JPS60222767A - Monitor device - Google Patents

Monitor device

Info

Publication number
JPS60222767A
JPS60222767A JP60011144A JP1114485A JPS60222767A JP S60222767 A JPS60222767 A JP S60222767A JP 60011144 A JP60011144 A JP 60011144A JP 1114485 A JP1114485 A JP 1114485A JP S60222767 A JPS60222767 A JP S60222767A
Authority
JP
Japan
Prior art keywords
chamber
adsorbent
monitoring device
desorption
contaminants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60011144A
Other languages
Japanese (ja)
Inventor
カンデイドー・チヨー・ユイン
グレアム・レイトン・マトニユース
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coal Industry Patents Ltd
Original Assignee
Coal Industry Patents Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coal Industry Patents Ltd filed Critical Coal Industry Patents Ltd
Publication of JPS60222767A publication Critical patent/JPS60222767A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は監視装置の改良、特に雰囲気中に存在する有
機蒸気の監視装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in monitoring devices, and in particular to improvements in monitoring devices for organic vapors present in an atmosphere.

従来の技術 従来、汚染物質を検出するように作業場所の雰囲気を試
験することが知られている。一つの基本的装置には能動
的装置と受動的装置があり、能動的装置はポンプを用い
て装置に雰囲気を吸引して例えば赤外線分析や、周知の
時間の後に分析のために汚染物質を放出するようできる
材料に汚染物質を吸収/脱着することによって連続的に
監視する。受動的装置はポンプを用いることなく作動し
7、雰囲気の放散と適宜な材料への汚染物質の収集によ
って普通に作用する。これら2つのM式の市販的に有効
な試験装置が成功しているが、/’0 ’ ppmの値
の非常に小量の有機蒸気を含む雰囲気を正確に試験でき
ることは確認されていない。例えば、シラピン9ノ(−
ソナル試料ポンプによるニオシュ木炭吸収管は作業場所
のベンゼン、トルエン、キシレン等の正確な検出方法と
して米国や英国、その他の国にて広く用いられている。
BACKGROUND OF THE INVENTION It is known in the art to test the atmosphere of a work area to detect contaminants. One basic type of device is active and passive, where active devices use a pump to draw atmosphere into the device and release contaminants for analysis after a known period of time, for example for infrared analysis. Continuously monitor contaminants by adsorbing/desorbing them onto materials that can Passive devices operate without the use of pumps 7 and function normally by dissipating the atmosphere and collecting contaminants on appropriate materials. Although these two M-type commercially available test devices have been successful, they have not been found to be able to accurately test atmospheres containing very small amounts of organic vapors with values of /'0' ppm. For example, sirapine 9 (-
Niosh charcoal absorption tubes with Sonal sample pumps are widely used in the United States, United Kingdom, and other countries as an accurate method for detecting benzene, toluene, xylene, etc. in workplaces.

1.かじ、ニオシュ装置は0 、7 ppln以下の濃
度において使用することが確認されていない。木炭管に
代って、高分子吸着材料、テナツクスOCを用いる蒸気
吸着管によって約、? X / 0 ’ ppmにまで
測定下限値が改善されるが、各試験点の一定の監督のた
めの要件は例えばコークス工場の環境の様な広い場所の
同時監視を除外17ている。
1. The Kaji and Niosh devices have not been confirmed to be used at concentrations below 0.7 ppln. By replacing the charcoal tube with a vapor adsorption tube using a polymeric adsorption material, Tenax OC, approximately ? Although the lower measurement limits are improved to X/0' ppm, the requirement for constant supervision of each test point precludes simultaneous monitoring of large areas, such as coke factory environments17.

受動的監視または放射線計は個々の有機蒸気の放散や監
視器の物理的構成にもとづいている。
Passive monitoring or radiometry is based on the emission of individual organic vapors and the physical configuration of the monitor.

幾つかの受動的監視器が市販され、比較的安価で、多く
の労力を要することなく沢山の使用の可能性を提案して
いる。これらの多くは木炭含浸部材や木炭粒子を用いて
おり、非常に小さい値の空気搬送汚染物質の正確な測定
がり高い値の汚染の吸着剤を1.ば[2ば含む神々の理
由のため不可能である。また、高分子吸着剤を用いる市
販の受動的監視装置があり、木炭型以上の改善された性
能を可能にしているが、IO’ppm範囲の精度をもっ
ていない。
Several passive monitors are commercially available, are relatively inexpensive, and offer many possibilities of use without requiring much effort. Many of these use charcoal-impregnated materials or charcoal particles to accurately measure very low values of airborne contaminants, while 1. adsorbing high values of contaminants. It is impossible for divine reasons including [2]. There are also commercially available passive monitoring devices that use polymeric sorbents, allowing improved performance over charcoal types, but do not have accuracy in the IO'ppm range.

この発明は、吸着剤の装入物、並びに第1の試料室と、
吸着剤の装入物を第1の試料室内に配置できるように連
結配置された第2の脱着室とを有する吸着剤保持本体を
備え、吸着剤の装入物が雰囲気に露呈されて有機汚染物
質を吸着し、予定の試験時間の終りに第2の脱着室に対
して操作することなく転換できて吸着剤が有機汚染物質
を吸着するよう処理できるので、有機汚染物質を分析の
ために保持本体から取出17、且つ第1の試料室が第コ
の脱着室よりも大きな横断面を有(2ている、雰囲気中
の有機蒸気の濃度を/ 0 ’ ppmの精度に測定で
きる新規な受動的な監視装置を提供するものである。
The invention comprises a charge of adsorbent, and a first sample chamber;
an adsorbent holding body having a second desorption chamber connected and arranged so that the adsorbent charge can be placed in the first sample chamber, and the adsorbent charge is exposed to the atmosphere to prevent organic contamination. Organic contaminants can be retained for analysis as the adsorbent can be processed to adsorb organic contaminants by adsorbing substances and converting without manipulation to a second desorption chamber at the end of the scheduled test period. The first sample chamber has a larger cross section than the second desorption chamber (2), and is a novel passive device capable of measuring the concentration of organic vapor in the atmosphere with an accuracy of /0' ppm. The purpose of the present invention is to provide a reliable monitoring device.

好適な吸着剤は高分子吸着剤であるが、空気中の心情な
濃度にて有機蒸気を吸収でき且つ液体溶剤による処理を
必要とすることなく全ての吸着1.た蒸気を実質的に脱
着できる吸着剤とすることができる。好適には、分析の
ために吸着した物質を保持本体外部に運ぶよう浄化ガス
の流れを用いる加熱によって脱着が行われる。分析の方
法は臨界的でなく、遭遇する濃度値にて十分な精度を出
し、クロマトグラフ法が好適である。
Preferred adsorbents are polymeric adsorbents that are capable of absorbing organic vapors at reasonable concentrations in air and that perform all adsorption without the need for treatment with liquid solvents. The adsorbent can be used as an adsorbent that can substantially desorb vapors. Preferably, desorption is performed by heating using a flow of purge gas to transport the adsorbed substances outside the holding body for analysis. The method of analysis is non-critical and provides sufficient precision at the concentration values encountered; chromatographic methods are preferred.

成可くは、吸着剤保持本体1−1一つの円筒体から成り
、1つは長さに対する比較的大きな直径 比を有1.−
Cいて第1の室を形成し、他の1つは長さに対する比較
的小さな直径比を有(、ていて第λの室を形成している
。好ましくは、簡単な倒立によって吸着剤が重力によっ
て1つの室から他の室に流れるようでき、円筒体の簡単
な同軸連結にて単純で有効な構造を設けている。吸着剤
保持本体は試験すべき雰囲気への接近を設げて吸着剤の
損失を防止l、なければならず、同様に脱着が行われる
ときに吸着剤が損失されてはならない。好適には、吸着
剤への雰囲気の制限された放射を行わt、cい微細メツ
シュによって所要場所に維持される。成可く、吸着剤保
持本体には連結手段が設けられ、これによってガス供給
管が)![結でき、ガス搬送する脱着された汚染物質が
分析用装置に流れるようできる。
Preferably, the adsorbent holding body 1-1 consists of one cylindrical body, one having a relatively large diameter to length ratio. −
C to form the first chamber and the other one having a relatively small diameter to length ratio to form the λ-th chamber. Preferably, by a simple inversion, the adsorbent is free from gravity. A simple and effective structure is provided by a simple coaxial connection of the cylinders.The adsorbent holding body provides access to the atmosphere to be tested and allows the adsorbent to flow from one chamber to another. loss of adsorbent must be prevented, and likewise no loss of adsorbent when desorption takes place. Preferably, limited radiation of the atmosphere to the adsorbent is carried out using a fine mesh. The adsorbent holding body may be provided with a connecting means by which the gas supply pipe () is maintained in place by the adsorbent holding body. [The desorbed contaminants can be connected to the gas carrier and flowed to the analyzer.]

この発明を以下に添付図面を参照して説明しよう。The invention will now be described with reference to the accompanying drawings.

実施例 図面を参照するに、監視装置は、第1の試料室−と第2
の脱着室3とを有する保持本体/を備えている。第1図
にて、第λの脱着室3の端部はタップ形の取付具ηによ
り封止され、2sO〜SOOミクロン゛テナツクスGC
’″高分子吸着剤00.2グラムの装入物Sが75θミ
クロンの孔6を有したvIif)l金属メツシュ盤によ
り保持されている。別のこの様な4137が取外し目在
なナツト8により試料室コの開放端に取付けられていて
粒子の進入を阻止1.ており、必要ならばポリテトラフ
ルオロエチレンが好適な浸透膜を冊7の代りに或は盛7
に加えて使用することができる。
Referring to the embodiment drawings, the monitoring device includes a first sample chamber and a second sample chamber.
A holding body/ having a detachment chamber 3 is provided. In FIG. 1, the end of the λ-th desorption chamber 3 is sealed with a tap-shaped fitting η, and the 2sO to SOO micron tenax GC
'''A charge S of 00.2 grams of polymer adsorbent is held by a metal mesh disc with holes 6 of 75θ microns. Another such 4137 is held by a nut 8 with a removable It is attached to the open end of the sample chamber to prevent particles from entering, and if necessary, a permeable membrane, preferably made of polytetrafluoroethylene, can be used instead of the membrane 7.
Can be used in addition to.

第一図に示される様な脱着状態において、保持本体/は
倒立されて、吸着剤の装入物は脱着室3を満たすよう流
れる。タップ形の取付具りが取外され、図示しないガス
クロマトグラフにガス/汚染物質混合物が搬送されるべ
くできるようにガス接続部10を有するナラ)?と取換
えられる。ナツトには、ガス入口12を有するナツト/
/と取換えられる。
In the desorption condition as shown in FIG. 1, the holding body is inverted and the adsorbent charge flows to fill the desorption chamber 3. An oak with a gas connection 10 so that the tap-shaped fitting can be removed and the gas/contaminant mixture transferred to a gas chromatograph (not shown)? can be replaced with The nut has a gas inlet 12/
/ can be replaced with

使用においては、監視装置は第1図に示される様に所要
場所に配置される。雰囲気は盤6にて露呈される比較的
大きな表面積の吸着剤と接触し、有機蒸気汚染物質が吸
着されろ。例えばS時間の予め選ばれた露呈時間の終り
に、図示しない閉鎖ナツトが監視装置の開放端を封止す
るように用いられ、後の分析のために監視装置を邪動・
Fたは保管するようできる。分析のために、第一図の構
成が用いられ、吸着剤を有する細い脱着室3が加熱ブロ
ックに取付けられ、乾燥窒素が流され、吸着された汚染
物質がガスクロマトグラフにて分析される。
In use, the monitoring device is placed in place as shown in FIG. The atmosphere contacts the relatively large surface area of adsorbent exposed at disk 6, and organic vapor contaminants are adsorbed. At the end of a preselected exposure time, e.g. time S, a closure nut (not shown) is used to seal the open end of the monitoring device, freeing the monitoring device for later analysis.
F or storage. For analysis, the configuration of Figure 1 is used, a narrow desorption chamber 3 with adsorbent is attached to a heating block, dry nitrogen is flushed and the adsorbed pollutants are analyzed by gas chromatography.

初期試験は、パーキンエルマ蒸気吸着管が受動的な状態
にて使用される市販の受動的な監視装置における約13
倍の汚染有機蒸気の含浸を示している゛。非常に有機的
に希薄な正確な監視に加えて、例えば分単位の短かい露
呈時間にppm単位のより大きな汚染物質値のために同
じ監視装置を使用できる。
Initial tests have shown that approximately 13
It shows the impregnation of twice the amount of polluting organic vapors. In addition to very organically dilute accurate monitoring, the same monitoring device can be used for higher pollutant values in ppm with short exposure times, e.g. in minutes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は雰囲気を試験するよう用意、されるこの発明に
従った監視装置の断面図、第2図は汚染物質の吸着のた
めに用意される第1図の監視装置の断面図である。図中
、/:保持本体、コニ試料室、3:脱着室、q:取付具
、S:装入物、7:盤、g、タ、//:ナット、/θ:
ガス接続部、/コニガス人!]。 特許出願人代理人 曽 我 道 照 図面の浄書(内容に変更なし) FIG、 I FIG、 2 手続補正書(方式) 昭和60年5月27日 特許庁長官 志 賀 掌紋 1、事件の表示 昭和60年特許願第11144号 2、発明の名称 監視装置 3、補正をする者 事件との関係 特許出願人 名 称 コール・インダストリイ(パテンツ)リミテッ
ド4、代理人〒100 住 所 東京都千代田区丸の内二丁目4番1号丸の内ビ
ルディング4階 5、補正命令の日付 ゛・−−一〜・パ フ、補正の内容 (1)願書に最初に添付した図面の浄書・別紙の通り(
内容に変更なし)
1 is a sectional view of a monitoring device according to the invention prepared for testing an atmosphere, and FIG. 2 is a sectional view of the monitoring device of FIG. 1 prepared for adsorption of contaminants. In the figure, /: holding body, sample chamber, 3: desorption chamber, q: fixture, S: charge, 7: board, g, ta, //: nut, /θ:
Gas connections, / Konigas people! ]. Patent applicant's agent Dosho Soga Engraving of the drawing (no change in content) FIG, I FIG, 2 Procedural amendment (method) May 27, 1985 Commissioner of the Patent Office Shiga Palm print 1, indication of the case 1985 Patent Application No. 11144 of 20132, Title of Invention Monitoring Device 3, Relationship with the person making the amendment Patent applicant name: Coal Industries (Patents) Limited 4, agent: 100 Address: 2-chome Marunouchi, Chiyoda-ku, Tokyo No. 4, No. 1 Marunouchi Building, 4th floor, 5, Date of amendment order ゛・--1~・Puff, Contents of amendment (1) As per the engraving and attached sheet of the drawings originally attached to the application (
(No change in content)

Claims (1)

【特許請求の範囲】 l 吸着剤の装入物、第1の試料室を有し且つ吸着剤の
装入物を第1の試料室内に配置できるように設けられた
第一の脱着室と連接された保持本体を備え、吸着剤の装
入物が雰囲気に露呈されて有機汚染物質を吸着し、予定
の試験時間の終りに第2の脱着室に対して操作すること
なく転換できて吸着剤が有機汚染物質を吸着するよう処
理できるので、有機汚染物質を分析のために保持本体か
ら取出され、且つ第1の試料室が#J 2の脱着室より
も大きな横断面積を有していることを特徴とする雰囲気
中の有機蒸気の濃度を/ 0 ’ ppmの精度に測定
できる監視装置。 コ 吸着剤が高分子吸着剤であることを特徴とする特許
請求の範囲第1項記載の監視装置。 3 第1.第一の室が円筒状で、第1の室が比較的大き
な長さに対する直径の比を有12、第2の室が比較的小
さな長さ罠対する直径の比を有することを特徴とする特
許請求の範囲第1、:1項いずれか記載の監視装置。 ク 1つの室から他の室に吸着剤が重力によって流れる
ように1つの位置から別の位置への倒立が十分であるこ
とを特徴とする特許請求の範囲第1乃至3項いずれか7
項記載の監視装R8 S ガス供給管を接続できる連結手段が設けられ、吸着
しまた汚染物質を搬送するガスが分析のために保持本体
外部に流出できることを特徴とする特許請求の範囲第1
乃至を項いずれか1項記載の監視装置。
[Claims] l A charge of adsorbent and a first desorption chamber having a first sample chamber and connected to a first desorption chamber provided so that the charge of adsorbent can be placed in the first sample chamber. The sorbent charge is exposed to the atmosphere to adsorb organic contaminants, and at the end of the scheduled test period can be transferred to a second desorption chamber without any manipulations. can be treated to adsorb organic contaminants so that the organic contaminants are removed from the holding body for analysis, and the first sample chamber has a larger cross-sectional area than the desorption chamber of #J2. A monitoring device capable of measuring the concentration of organic vapor in an atmosphere with an accuracy of /0' ppm. (c) The monitoring device according to claim 1, wherein the adsorbent is a polymer adsorbent. 3 1st. A patent characterized in that the first chamber is cylindrical, the first chamber has a relatively large length-to-diameter ratio, and the second chamber has a relatively small length-to-diameter ratio. A monitoring device according to any one of claims 1 and 1. (h) Inversion from one position to another is sufficient to cause the adsorbent to flow by gravity from one chamber to another.
The monitoring device R8S described in Claim 1 is provided with a connecting means to which a gas supply pipe can be connected, and the gas adsorbing and transporting contaminants can flow out of the holding body for analysis.
The monitoring device according to any one of the following items.
JP60011144A 1984-01-27 1985-01-25 Monitor device Pending JPS60222767A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB08402258A GB2153525B (en) 1984-01-27 1984-01-27 Improvements in atmosphere monitoring
GB8402258 1984-01-27

Publications (1)

Publication Number Publication Date
JPS60222767A true JPS60222767A (en) 1985-11-07

Family

ID=10555669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60011144A Pending JPS60222767A (en) 1984-01-27 1985-01-25 Monitor device

Country Status (5)

Country Link
JP (1) JPS60222767A (en)
AU (1) AU570760B2 (en)
DE (1) DE3501002A1 (en)
FR (1) FR2558958B1 (en)
GB (1) GB2153525B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3616208C1 (en) * 1986-05-14 1987-08-27 Geesthacht Gkss Forschung Device for sample application by thermal desorption
GB2283816B (en) * 1992-07-13 1996-05-29 Broken Hill Pty Co Ltd Sampling device for airborne particulate and vapour emissions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113291A (en) * 1973-10-01 1975-09-05
JPS52112378A (en) * 1976-03-17 1977-09-20 Mitsubishi Chem Ind Method of separating nitrogenncontaining substance in concentrated form
JPS5782784A (en) * 1980-11-12 1982-05-24 Hitachi Ltd Detector for gaseous uranium hexafluoride

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1129004B (en) * 1955-05-20 1962-05-03 Exxon Research Engineering Co Method and device for determining the concentration of a key constituent in a gas mixture
US3870492A (en) * 1973-08-09 1975-03-11 Lloyd V Guild Apparatus for collecting samples of contaminants
US4003257A (en) * 1974-03-12 1977-01-18 Nasa Analysis of volatile organic compounds
US4350496A (en) * 1979-07-05 1982-09-21 Chambers C C Measuring the aromatic reactivity of a hydrocarbon composition
GB2064765B (en) * 1979-07-12 1983-06-22 Perkin Elmer Ltd Personal gas monitors
GB2083622B (en) * 1980-06-23 1984-03-07 Baldeck Charles M Apparatus for collecting a component from a gas mixture
US4481297A (en) * 1982-05-13 1984-11-06 Owens-Illinois, Inc. Vapor detection tube and method of testing for a vapor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113291A (en) * 1973-10-01 1975-09-05
JPS52112378A (en) * 1976-03-17 1977-09-20 Mitsubishi Chem Ind Method of separating nitrogenncontaining substance in concentrated form
JPS5782784A (en) * 1980-11-12 1982-05-24 Hitachi Ltd Detector for gaseous uranium hexafluoride

Also Published As

Publication number Publication date
AU3776085A (en) 1985-08-01
FR2558958A1 (en) 1985-08-02
GB2153525B (en) 1987-09-16
DE3501002A1 (en) 1985-08-01
GB8402258D0 (en) 1984-02-29
AU570760B2 (en) 1988-03-24
FR2558958B1 (en) 1989-03-03
GB2153525A (en) 1985-08-21

Similar Documents

Publication Publication Date Title
Woolfenden Monitoring VOCs in air using sorbent tubes followed by thermal desorption-capillary GC analysis: summary of data and practical guidelines
Cocheo et al. High uptake rate radial diffusive sampler suitable for both solvent and thermal desorption
Pellizzari et al. Collection and analysis of trace organic vapor pollutants in ambient atmospheres. Thermal desorption of organic vapors from sorbent media
US7114370B2 (en) Air quality sampler using solid phase coated material
Elke et al. Determination of benzene, toluene, ethylbenzene and xylenes in indoor air at environmental levels using diffusive samplers in combination with headspace solid-phase microextraction and high-resolution gas chromatography–flame ionization detection
US4541268A (en) Method and device for the sampling of trace elements in gases, liquids, solids or in surface layers
US7479390B2 (en) Device and method for micro sorbent extraction and desorption
US8062610B2 (en) Apparatus and methods for use in concentration of gas and particle-laden gas flows
Levin et al. Diffusive air sampling of reactive compounds. A review
Jayanty Evaluation of sampling and analytical methods for monitoring toxic organics in air
JP2003185541A (en) Passive sampler for capturing volatile organic compound
GB2056305A (en) Method of and apparatus for extracting n-nitroso compounds from air samples
US4636227A (en) Monitoring by adsorption
Bailey et al. A personal diffusion sampler for evaluating time weighted exposure to organic gases and vapours
Sanchez-Pedreno et al. The investigation of coating materials for the detection of nitrobenzene with coated quartz piezoelectric crystals
Patil et al. Determination of benzene, aniline and nitrobenzene in workplace air: a comparison of active and passive sampling
Kagel et al. Evaluation of metallic foils for preconcentration of sulfur-containing gases with subsequent flash desorption/flame photometric detection
JPS60222767A (en) Monitor device
Uhde Application of solid sorbents for the sampling of volatile organic compounds in indoor air
Tombe et al. SAMPLING AND ANALYSIS OF LIGHT HYDROCARBONS (C1–C4)—A REVIEW
Fung et al. Determination of volatile organic compounds in air using a dehumidified and ventilated diffusive sampler, thermal desorption and gas chromatography with flame ionization detection
EP1114307B1 (en) Diffusive sampling device for monitoring organic vapours in ambient air
Knöppel Sampling and analysis of organic indoor air pollutants
JP4089646B2 (en) Organic volatile matter collection tube and organic volatile matter measurement method
Castello et al. Automated gas chromatographic analysis of volatile organic compounds in air