子ビーム描画装置の全体構成図である。電子銃1か
ら放出された電子ビーム17は絞り2で円形に成形さ
れ、絞り5上に照射され、レンズ9にて絞り8上に結像
される。このの絞り8上の像はレンズ10で投影され、
絞り11を通過してレンズ14に入る。さらにレンズ1
4と偏向器13、15で投影偏向されて、感光剤の塗布
された試料18上に投影され描画を行う。このとき絞り
8にあらかじめ設けてあるパターン形状の開口を、偏向
器7により選択する。偏向器13で偏向可能な領域以外
は、ステージ19を移動させて描画を行う。位置あわせ
のためにステージ19の位置をレーザ測長器26からの
信号で計測する。
(Embodiment 1) FIG. 1 is an overall configuration diagram of an electron beam writing apparatus according to the present invention. The electron beam 17 emitted from the electron gun 1 is formed into a circular shape by the stop 2, irradiated on the stop 5, and imaged on the stop 8 by the lens 9. The image on the stop 8 is projected by the lens 10,
The light passes through the aperture 11 and enters the lens 14. Further lens 1
4 and deflectors 13 and 15 are projected and deflected, and projected on a sample 18 coated with a photosensitive agent to perform drawing. At this time, a pattern-shaped opening provided in advance in the stop 8 is selected by the deflector 7. The drawing is performed by moving the stage 19 except for the area where the deflector 13 can deflect the light. The position of the stage 19 is measured by a signal from the laser length measuring device 26 for positioning.

【0020】近年、電子ビーム17の照射通路であり、
電子ビーム17を絞る各種レンズを有するチャンバ2
9、試料18を収納するチャンバ30に内在する構造物
の数が増え、かつ形状も複雑となっている。通常、チャ
ンバ29、30内は真空排気手段28により真空状態で
あるが、これら構造物の複雑化により、構造物に残留す
る炭化水素系化合物など汚染物質が多くなり、長時間に
渡って不純ガスを放出し、チャンバ29、30内の到達
真空度を低下させる。汚染物質から放出された不純ガス
は、電子ビームと衝突することで電子ビームの移動を阻
害し、試料18に到達する電子ビーム17の質を劣化さ
せる要因となっている。
In recent years, the irradiation path of the electron beam 17 has been
Chamber 2 having various lenses for focusing electron beam 17
9. The number of structures inside the chamber 30 for storing the sample 18 is increased, and the shape is also complicated. Normally, the interior of the chambers 29 and 30 is evacuated by the evacuation means 28. However, due to the complexity of these structures, contaminants such as hydrocarbon-based compounds remaining in the structures increase, and the impurity To reduce the ultimate vacuum in the chambers 29 and 30. The impure gas released from the contaminant impedes the movement of the electron beam by colliding with the electron beam, which is a factor of deteriorating the quality of the electron beam 17 reaching the sample 18.

【0021】また、不純ガスと電子ビーム17との衝突
により、不純ガスが活性化され、更に不純ガスや汚染物
質を生成する場合もある。更に、試料18から飛散する
有機物などの不純ガスでも汚染物質が成長する。一般に
汚染物質は導電性が少なく、時間が経過すると帯電が進
んで不要な電界を発生させ本来のビーム軌道を乱す。こ
の電界は、時間的に変化し、装置稼動状態の履歴などに
も影響されるために予測することが困難で、これによる
ビーム位置変動が描画精度を落とす原因の一つになって
いる。これら汚染物質から放出される不純ガスにより電
子ビーム17の質の向上が阻まれることで、素子寸法の
微細化の進歩を緩慢なものとしている。
Further, the collision between the impure gas and the electron beam 17 may activate the impure gas, and may further generate an impure gas or a pollutant. In addition, contaminants grow even with impurity gases such as organic substances scattered from the sample 18. In general, contaminants have low conductivity, and as time passes, charging progresses, generating an unnecessary electric field and disturbing the original beam trajectory. The electric field changes with time and is also affected by the history of the operation state of the apparatus, so that it is difficult to predict the electric field, and the fluctuation of the beam position due to this is one of the causes of lowering the drawing accuracy. The impure gas released from these contaminants prevents the quality of the electron beam 17 from being improved, thereby slowing the progress in miniaturization of element dimensions.

【0022】この課題に対する本発明での解決手段を以
下に述べる。ここで、電子ビーム描画装置のチャンバ2
9、30の内壁とチャンバ内の構造物の外表面には、白
金属金属12の被膜が施されている。チャンバ内壁やチ
ャンバ内の構造物に白金属金属12膜が形成されること
により、白金属金属12自身の不活性でチャンバ内壁や
チャンバ内側の構造物の表面が安定となり、且つ、適切
な温度に制御されて形成された白金属金属12膜が表面
を覆うことで、チャンバ29、30の内壁やチャンバ内
の構造物からの不純ガスの放出が抑制され、常に高い真
空状態を保持したまま、チャンバ29、30内の到達真
空度を向上する。また、チャンバ29、30内の到達真
空度が向上されることにより、電子ビーム17の質の劣
化を防ぎ、その結果、半導体集積回路装置が安定して高
精度で観察、加工、描画される。更に、半導体集積回路
装置の素子寸法の微細化も促進する。
The means for solving this problem in the present invention will be described below. Here, the chamber 2 of the electron beam writing apparatus
A coating of white metal 12 is applied to the inner walls 9 and 30 and the outer surfaces of the structures in the chamber. Since the white metal 12 film is formed on the inner wall of the chamber or the structure inside the chamber, the surface of the inner wall of the chamber or the structure inside the chamber becomes stable due to the inertness of the white metal 12 itself, and the temperature of the chamber becomes appropriate. The controlled formation of the white metal 12 film covers the surface, thereby suppressing the release of impurity gases from the inner walls of the chambers 29 and 30 and the structures in the chambers. The ultimate vacuum degree in 29 and 30 is improved. In addition, since the degree of ultimate vacuum in the chambers 29 and 30 is improved, the quality of the electron beam 17 is prevented from being deteriorated. As a result, the semiconductor integrated circuit device is stably observed, processed, and drawn with high accuracy. Further, miniaturization of the element size of the semiconductor integrated circuit device is promoted.

【0023】(実施例2)以上の実施例は電子ビーム描
画装置を示したが、チャンバ内壁とその中の構造物に白
金属金属が被膜された走査型電子顕微鏡にも適用可能で
あり、また、電子銃をイオン銃に、電子ビームをイオン
ビームに置きかえた収束イオンビーム装置にも適用可能
である。このときイオンビームに関してもレンズや絞
り、その他の機構は電子ビーム装置の場合と同じ機能を
持つ。
(Embodiment 2) The above embodiment shows an electron beam writing apparatus. However, the present invention is also applicable to a scanning electron microscope in which the inner wall of a chamber and the structure therein are coated with a white metal. The present invention is also applicable to a focused ion beam apparatus in which the electron gun is replaced with an ion gun and the electron beam is replaced with an ion beam. At this time, the lens, aperture, and other mechanisms of the ion beam have the same functions as those of the electron beam device.

【0024】(実施例3)図2は本発明に係る真空装置
の構成図である。真空排気手段33とチャンバ31を備
える真空装置は、チャンバ31内に真空環境を創り出す
装置である。一般にチャンバ31には、ステンレス鋼材
や炭素鋼材などが用いられる。真空環境下での試験を行
う為に試料やそれらの担持物など被試験物をチャンバ3
1内に入れる。これら被試験物表面やチャンバ31から
放出される不純ガスがチャンバ内壁表面に付着し、付着
した不純ガスが解離することでチャンバ内の真空度や真
空の質が低下する。また、被試験物を挿入する際にチャ
ンバ31を大気に開放すると、チャンバ内壁に不純ガス
が付着し、真空排気の際に付着した不純ガスが解離する
ことでチャンバ31内の真空度が低下する。
(Embodiment 3) FIG. 2 is a configuration diagram of a vacuum apparatus according to the present invention. The vacuum device including the vacuum evacuation unit 33 and the chamber 31 is a device that creates a vacuum environment in the chamber 31. Generally, the chamber 31 is made of a stainless steel material, a carbon steel material, or the like. In order to perform a test in a vacuum environment, the test object such as a sample and their support
Put in 1. The impure gas released from the surface of the test object and the chamber 31 adheres to the inner wall surface of the chamber, and the adhered impure gas is dissociated, thereby lowering the degree of vacuum and the quality of the vacuum in the chamber. Further, when the chamber 31 is opened to the atmosphere when the DUT is inserted, the impure gas adheres to the inner wall of the chamber, and the impure gas adhered during the evacuation is dissociated, so that the degree of vacuum in the chamber 31 decreases. .

【0025】この課題に対する本発明での解決手段を以
下に述べる。ここで、真空装置のチャンバ31の内側に
は、白金属金属32の被膜が施されている。チャンバ内
壁に白金属金属32膜が形成されることにより、白金属
金属32自身の不活性でチャンバ内壁の表面が安定とな
り、且つ、適切な温度に制御された白金属金属32膜が
表面を覆うことで、チャンバ31から不純ガスの放出が
抑制され、常に真空状態を保持したまま、チャンバ31
内の到達真空度を向上する。ここで、酸素ガスなどの活
性ガスをチャンバ31内へ導入する必要も無く、また、
チャンバ内壁を研磨することも無いので、被試験物への
酸化などの化学反応の影響や真空の質の低下も回避する
ことができる。
The means for solving this problem in the present invention will be described below. Here, a coating of white metal 32 is applied to the inside of the chamber 31 of the vacuum device. By forming the white metal 32 film on the inner wall of the chamber, the surface of the inner wall of the chamber becomes stable due to inertness of the white metal 32 itself, and the surface of the white metal 32 film controlled to an appropriate temperature covers the surface. As a result, the release of the impurity gas from the chamber 31 is suppressed, and the chamber 31 is constantly maintained in a vacuum state.
Improve the ultimate vacuum inside. Here, there is no need to introduce an active gas such as oxygen gas into the chamber 31.
Since the inner wall of the chamber is not polished, it is possible to avoid the influence of a chemical reaction such as oxidation on the DUT and the deterioration of vacuum quality.

【0026】(実施例4)図3は本発明に係る希ガスハ
ライドレーザステッパの全体構成図である。希ガスハラ
イドレーザ36から取り出された真空紫外光45はレン
ズ40を通り、マスク41上に照射成形され、レンズ4
2、43、44にて結像され、感光剤の塗布された試料
46上に投影され描画を行う。位置あわせのためにステ
ージ47の位置をレーザ測長器52からの信号で計測す
る。
(Embodiment 4) FIG. 3 is an overall configuration diagram of a rare gas halide laser stepper according to the present invention. The vacuum ultraviolet light 45 extracted from the rare gas halide laser 36 passes through the lens 40 and is irradiated and formed on the mask 41,
An image is formed at 2, 43, and 44, and projected onto a sample 46 coated with a photosensitive agent to perform drawing. The position of the stage 47 is measured by a signal from the laser length measuring device 52 for positioning.

【0027】近年、真空紫外光45の通路であり、真空
紫外光45を絞る各種レンズを有するチャンバ34、試
料を収納するチャンバ48に内在する構造物の数が増
え、かつ形状も複雑となっている。通常、チャンバ3
4、48内は真空排気手段54により真空状態である
が、これら構造物の複雑化により、構造物に残留する炭
化水素系化合物など汚染物質が多くなり、長時間に渡っ
て不純ガスを放出し、チャンバ34、48内の到達真空
度を低下させる。汚染物質から放出された不純ガスは、
真空紫外光45と衝突することで真空紫外光45の移動
を阻害し、試料46に到達する真空紫外光45の質を劣
化させる要因となっている。また、不純ガスと真空紫外
光45との衝突により、不純ガスが活性化され、更に不
純ガスや汚染物質を生成する場合もある。更に、試料4
6から飛散する有機物などの不純ガスでも汚染物質が成
長する。これら汚染物質から放出される不純ガスにより
真空紫外光45の質の向上が阻まれることで、素子寸法
の微細化の進歩を緩慢なものとしている。
In recent years, the number of structures inside the chamber 34, which is a passage for the vacuum ultraviolet light 45 and has various lenses for confining the vacuum ultraviolet light 45, and the chamber 48 for storing a sample, has increased, and its shape has become complicated. Usually chamber 3
The insides of the chambers 4 and 48 are evacuated by the vacuum evacuation means 54. However, due to the complexity of these structures, contaminants such as hydrocarbon compounds remaining in the structures increase, and impurity gases are released for a long time. , The ultimate vacuum in the chambers 34 and 48 is reduced. Impurity gases released from pollutants
The collision with the vacuum ultraviolet light 45 hinders the movement of the vacuum ultraviolet light 45, which is a factor of deteriorating the quality of the vacuum ultraviolet light 45 reaching the sample 46. In addition, the collision between the impure gas and the vacuum ultraviolet light 45 may activate the impure gas, and may further generate an impure gas or a contaminant. Sample 4
The contaminants grow even with impurity gases such as organic matter scattered from 6. The impure gas emitted from these contaminants prevents the quality of the vacuum ultraviolet light 45 from being improved, thereby slowing the progress in miniaturization of device dimensions.

【0028】この課題に対する本発明での解決手段を以
下に述べる。ここで、希ガスハライドレーザステッパの
チャンバ34、48の内側には、前述した白金属金属3
5の被膜が施される。チャンバ内壁やチャンバ内側の構
造物に白金属金属35膜が形成されることにより、白金
属金属35自身の不活性でチャンバ内壁やチャンバ内側
の構造物の表面が安定となり、且つ、適切な温度に制御
された白金属金属35膜が表面を覆うことで、チャンバ
34、48やチャンバ内側の構造物から不純ガスの放出
が抑制され、常に真空状態を保持したまま、チャンバ3
4、48内の到達真空度を向上する。また、チャンバ3
4、48内の到達真空度が向上されることにより、真空
紫外光45の質の劣化を防ぎ、その結果、半導体集積回
路装置が安定して高精度で観察、加工、描画される。更
に、半導体集積回路装置の素子寸法の微細化も促進す
る。
The means for solving this problem in the present invention will be described below. Here, the above-described white metal 3 is provided inside the chambers 34 and 48 of the rare gas halide laser stepper.
5 coatings are applied. Since the white metal 35 film is formed on the inner wall of the chamber or the structure inside the chamber, the surface of the inner wall of the chamber or the inner structure of the chamber becomes stable due to the inertness of the white metal 35 itself, and the temperature becomes appropriate. Since the controlled white metal 35 film covers the surface, the release of the impure gas from the chambers 34 and 48 and the structure inside the chamber is suppressed, and the chamber 3 is kept constantly in a vacuum state.
The ultimate vacuum degree in 4, 48 is improved. Also, chamber 3
By improving the ultimate vacuum degree in the insides 4 and 48, the quality of the vacuum ultraviolet light 45 is prevented from deteriorating. As a result, the semiconductor integrated circuit device is stably observed, processed and drawn with high accuracy. Further, miniaturization of the element size of the semiconductor integrated circuit device is promoted.

【0029】(実施例5)図4は本発明に係るi線ステ
ッパの全体構成図である。実施例4は希ガスハライドレ
ーザステッパを示したが、内壁とその中の構造物に白金
属金属が被膜されたチャンバ55、68はi線ステッ
パ、g線ステッパにも適用可能である。
(Embodiment 5) FIG. 4 is an overall configuration diagram of an i-line stepper according to the present invention. Embodiment 4 shows the rare gas halide laser stepper. However, the chambers 55 and 68 in which the inner wall and the structure therein are coated with a white metal are applicable to an i-line stepper and a g-line stepper.

【0030】(実施例6)図5は本発明に係るX線露光
装置の全体構成図である。図5はX線露光装置である。
実施例4は希ガスハライドレーザステッパを示したが、
内壁に白金属金属の被膜が形成されたチャンバ75、試
料82を収納するチャンバ84の内壁とそれらの中にあ
る構造物で光路を構成すればX線露光装置として到達真
空度を向上させることができる。
(Embodiment 6) FIG. 5 is an overall configuration diagram of an X-ray exposure apparatus according to the present invention. FIG. 5 shows an X-ray exposure apparatus.
Example 4 shows a rare gas halide laser stepper,
If the optical path is constituted by the inner wall of the chamber 75 in which the white metal coating is formed on the inner wall and the inner wall of the chamber 84 for accommodating the sample 82, the ultimate vacuum degree can be improved as an X-ray exposure apparatus. it can.

【0031】(実施例7)図6は、実施例1の電子ビー
ム描画装置を用いた半導体集積回路の製造工程を示すブ
ロック図である。Nマイナスシリコン基板に通常の方法
でPウエル層、P層、フィールド酸化膜、多結晶シリコ
ン/シリコン酸化膜ゲート、P高濃度拡散層、N高濃度
拡散層、などを順次形成する。次に、リンガラス(PS
G)の絶縁膜を被着し、絶縁膜をドライエッチングして
コンタクトホールを形成する。
(Embodiment 7) FIG. 6 is a block diagram showing a manufacturing process of a semiconductor integrated circuit using the electron beam drawing apparatus of Embodiment 1. A P well layer, a P layer, a field oxide film, a polycrystalline silicon / silicon oxide film gate, a P high concentration diffusion layer, an N high concentration diffusion layer, and the like are sequentially formed on the N minus silicon substrate by a usual method. Next, phosphorus glass (PS
G) An insulating film is deposited, and the insulating film is dry-etched to form a contact hole.

【0032】次に、通常の方法でW/TiN電極配線材
を被着し、その上に感光剤を塗布し、本発明の電子ビー
ム描画方法を用いて感光剤のパターンニングを行う。そ
して、ドライエッチングなどによりW/TiN電極配線
を形成する。
Next, a W / TiN electrode wiring material is applied by a usual method, a photosensitive agent is applied thereon, and the photosensitive agent is patterned by using the electron beam drawing method of the present invention. Then, W / TiN electrode wiring is formed by dry etching or the like.

【0033】次いで、層間絶縁膜を形成し、通常の方法
でホールパターンを形成した。ホールパターンの中はW
プラグで埋め込み、Al配線もしくはCu配線を連結す
る。以降のパッシベーション工程は従来法を用いる。
Next, an interlayer insulating film was formed, and a hole pattern was formed by a usual method. W in the hole pattern
It is embedded with a plug, and an Al wiring or a Cu wiring is connected. The subsequent passivation process uses a conventional method.

【0034】なお、本実施例では電子ビーム描画装置を
用いた主な製造工程のみを説明したが、W/TiN電極
配線形成のリソグラフィ工程で本発明の電子ビーム描画
装置を用いたこと以外は従来法と同じ工程を用いた。以
上の工程により、例えば、従来は線幅70nmの微細パ
ターンで±15nmの誤差が有ったのに対し、±5nm
まで誤差を低減し、質が低下することなく微細パターン
を形成することができ、CMOSLSIを高歩留まりで
製造することが出来た。本発明の電子ビーム描画方法を
用い半導体集積回路を製作した結果、描画精度が向上し
たことにより歩留まりが向上し、生産量を増加すること
ができる。
In this embodiment, only the main manufacturing process using the electron beam lithography apparatus has been described. However, the conventional method is used except that the electron beam lithography apparatus of the present invention is used in the lithography process for forming the W / TiN electrode wiring. The same steps as in the method were used. By the above process, for example, while a conventional fine pattern having a line width of 70 nm has an error of ± 15 nm,
It was possible to form a fine pattern without lowering the error and to reduce the quality, and to manufacture a CMOS LSI with a high yield. As a result of manufacturing a semiconductor integrated circuit by using the electron beam writing method of the present invention, the writing accuracy is improved, the yield is improved, and the production amount can be increased.

【0035】更に、半導体集積回路の製造工程として、
実施例2〜6に示した装置を用いるこたにより前述と同
様の効果を得ることができる。
Further, as a manufacturing process of the semiconductor integrated circuit,
The same effects as described above can be obtained by using the devices shown in Embodiments 2 to 6.

【0036】[0036]

【発明の効果】本発明によれば、粒子線装置、光線装置
及び露光装置等の真空排気装置のチャンバやチャンバ内
側の構造物から不純ガスの放出を抑制し、常に高い真空
状態を保持したまま、チャンバ内の到達真空度を向上さ
せる真空排気装置、粒子線装置、光線装置及びX線装置
並びにそれらを用いて安定して高精度で、観察、加工、
描画され、素子寸法を微細化する導体集積回路装置の製
造が得られる。
According to the present invention, the release of impurity gas from the chambers of vacuum evacuation devices such as particle beam devices, light beam devices, and exposure devices and structures inside the chambers is suppressed, and a high vacuum state is always maintained. Vacuum evacuation device, particle beam device, light beam device, and X-ray device for improving the ultimate vacuum degree in the chamber, and stable, highly accurate observation, processing,
The production of the conductor integrated circuit device which is drawn and miniaturized the element size is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の電子ビーム描画装置の全体構成図。FIG. 1 is an overall configuration diagram of an electron beam writing apparatus according to the present invention.

【図2】 本発明の真空排気装置の構成図。FIG. 2 is a configuration diagram of a vacuum exhaust device of the present invention.

【図3】 本発明の希ガスハライドレーザステッパの全
体構成図。
FIG. 3 is an overall configuration diagram of a rare gas halide laser stepper of the present invention.

【図4】 本発明のi線、g線ステッパの全体構成図。FIG. 4 is an overall configuration diagram of an i-line and g-line stepper of the present invention.

【図5】 本発明のX線露光装置の全体構成図。FIG. 5 is an overall configuration diagram of an X-ray exposure apparatus of the present invention.

【図6】 本発明の半導体集積回路の製造工程を示すブ
ロック図。
FIG. 6 is a block diagram showing a manufacturing process of the semiconductor integrated circuit of the present invention.

【符号の説明】[Explanation of symbols]

1…電子銃、2、5、8、11、16…絞り、3、6、
9、10、14、40、42、43、44、56、6
0、62、63、64…レンズ、4、7、13、15…
偏向器、12、32、35、76…白金属金属、17…
電子ビーム、18、46、66、82…試料、19、4
7、67、83…ステージ、20…高圧電源、21、2
2、24、25…偏向制御回路、23、51、71、8
7…制御用コンピュータ、26、52、72、88…レ
ーザ測長器、27、53、73、89…ステージコント
ローラ、28、33、54、74、90…真空排気手
段、29、30、31、34、48、55、68、7
5、84…チャンバ、36…希ガスハライドレーザ光、
37、38…ミラー、39…電極、41、61、80…
マスク、45…真空紫外光、49、69、85…電源装
置、50、70、86…制御回路、57、77…光源チ
ャンバ、58…i線光源、59、79…開口、65…i
線、78…X線源、81…X線。
1 ... Electron gun, 2, 5, 8, 11, 16 ... Aperture, 3, 6,
9, 10, 14, 40, 42, 43, 44, 56, 6
0, 62, 63, 64 ... lens, 4, 7, 13, 15 ...
Deflectors, 12, 32, 35, 76 ... white metal, 17 ...
Electron beam, 18, 46, 66, 82 ... sample, 19, 4
7, 67, 83: stage, 20: high-voltage power supply, 21, 2
2, 24, 25 ... deflection control circuit, 23, 51, 71, 8
7 ... Control computer, 26, 52, 72, 88 ... Laser measuring instrument, 27, 53, 73, 89 ... Stage controller, 28, 33, 54, 74, 90 ... Vacuum exhaust means, 29, 30, 31, 34, 48, 55, 68, 7
5, 84 ... chamber, 36 ... rare gas halide laser light,
37, 38: mirror, 39: electrode, 41, 61, 80 ...
Mask, 45: vacuum ultraviolet light, 49, 69, 85: power supply device, 50, 70, 86: control circuit, 57, 77: light source chamber, 58: i-line light source, 59, 79: opening, 65: i
X-ray source 78, X-ray source 81.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年6月15日(2001.6.1
5)
[Submission date] June 15, 2001 (2001.6.1)
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】汚染物質を低減する手段として、例えば、
特開平11−154640のようにチャンバ内に白金属
金属触媒を担持する吸着板を配し、酸素ガスを導入し
て、酸化触媒作用により汚染物質をクリーニングする方
法が提案されている。しかし、白金属金属触媒の触媒作
用を用いてクリーニングすることで吸着板表面の汚染物
質は一時的に低減されるが、クリーニングしきれないチ
ャンバ内の汚染物質やクリーニング後にチャンバ内へ搬
入される試料などから不純ガスが放出される為、電子ビ
ームとの衝突により再度汚染物質が生長すると共に到達
真空度は低下する。また、クリーニングの際にチャンバ
内に酸素ガスを導入するため、チャンバ内は真空状態に
保持することができないばかりか、チャンバ内壁やチャ
ンバ内の構造物の表面で酸化反応を起こし、汚染物質や
不純ガス、酸化物などを生成して、ビームドリフト発生
の原因となる。更に、酸素ガスを導入する装置を搭載す
ると、装置は重く、大きく、複雑となり、メンテナンス
や振動抑制などの面で不利となる。
As means for reducing pollutants, for example,
As disclosed in Japanese Patent Application Laid-Open No. H11-154640, a method has been proposed in which an adsorption plate supporting a white metal catalyst is disposed in a chamber, oxygen gas is introduced, and contaminants are cleaned by an oxidation catalyst. However, by cleaning using the catalysis of a white metal catalyst, contaminants on the surface of the adsorption plate are temporarily reduced, but contaminants in the chamber that cannot be completely cleaned or samples that are carried into the chamber after cleaning since the impure gas is released from such as, electron beam
The contaminants grow again due to the collision with the beam, and the ultimate vacuum is reduced. In addition, since oxygen gas is introduced into the chamber during cleaning, the inside of the chamber cannot be maintained in a vacuum state, and in addition, an oxidation reaction occurs on the inner wall of the chamber and on the surface of a structure in the chamber, thereby causing contaminants and impurities. It generates gas, oxide, etc., and causes beam drift. Further, when a device for introducing oxygen gas is mounted, the device is heavy, large, and complicated, and disadvantageous in terms of maintenance and vibration suppression.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03F 7/20 504 G03F 7/20 504 5C034 505 505 5F004 506 506 5F046 521 521 5F056 G21K 5/02 G21K 5/02 X 5/04 5/04 A M H01J 37/16 H01J 37/16 37/305 37/305 B H01L 21/027 H01L 21/66 J 21/3065 21/30 503G 21/302 515D 21/66 531A // G01R 31/302 541G 21/302 D Z G01R 31/28 L Fターム(参考) 2G001 AA01 AA03 AA04 AA05 AA07 GA01 GA06 JA02 JA04 JA14 LA11 MA05 RA04 SA01 SA04 2G011 AA01 AE03 2G132 AA00 AD15 AE16 AF12 AF13 AF14 AL11 2H097 CA13 CA15 CA16 CA17 LA10 4M106 BA02 CA38 DB18 5C034 BB06 BB10 5F004 AA15 BA17 BB18 BB30 5F046 BA03 CA08 CB20 CB23 CB24 GA07 5F056 EA11 EA12 EA16 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) G03F 7/20 504 G03F 7/20 504 5C034 505 505 5F004 506 506 5F046 521 521 5F056 G21K 5/02 G21K 5 / 02X / 04 5/04 A M H01J 37/16 H01J 37/16 37/305 37/305 B H01L 21/027 H01L 21/66 J 21/3065 21/30 503G 21/302 515D 21/66 531A // G01R 31 / 302 541G 21/302 DZ G01R 31/28 LF term (reference) 2G001 AA01 AA03 AA04 AA05 AA07 GA01 GA06 JA02 JA04 JA14 LA11 MA05 RA04 SA01 SA04 2G011 AA01 AE03 2G132 AA00 AD15 AE16 AF12 CA13 CA17 CA15 CA12 LA10 4M106 BA02 CA38 DB18 5C034 BB06 BB10 5F004 AA15 BA17 BB18 BB30 5F046 BA03 CA08 CB20 CB23 CB24 GA07 5F056 EA11 EA12 EA16

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】容器と、該容器内を真空排気する真空排気
手段とを有する真空排気装置において、前記容器の内周
面に白金属金属の薄膜が形成されていることを特徴とす
る真空排気装置。
An evacuation apparatus having a container and an evacuation means for evacuating the inside of the container, wherein a thin film of a white metal is formed on an inner peripheral surface of the container. apparatus.
【請求項2】粒子線を発生する粒子源と、該粒子源より
出た前記粒子線を所定の直径に絞るレンズを有する粒子
線容器と、被加工物を収納する収納容器と、前記粒子線
容器及び収納容器を真空排気する真空排気手段とを具備
し、前記粒子線の照射によって前記被加工物の観察、加
工、描画及び検査の少なくとも1つを行う粒子線装置に
おいて、前記粒子線容器及び収納容器の少なくとも一方
の内周面に白金属金属の薄膜が形成されていることを特
徴とする粒子線装置。
2. A particle source having a particle source for generating a particle beam, a particle container having a lens for narrowing the particle beam emitted from the particle source to a predetermined diameter, a storage container for storing a workpiece, and the particle beam. A particle beam apparatus comprising: a container and an evacuation unit for evacuating the storage container; and performing at least one of observation, processing, drawing, and inspection of the workpiece by irradiating the particle beam. A particle beam apparatus, wherein a thin film of a white metal is formed on at least one inner peripheral surface of a storage container.
【請求項3】請求項2において、前記粒子線が、電子ビ
ーム、中性子ビーム、イオンビーム及びプラズマのいず
れかであることを特徴とする粒子線装置。
3. The particle beam apparatus according to claim 2, wherein the particle beam is any one of an electron beam, a neutron beam, an ion beam, and plasma.
【請求項4】光線を発生する光源と、該光源より出た前
記光線を所定の直径に絞るレンズを有する光線容器と、
被加工物を収納する収納容器と、前記光線容器及び収納
容器を真空排気する真空排気手段とを具備し、前記光線
容器より出た前記光線を前記被加工物に照射し、前記被
加工物の観察、加工、描画及び検査の少なくとも1つを
行う光線装置において、前記光線容器及び収納容器の少
なくとも一方の内周面に白金属金属の薄膜が形成されて
いることを特徴とする光線装置。
4. A light beam container having a light source for generating a light beam, a lens for narrowing the light beam emitted from the light source to a predetermined diameter,
A storage container for storing the workpiece, and vacuum evacuation means for evacuating the light beam container and the storage container, irradiating the light beam emitted from the light beam container to the workpiece, A light beam device for performing at least one of observation, processing, drawing, and inspection, wherein a thin film of white metal is formed on an inner peripheral surface of at least one of the light beam container and the storage container.
【請求項5】請求項4において、前記光線が、レーザ
光、真空紫外光、i線及びg線のいずれかであることを
特徴とする光線装置。
5. A light beam apparatus according to claim 4, wherein said light beam is one of a laser beam, vacuum ultraviolet light, i-line and g-line.
【請求項6】X線を発生するX線源と、該X線源より出
た前記X線を所定の直径に絞るマスクを有するX線容器
と、被加工物を収納する収納容器と、前記X線容器及び
収納容器を真空排気する真空排気手段とを具備し、前記
X線容器より出た前記X線を前記被加工物に照射し、前
記被加工物の観察、加工、描画及び検査の少なくとも1
つを行うX線装置において、前記X線容器及び収納容器
の少なくとも一方の内周面に白金属金属の薄膜が形成さ
れていることを特徴とするX線装置。
6. An X-ray source having an X-ray source for generating X-rays, an X-ray container having a mask for narrowing the X-ray emitted from the X-ray source to a predetermined diameter, a storage container for storing a workpiece, and Vacuum evacuation means for evacuating the X-ray container and the storage container, irradiating the work with the X-rays emitted from the X-ray container, and observing, processing, drawing and inspecting the work. At least one
An X-ray apparatus, wherein a thin film of a white metal is formed on the inner peripheral surface of at least one of the X-ray container and the storage container.
【請求項7】請求項1に記載の真空排気装置、請求項2
又は3に記載の粒子線装置、請求項4又は5に記載の光
線装置及び請求項6に記載のX線装置のいずれかを用い
て半導体集積回路装置の観察、加工、描画及び検査の少
なくとも1つを行うことを特徴とする半導体集積回路装
置の製造法。
7. The vacuum evacuation device according to claim 1, wherein
Or at least one of observation, processing, drawing and inspection of a semiconductor integrated circuit device using any one of the particle beam device according to claim 3, the light beam device according to claim 4 or 5, and the X-ray device according to claim 6. A method of manufacturing a semiconductor integrated circuit device.
JP2001048155A 2001-02-23 2001-02-23 Evacuation equipment, particle beam equipment, optical ray equipment and x-ray equipment as well as method of manufacturing semiconductor integrated circuit device using these Pending JP2002248338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001048155A JP2002248338A (en) 2001-02-23 2001-02-23 Evacuation equipment, particle beam equipment, optical ray equipment and x-ray equipment as well as method of manufacturing semiconductor integrated circuit device using these

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001048155A JP2002248338A (en) 2001-02-23 2001-02-23 Evacuation equipment, particle beam equipment, optical ray equipment and x-ray equipment as well as method of manufacturing semiconductor integrated circuit device using these

Publications (1)

Publication Number Publication Date
JP2002248338A true JP2002248338A (en) 2002-09-03

Family

ID=18909466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001048155A Pending JP2002248338A (en) 2001-02-23 2001-02-23 Evacuation equipment, particle beam equipment, optical ray equipment and x-ray equipment as well as method of manufacturing semiconductor integrated circuit device using these

Country Status (1)

Country Link
JP (1) JP2002248338A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064324B2 (en) 2003-07-30 2006-06-20 Hitachi, Ltd. Charged particle beam apparatus
JP2017535787A (en) * 2014-12-22 2017-11-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate inspection device, substrate inspection method, large area substrate inspection device, and operation method thereof
JP2018018081A (en) * 2016-07-27 2018-02-01 カール・ツァイス・エスエムティー・ゲーエムベーハー Source hollow body and euv plasma light source comprising such source hollow body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064324B2 (en) 2003-07-30 2006-06-20 Hitachi, Ltd. Charged particle beam apparatus
US7208731B2 (en) 2003-07-30 2007-04-24 Hitachi, Ltd. Charged particle beam apparatus
US7223976B2 (en) 2003-07-30 2007-05-29 Hitachi, Ltd. Charged particle beam apparatus
US7449692B2 (en) 2003-07-30 2008-11-11 Hitachi High-Technologies Corporation Charged particle beam apparatus
JP2017535787A (en) * 2014-12-22 2017-11-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate inspection device, substrate inspection method, large area substrate inspection device, and operation method thereof
TWI673748B (en) * 2014-12-22 2019-10-01 美商應用材料股份有限公司 Apparatus for inspecting a substrate, method for inspecting a substrate
JP2018018081A (en) * 2016-07-27 2018-02-01 カール・ツァイス・エスエムティー・ゲーエムベーハー Source hollow body and euv plasma light source comprising such source hollow body

Similar Documents

Publication Publication Date Title
JP5352144B2 (en) Charged particle beam inspection method and apparatus
US7256405B2 (en) Sample repairing apparatus, a sample repairing method and a device manufacturing method using the same method
EP1710327B1 (en) Method of beam-induced selective etching of a material from a quartz substrate
US6344115B1 (en) Pattern forming method using charged particle beam process and charged particle beam processing system
US20080314871A1 (en) High resolution plasma etch
KR20000071659A (en) Method and apparatus for removing carbon contamination in a sub-atmospheric charged particle beam lithography system
JPH06260129A (en) Focusing ion beam device
US20020053353A1 (en) Methods and apparatus for cleaning an object using an electron beam, and device-fabrication apparatus comprising same
JP2006066398A (en) Local plasma treatment
KR20110069083A (en) Euv lithography device and method for processing an optical element
JP2011181894A (en) Defect repair apparatus, and method for euv mask
JP2002248338A (en) Evacuation equipment, particle beam equipment, optical ray equipment and x-ray equipment as well as method of manufacturing semiconductor integrated circuit device using these
JPH09245716A (en) Electron beam drawing method and drawing apparatus, and semiconductor integrated circuit using this
US7005638B2 (en) Apparatus and method for reducing the electron-beam-induced deposition of contamination products
CN116685717A (en) Method for cleaning a surface of a component for an EVU lithography system
JP2010285692A (en) Au-CONTAINING LAYER TREATED WITH CHARGED PARTICLE BEAM
JP2664025B2 (en) Cleaning method for electron beam device
JP5941522B2 (en) Ion beam equipment
JP3047293B1 (en) Charged particle beam device and semiconductor integrated circuit using the same
US6837936B2 (en) Semiconductor manufacturing device
JPH0547870A (en) Charged particle flow irradiation device
JP2002237443A (en) Apparatus for eliminating contamination, method of eliminating contamination in optical aligner, and optical aligner
CN114280894B (en) System and method for controlling and monitoring air pressure of photoetching machine and photoetching machine
US20230185180A1 (en) Method and apparatus for etching a lithography mask
JP3908530B2 (en) Photomask white defect correction method