JPS60222030A - Magnetic measuring method and apparatus of temperature in living body - Google Patents

Magnetic measuring method and apparatus of temperature in living body

Info

Publication number
JPS60222030A
JPS60222030A JP59077584A JP7758484A JPS60222030A JP S60222030 A JPS60222030 A JP S60222030A JP 59077584 A JP59077584 A JP 59077584A JP 7758484 A JP7758484 A JP 7758484A JP S60222030 A JPS60222030 A JP S60222030A
Authority
JP
Japan
Prior art keywords
magnetic
temperature
measurement
input
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59077584A
Other languages
Japanese (ja)
Inventor
誠 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chest Corp
Original Assignee
Chest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chest Corp filed Critical Chest Corp
Priority to JP59077584A priority Critical patent/JPS60222030A/en
Publication of JPS60222030A publication Critical patent/JPS60222030A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、診断、治療、観測、観察等の各種目的で動植
物の所望の生体内部温度を磁気的に測定する方法および
その実施に直接使用覆る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for magnetically measuring the desired internal temperature of an animal or plant for various purposes such as diagnosis, treatment, observation, observation, etc., and an apparatus directly used for carrying out the method. Regarding.

従来の技術 正常な細胞を破壊することなく、ガン細胞のみを破壊す
る方法として、ガン細胞のある場所の温度を43℃程度
に温める方法がある。
BACKGROUND OF THE INVENTION One method of destroying only cancer cells without destroying normal cells is to warm the temperature of the area where cancer cells are located to about 43°C.

また指定された場所の体内温度をその温度まで上げる方
法として、マイクロ波照射法等が用いられているが、そ
の場所の温度が希望する温度になっているかどうかの温
度測定は難しい。
Microwave irradiation is also used as a method to raise the body temperature at a designated location to a specified temperature, but it is difficult to measure the temperature at that location to see if it has reached the desired temperature.

現在サーミスタ温度計を体内に埋込み、体外にリード線
を出して、指定された場所の温度を測定する方法や、核
磁気共鳴コンピューター断層撮影法(’NMR−CT)
によってその緩和時間より温度を計測する方法等が用い
られている。
Currently, there are methods of implanting a thermistor thermometer into the body and extending lead wires outside the body to measure the temperature at a designated location, and nuclear magnetic resonance computed tomography ('NMR-CT).
A method of measuring temperature based on the relaxation time is used.

発明が解決しようとする問題点 かくして本発明は各種目的の為に生体内局部体温を測定
する必要がある場合に、磁性材料を用いて湿度情報を磁
気信号に変えて簡易、正確。
Problems to be Solved by the Invention Thus, the present invention uses a magnetic material to convert humidity information into a magnetic signal in a simple and accurate manner when it is necessary to measure local body temperature in a living body for various purposes.

確実に測定する方法および装置を提供せんとするもので
ある。
The purpose is to provide a method and device for reliable measurement.

問題点を解決するための手段 ここで本発明法の基本原理を第1図について説明する。Means to solve problems The basic principle of the method of the present invention will now be explained with reference to FIG.

長さ1で磁極の強さがmである小さな磁石は、測定点ま
での距離に比べて長さ1が微小な場合、磁気モーメント
M=m +をもつ磁気ダイポールと考えられる。この磁
気ダイポールが第1図に示ずように任意の点D (Xd
、Yd、Zd)にX軸と平行に置かれた場合、任意の点
P(XI)。
A small magnet with length 1 and magnetic pole strength m is considered to be a magnetic dipole with magnetic moment M=m + if length 1 is minute compared to the distance to the measurement point. This magnetic dipole is located at an arbitrary point D (Xd
, Yd, Zd) parallel to the X axis, any point P(XI).

Yl)、Zp)における磁界の強さは次で与えられる。The strength of the magnetic field at Yl), Zp) is given by:

3(Fl−’#”)W Fl 但し、Mはダイポールの磁荷であり、またRは次式で与
えられる。
3(Fl-'#")W Fl where M is the magnetic charge of the dipole, and R is given by the following equation.

百= (Xp−Xd)交+(Yp−Yd)?(Zp−Z
d)2 ここでもし磁気ダイポールと測定点の位置関係が一定で
あれば、計測される磁界の強さは磁気モーメントMの変
化に応じて変わる。
Hundred = (Xp-Xd) cross + (Yp-Yd)? (Zp-Z
d)2 Here, if the positional relationship between the magnetic dipole and the measurement point is constant, the strength of the measured magnetic field changes according to the change in the magnetic moment M.

最近、40〜50℃で磁気特性が急激に変化する磁性材
料が開発された。この磁性材料を用いて小さな磁気ダイ
ポールを作り、第2図に示すように、身体α内の測□定
したい場所にこれを挿入し、外部から磁束密度が数10
0ガウスの磁界で磁化すると、磁性材料βは外部磁界の
強さに比例した磁気モーメー゛ントMを持つことになる
。そして、この磁気モーメントMは磁性材料βの温度に
よって大きく変わる。そこで、この磁気ダイポールが体
外に作る磁界を、同じ場所で測定することによって、磁
気モーメントM、したがって磁性材料βの挿入された場
所の温度を計測することが出来る。
Recently, magnetic materials whose magnetic properties change rapidly at 40 to 50°C have been developed. A small magnetic dipole is made using this magnetic material, and as shown in Figure 2, it is inserted into the desired location within the body α, and the magnetic flux density is measured from the outside by several tens of tens of degrees.
When magnetized with a magnetic field of 0 Gauss, the magnetic material β will have a magnetic moment M proportional to the strength of the external magnetic field. This magnetic moment M varies greatly depending on the temperature of the magnetic material β. Therefore, by measuring the magnetic field generated by this magnetic dipole outside the body at the same location, it is possible to measure the magnetic moment M, and therefore the temperature at the location where the magnetic material β is inserted.

実施例 当該原理を利用してガン治療に適用した本発明法の一実
施例を第2図を参照して説明する。
EXAMPLE An example of the method of the present invention applied to cancer treatment using the principle will be described with reference to FIG.

本発明法は、ガン細胞破壊温度43℃にほぼ匹敵するキ
ューリ一温度42.5℃のフェライト拐を用いた磁性材
料βを、外部からマイクロ波を集中照射して局部加温さ
れた患部測定箇所の身体α内に予め埋込んで置いた前記
磁性材料βに、約200ガウスの定常磁場からなる外部
磁界を当てて磁性材料βを磁気誘導し、その後当該外部
磁界を取り去り、引続き患部測定箇所に外部からマイク
ロ波を集中照射して局部加温づることにより、患部測定
箇所の温度情報を磁気情報に変換する磁性材料βの残留
磁界の変化をフラックスプローブF ’Pで逐次体外検
出測定して行き、患部測定箇所の温度がガン細胞破壊温
度とほぼ一致するキューリ一温度42.5℃に達すると
、磁性材料βは強磁性体から定磁性体に変るため、残留
磁界も急激に減少を開始する時点の残留磁界を捕えて、
患部測定箇所の温度が強磁性体であった磁気材料βの磁
気特性が急に変る42.5℃の臨界温度に達したことを
測定確認することが出来、常時患部測定箇所が臨界温度
を維持するようマイクロ波の集中照射を制御し、測定箇
所の患部ガン細胞を破壊治療することが出来る。
In the method of the present invention, a magnetic material β made of ferrite with a Curie temperature of 42.5°C, which is almost comparable to the cancer cell destruction temperature of 43°C, is heated locally at the affected area by irradiating it with concentrated microwaves from the outside. An external magnetic field consisting of a steady magnetic field of approximately 200 Gauss is applied to the magnetic material β, which has been implanted in advance in the body α, to magnetically induce the magnetic material β, and then the external magnetic field is removed, and the magnetic material β is then placed at the affected measurement point. By locally heating the area by irradiating microwaves from the outside, changes in the residual magnetic field of the magnetic material β, which converts temperature information at the affected measurement point into magnetic information, are sequentially detected and measured outside the body using a flux probe F'P. When the temperature at the affected area measurement point reaches the Curie temperature of 42.5°C, which is almost the same as the cancer cell destruction temperature, the magnetic material β changes from a ferromagnetic material to a constant magnetic material, and the residual magnetic field begins to decrease rapidly. Capturing the residual magnetic field at the moment,
It was possible to measure and confirm that the temperature at the affected area measurement point had reached the critical temperature of 42.5°C, at which the magnetic properties of the magnetic material β, which was a ferromagnetic material, suddenly changed, and the affected area measurement point always maintained the critical temperature. The concentrated microwave irradiation can be controlled to destroy and treat the affected cancer cells at the measurement location.

ここで本発明の実験例について説明する。Here, an experimental example of the present invention will be explained.

磁性材料としてキューリ一温度42.5℃のフェライト
材を用い、それを生体に見たてたシリコンゴムの中に埋
め込み、温度を変えながらそこから発生する磁界を測定
した。
A ferrite material with a Curie temperature of 42.5°C was used as the magnetic material, and it was embedded in silicone rubber made to resemble a living body, and the magnetic field generated from it was measured while changing the temperature.

第3図はその測定結果を示す。ここでは、磁束計測にフ
ラックス・ゲート磁束計を用い、温度52℃の時、約2
00ガウスの直流磁界を加えて磁化を行っている。
FIG. 3 shows the measurement results. Here, a flux gate magnetometer is used to measure the magnetic flux, and at a temperature of 52°C, approximately 2
Magnetization is performed by applying a DC magnetic field of 0.00 Gauss.

実際の生体測定においては、磁気ダイポールが体外に発
生する磁界は地磁気などに比べると非常に微小であるた
め、特別な工夫が必要である。フラックス・ゲート磁束
計のような高感度磁束計を用い、しかも、地磁気や都市
のさまざまな磁気雑音を打ち消すために、第4図に示す
よう2つ以上の磁束検出コイルCI 、C2を互いに逆
方向に接続している。それにより発生源の近い温度計測
用の磁性材料βからの磁界Hのみを計測することができ
る。その上、磁性材料βからの磁界は変動を生じない定
常磁界であるため、変動磁界とは異なり測定がむずかし
いので、ここでは磁束検出プローブFPを一定の場所に
固定しておき、被測定者をプローブFPに近づけた場合
及び離した場合について計測を行い、その磁界Hの差か
ら直流磁界を測定している。
In actual biological measurements, the magnetic field generated by the magnetic dipole outside the body is extremely small compared to the earth's magnetism, so special measures are required. In order to use a highly sensitive magnetometer such as a flux gate magnetometer, and to cancel out various magnetic noises from the earth's magnetic field and cities, two or more magnetic flux detection coils CI and C2 are connected in opposite directions to each other, as shown in Figure 4. is connected to. Thereby, only the magnetic field H from the magnetic material β for temperature measurement, which is close to the source, can be measured. Furthermore, since the magnetic field from the magnetic material β is a steady magnetic field that does not fluctuate, unlike a fluctuating magnetic field, it is difficult to measure. Measurements are performed when the probe is brought close to the probe FP and when it is separated from the probe FP, and the DC magnetic field is measured from the difference in the magnetic field H.

しかして本発明装置の実施例を第5図乃至第10図につ
いて説明する。
Embodiments of the apparatus of the present invention will now be described with reference to FIGS. 5 to 10.

本発明装置Aは、測定システム部Bと駆動システム部C
と信号処理システム部りとからなり、治療システム部E
も併せて付帯することが出来る。第6図乃至第7図に示
すよう前記測定システム部Bは、木、プラスチック等の
非磁性構造体1の天井部2内と床台部3内の片側に寄せ
て上下相対する一対の磁化器4,5を設置し、かつ床台
部3内に差動プローブ6を固定するとともに、床台部3
上に被検者αが仰臥自在な測定用ベッド7を前後Y軸方
向かつ左右X軸方向に可動自在に載設され、駆動システ
ム部Cは上下一対の磁化器4,5の励磁、消磁を制御す
る磁化器電源部8と測定用ベッド7を駆動制御するベッ
ド駆動制御部9を備え、信号処理システム部りは差動プ
ローブ6から得た磁気測定信号S1’、81”を適宜前
段処理してから入力処理し、駆動システム部Cに操作指
令信号を発するマイクロコンピュータ(以下マイコン)
10を備えてなる。
The device A of the present invention includes a measurement system section B and a drive system section C.
and the signal processing system department, and the treatment system department E.
can also be attached. As shown in FIGS. 6 and 7, the measurement system section B includes a pair of magnetizers placed on one side of the ceiling section 2 and the floor section 3 of the non-magnetic structure 1 made of wood, plastic, etc., and vertically opposed to each other. 4 and 5, and fix the differential probe 6 inside the floor stand 3.
A measuring bed 7 on which the subject α can lie supine is placed movably in the front-rear Y-axis direction and the left-right X-axis direction, and the drive system section C excites and demagnetizes the pair of upper and lower magnetizers 4 and 5. It is equipped with a magnetizer power supply section 8 to control and a bed drive control section 9 to drive and control the measurement bed 7, and the signal processing system section appropriately pre-processes the magnetic measurement signals S1', 81'' obtained from the differential probe 6. A microcomputer (hereinafter referred to as microcomputer) that processes the input and issues an operation command signal to the drive system section C.
It is equipped with 10.

第6図乃至第8図に示すよう前記構造体1は、床台部3
と天井部2と測“走用ベッド7からなり、床台部3は長
方形床台枠11の左右端縁上全長に相向い合った左右一
対のL形ガイド12,13を前後方向に並行延在して載
着するとともに、中間部相互上に亘り左右り形ガイド1
2.13に並行に中間ガイド板14を延在掛渡し固定す
る一方、床台部3内の左半かつ後半位置に下磁化器5の
収容部15を配し、他方当該収容部15外の前側中央に
差動プローブ6を上向に突出固定してその上端を測定用
ベッド7下側に臨ませである。
As shown in FIGS. 6 to 8, the structure 1 includes a floor base portion 3
The floor base part 3 includes a pair of left and right L-shaped guides 12 and 13 that extend along the entire length of the left and right edges of the rectangular floor frame 11 in parallel in the front-back direction. The left and right guides 1 are mounted on the left and right sides, and the left and right guides 1
2.13, the intermediate guide plate 14 is extended and fixed in parallel, and the housing part 15 of the lower magnetizer 5 is arranged in the left half and rear half position in the floor table part 3, and A differential probe 6 is fixedly protruding upward from the center of the front side, and its upper end is exposed to the lower side of the measurement bed 7.

前記天井部2は、長方形大枠16の四隅下端を4本の支
柱17,18.19.20により支持されて床台枠11
の左半部上方に跨架され、下磁化器5の収容部15と対
応する天枠16内の後半位置に上磁化器4の収容部21
を設けてある。
The ceiling part 2 is constructed by supporting the lower ends of the four corners of the large rectangular frame 16 by four pillars 17, 18, 19, 20, and forming the floor frame 11.
The housing part 21 of the upper magnetizer 4 is placed in the rear half position in the top frame 16, which spans over the left half of the
is provided.

前記測定用ベッド7は、床台枠11上の左右り形ガイド
12.13と中間ガイド板14上に前後Y軸方向に滑動
自在に対応載置する三対の左右中梁22.23.24の
前端上相互に亘る前り形ガイド25と後端上相互に亘る
後り形ガイド26を向い合せに左右方向に並行延在して
波管するとともに、前後り形ガイド25.2’6間の右
梁23と中梁24上相互に亘り所要間隔を隔てて左右方
向に並行延在する前後濾材27゜28を波管したベッド
受枠29を形成し、他方当該ベッド受枠29の前後り形
ガイド25,26間に被検者αが仰臥自在なスライド楔
板30を左右方向に滑動自在に嵌載しである。
The measurement bed 7 has three pairs of left and right middle beams 22, 23, and 24 that are placed on the left and right guides 12, 13 on the floor frame 11 and on the intermediate guide plate 14 so as to be slidable in the front and rear Y-axis directions. A front-shaped guide 25 extending across the front ends and a trailing-shaped guide 26 extending across the rear ends face each other and extend parallel to each other in the left-right direction to form a wave tube, and between the front and rear-shaped guides 25.2'6. A bed receiving frame 29 is formed by corrugating front and rear filter media 27° 28 which extend parallel to each other in the left and right direction at a required interval over the right beam 23 and middle beam 24, and on the other hand, the bed receiving frame 29 is provided with a front and back guide. A sliding wedge plate 30, on which the subject α can lie supine, is fitted between 25 and 26 so as to be slidable in the left-right direction.

図中31.32,33.34.35は一部露出して空転
自在に埋込まれたプラスチックガイドローラー群である
In the figure, reference numerals 31, 32, 33, 34, and 35 indicate a group of plastic guide rollers that are partially exposed and embedded so that they can freely roll.

第6図および第9図に示すよう前記ベッド駆動制御部9
は、差動プローブ6が磁気的悪影響を受けないようにし
て構造体1と別設した載台36上に並設したY軸周パル
スモータ−37およびX軸用パルスモータ−38と、床
台枠11と測定用ベッド7の右半部間に介在してY軸周
パルスモータ−37およびX軸用パルスモータ−38の
駆動トルクを途中Y軸用およびX軸周伝達軸39.40
を介し測定用ベッド7に伝達するY軸用およびX軸用駆
動伝達機構41,42とからなり、Y軸周駆動伝達機構
41は、床台枠11の右半部前後両外側に添着した前後
協会43.44の左端寄り上にそれぞれ、相対して連立
した左右ブラケット45と46間にY軸周伝達軸39の
終端を貫通支承して図示しない原動スプロケットを固着
し、かつ左右ブラケット47と48間にスプロケット軸
49を貫通支承して図示しない従動スプロケットを固着
するとともに、当該いずれも図示しない原動スプロケッ
トと従動スプロケット間に亘りタイミングベルト50を
無端張架して、タイミングベルト50の途中を渡初27
.28の下側に突管垂設したアダプター51に固定して
タイミングベルト50の回動に伴いベッド受枠29を前
後Y軸方向に一体可動自在としである。
As shown in FIGS. 6 and 9, the bed drive control section 9
, a Y-axis circumferential pulse motor 37 and an X-axis pulse motor 38 are installed in parallel on a stand 36 that is separate from the structure 1 to prevent the differential probe 6 from being adversely affected by magnetism, and a floor stand. Interposed between the frame 11 and the right half of the measurement bed 7, the drive torque of the Y-axis circumferential pulse motor 37 and the X-axis pulse motor 38 is transferred to the Y-axis and X-axis circumferential transmission shafts 39.40.
The Y-axis circumferential drive transmission mechanism 41 consists of Y-axis and X-axis drive transmission mechanisms 41 and 42 that transmit data to the measurement bed 7 via the The terminal end of the Y-axis circumferential transmission shaft 39 is penetrated between the left and right brackets 45 and 46 that are arranged opposite to each other on the left end of the association 43 and 44, and a driving sprocket (not shown) is fixed thereto, and the left and right brackets 47 and 48 A driven sprocket (not shown) is fixed by penetrating the sprocket shaft 49 between them, and a timing belt 50 is stretched endlessly between the driving sprocket and the driven sprocket (neither of which are shown), and the timing belt 50 is stretched halfway through the shaft. 27
.. The bed support frame 29 is fixed to an adapter 51 provided vertically on the lower side of the bed support frame 28, and is integrally movable in the front and rear Y-axis directions as the timing belt 50 rotates.

X軸周駆動伝達機構42は、前後協会43゜44の中央
部上に相対して軸受52と減速器53を定着し、当該軸
受52と減速器53間に亘リスブライン軸54の両端を
貫通支承して軸架する一方、前後渡初27.28間に上
側を介在するピニオン55をスプライン軸54に軸方向
滑動自在にスプライン嵌通し、他方ピニオン55に上側
と噛合うラック杆56をスライド楔板30下側中央の左
右X軸方向に添着延在してスプライン軸54回転に伴い
ピニオン55とラック杆56.56を介し、スライド楔
板30を左右X軸方向に一体可動自在としである。
The X-axis circumferential drive transmission mechanism 42 has a bearing 52 and a decelerator 53 fixed opposite each other on the central part of the front and rear assemblies 43 and 44, and both ends of the squirrel brine shaft 54 are penetratingly supported between the bearing 52 and the decelerator 53. On the one hand, a pinion 55 interposed on the upper side between the front and rear crossing points 27.28 is spline-fitted to the spline shaft 54 so as to be able to slide freely in the axial direction, and on the other hand, a rack rod 56 that engages with the upper side of the pinion 55 is attached to a sliding wedge plate. The slide wedge plate 30 is attached and extends in the left and right X-axis directions at the center of the lower side, and as the spline shaft 54 rotates, the slide wedge plate 30 is integrally movable in the left and right X-axis directions via a pinion 55 and rack rods 56 and 56.

なお減速器53内において、スプライン軸54貫通端に
は図示しない大径ベベルギヤを固着し、当該大径ベベル
ギヤと直角噛合う図示しない小径ベベルギヤをX軸用伝
達軸40の減速器53内貫通終端に固着しである。
In the reducer 53, a large-diameter bevel gear (not shown) is fixed to the end of the spline shaft 54 passing through, and a small-diameter bevel gear (not shown) meshing at right angles with the large-diameter bevel gear is attached to the end of the X-axis transmission shaft 40 passing through the reducer 53. It is fixed.

図中57は直角軸受であって、Y軸周パルスモータ−3
7のモーター軸58貫通端に固着する図示しない小径ベ
ベルギヤと直角噛合う図示しない大径ベベルギヤを、Y
軸周伝達軸39の貫通始端に固着してあり、59は減速
器であって、内部においてX軸用パルスモータ−38の
モーター軸60貫通端に固着する図示しない小径ベベル
ギヤと直角噛合う図示しない大径ベベルギヤを、X軸用
伝達軸40の減速器59内貫通始端に固着しである。
57 in the figure is a right angle bearing, and the Y-axis peripheral pulse motor 3
Y
It is fixed to the starting end of the circumference transmission shaft 39, and 59 is a decelerator, which is internally meshed at right angles with a small-diameter bevel gear (not shown) fixed to the passing end of the motor shaft 60 of the X-axis pulse motor 38. A large-diameter bevel gear is fixed to the starting end of the X-axis transmission shaft 40 passing through the reducer 59.

第11図に示すよう前記信号処理システム部りは、差動
プローブ6の正巻した第1検出コイル6aと逆巻した第
2検出コイル6bとをそれぞれフラックス・ゲート型第
1磁束計61とフラックス・ゲート型第2磁束計62に
接続し、当該第1磁束計61と第2磁束計62から磁電
変換して出力したアナログ測定値信号S2’、S2”を
差動増幅器63に並行入力して他磁気分を打消し信号増
幅する。
As shown in FIG. 11, the signal processing system section connects a forward-wound first detection coil 6a and a reverse-wound second detection coil 6b of the differential probe 6 to a flux gate type first magnetometer 61 and a flux gate type first magnetometer 61, respectively. - Connected to the gate-type second magnetometer 62, and input analog measurement value signals S2' and S2'' output by magnetoelectric conversion from the first magnetometer 61 and the second magnetometer 62 to the differential amplifier 63 in parallel. Cancels other magnetic components and amplifies the signal.

当該フラックス・ゲート型磁束計64の原理は、差動プ
ローブ6の先端にある第1乃至第2検出コイル6a、6
bに入る微小磁束を第1乃至第2磁束計61.62から
の高周波信号でスイッチングを行い、高周波信号として
増幅するもので107(1μG)程度の磁界まで検出可
能であるとともに差動増幅器63はフラックス・ゲート
型磁束計64からの出力は、差動用ノ〕となっており、
差動プローブ6あるいはフラックス・ゲート型磁束計6
4で10m V P+! 度の商用周波数を取り込んで
いるので、余りゲインをかせぐことが出来ないためゲイ
ンを40dB程度に固定し、ハイ・インピーダンス入力
抵抗として同相ノイズを取り除いている。
The principle of the flux gate type magnetometer 64 is that the first and second detection coils 6a and 6 at the tip of the differential probe 6
The minute magnetic flux entering b is switched by high frequency signals from the first and second magnetometers 61 and 62, and amplified as a high frequency signal. The output from the flux gate type magnetometer 64 is for differential use.
Differential probe 6 or flux gate magnetometer 6
4 and 10m V P+! Since it is taking in the commercial frequency of 300 Hz, it is not possible to gain much gain, so the gain is fixed at about 40 dB and common mode noise is removed by using a high impedance input resistor.

第10図中65は、パイフォッド・ローパスフィルター
であって差動増幅器63からの出力信号には、多くの周
波数成分が含まれており、必要とするデータは1l−1
z以下というほぼ直流成分に近いものであるから差動増
幅器63の出力信号を入力する。IHz、10Hz、1
00Hzと可変可能とする。
65 in FIG. 10 is a piphod low-pass filter, and the output signal from the differential amplifier 63 contains many frequency components, and the required data is 1l-1.
The output signal of the differential amplifier 63 is inputted because it is almost a direct current component of less than z. IHz, 10Hz, 1
The frequency can be changed to 00Hz.

66は計測値用A/Dコンバータ回路であって、フラッ
クス・ゲート型磁束計64で計測された磁界をマイコン
67処理するためには、馴測値をA/D変換しなければ
ならない。A/D変換スタート信号S3は、カウンタ6
8がらの信号を利用してソフトウェアで出力ポートのア
ドレスにより作られる。
66 is a measured value A/D converter circuit, and in order for the microcomputer 67 to process the magnetic field measured by the flux gate type magnetometer 64, the measured value must be A/D converted. The A/D conversion start signal S3 is sent to the counter 6.
It is created by software using the output port address using 8 signals.

69は入出カニニットであってマイコン67と一体直結
し入出力信号を仲介する。
Reference numeral 69 is an input/output crab unit which is directly connected to the microcomputer 67 and mediates input/output signals.

70.71.72はそれぞれD/Aコンバータ、電圧−
電流変換器、補正用コイルであって、補正電流用D/A
コンバータ部を構成し差動プローブ6を用いても、それ
をセットする位置によって地磁気を完全に打ち消すこと
が出来ない場合に差動プローブ6にさらに補正用コイル
72を追加し、これに補正用直流電流を流して完全に打
ち消すようにしている。即ち差動プローブ6の第1乃至
第2検出用コイル6a、6bに取付けられた補正用コイ
ル72に補正電流を流すために必要な回路であり、電流
は定電流でなければならない。そこでD/Aコンバータ
70で出力された電圧を電流に変換し補正電流を流す。
70, 71, 72 are D/A converters, voltage -
A current converter, a correction coil, and a D/A for correction current.
Even if you configure the converter section and use the differential probe 6, if the geomagnetism cannot be completely canceled depending on the position where it is set, a correction coil 72 is added to the differential probe 6, and a correction DC coil 72 is added to the differential probe 6. A current is applied to completely cancel it out. That is, it is a circuit necessary for flowing a correction current to the correction coil 72 attached to the first and second detection coils 6a and 6b of the differential probe 6, and the current must be a constant current. Therefore, the voltage output by the D/A converter 70 is converted into a current, and a correction current is applied.

D/Aコンバータ70は阿えば12ビツトでアナログ出
力範囲を±5Vの範囲を選びこの±5■の出力を、オペ
アンプによる電圧−電流変換器71により、±10m 
Aの定電流に変換している。補正能力は±5VのD/A
出力で±950μGととることが出来る。
The D/A converter 70 selects a 12-bit analog output range of ±5V, and converts this ±5V output to ±10m using a voltage-to-current converter 71 using an operational amplifier.
It is converted to a constant current of A. Correction ability is ±5V D/A
The output can be ±950μG.

73はパルスモータ−・コントロールであって、ベッド
7駆動用のY軸周パルスモータ−37とX軸周パルスモ
ータ−38の制御信号S4をマイコン67により入出カ
ニニット69を介して入力し、Y軸周パルスモータ−3
7とX軸周パルスモータ−38へそれぞれ駆動パルス信
号S5’、S5”を出力する。
Reference numeral 73 is a pulse motor control, in which a control signal S4 for the Y-axis circumferential pulse motor 37 and the X-axis circumferential pulse motor 38 for driving the bed 7 is inputted by the microcomputer 67 via the input/output crab unit 69, and the Y-axis Frequency pulse motor 3
Drive pulse signals S5' and S5'' are output to the pulse motor 7 and the X-axis pulse motor 38, respectively.

測定位置検出カウンタ68において、差動プローブ6が
捕えたアナログ測定値信号S2’、82″は、ベッド7
駆動中に、体表面上の正確な位置で取り込まれA/D変
換されなければならないため、パルスモータ−コントロ
ール73から発した駆動パルス信号をカウントするとと
もに、マイコン67から入出カニニット69を介して入
力したパルス信号S6でカウントダウンを行い、その値
がゼロとなると入出カニニット69に測定位置検出パル
ス信号S7を送り、A/Dコンバータ回路66のスター
ト信号S3を作り出している。
In the measurement position detection counter 68, the analog measurement value signals S2' and 82'' captured by the differential probe 6 are detected by the bed 7.
During driving, the driving pulse signals must be captured at precise positions on the body surface and A/D converted, so the driving pulse signals emitted from the pulse motor control 73 are counted and inputted from the microcomputer 67 via the input/output crab unit 69. A countdown is performed using the pulse signal S6, and when the value reaches zero, a measurement position detection pulse signal S7 is sent to the input/output crab unit 69, and a start signal S3 for the A/D converter circuit 66 is generated.

74は治療システム部Eにおけるマイクロ波治療器であ
って、マイコン67により入出カニニット69を介して
制御される出力50〜200Wのマグネトロン75と指
向性アンテナ76よりなり、測定時差動プローブ6に悪
影響がないことを条件に第7図に示すよう天井部2内の
他片側に寄せて磁気シールドして設置し、指向性アンテ
ナ76を角度調整自在に天井部2から露出するか、非磁
性構造体1とは別個に設けて患部測定箇所にマイクロ波
エネルギーを集中照射し、温度測定と同時にガン細胞の
破壊治療を同時に行うことが出来る。即ち患部測定温度
情報をフィードバック入力されたマイコン67で演算処
理と同時にマイクロ波治療器74に対しo、 n −o
、f fタイミングや出力変化等に関する制御信号S8
を発し、患部測定箇所の温度を常時43℃に保持するこ
とが出来る。
Reference numeral 74 denotes a microwave treatment device in the treatment system section E, which consists of a magnetron 75 with an output of 50 to 200 W and a directional antenna 76, which are controlled by a microcomputer 67 via an input/output unit 69, and a directional antenna 76, which adversely affects the differential probe 6 during measurement. On the condition that there is no magnetic structure, the directional antenna 76 can be installed magnetically shielded on the other side of the ceiling 2 as shown in FIG. It is installed separately and irradiates the affected area with concentrated microwave energy, making it possible to perform temperature measurement and cancer cell destruction treatment at the same time. In other words, the microcomputer 67 to which the measured temperature information of the affected area is inputted as feedback performs arithmetic processing and simultaneously sends o, n -o to the microwave treatment device 74.
, f Control signal S8 regarding timing, output change, etc.
The temperature of the affected area can be maintained at 43°C at all times.

なお本発明の場合は治療器にマイクロ波治療器74を適
用した場合であるが、伯に超短波治療器や超音波治療器
を適用して他の治療に応用しても良い。
In the case of the present invention, the microwave treatment device 74 is applied as the treatment device, but an ultrashort wave treatment device or an ultrasonic treatment device may be applied to the device for other treatments.

なお図中77.78.79はマイコン67に接続するフ
ロッピーディスク、ディスプレイ。
In the figure, 77, 78, and 79 are the floppy disk and display connected to the microcomputer 67.

ラインプリンターである。It is a line printer.

また差動プローブ6は天井部2から上下動自在に垂下し
ても良い。
Further, the differential probe 6 may hang down from the ceiling part 2 so as to be able to move up and down.

本発明装置Aは前記のように構成するから、測定に先立
ち駆動システム部Cと信号処理システム部りと治療シス
テム部Eの図示しない電源を入れて動作可能状態で待機
する。
Since the apparatus A of the present invention is configured as described above, prior to measurement, the drive system section C, signal processing system section, and treatment system section E (not shown) are turned on and standby in an operable state.

次いで時計、眼鏡、ネックレス、腕輪などの磁性金属か
らなる装身具を取って被検者αは、スライド楔板30上
に頭を左方に向けて仰臥する。
Next, the subject α takes off accessories made of magnetic metal such as watches, glasses, necklaces, bracelets, etc., and lies supine on the sliding wedge plate 30 with the head turned to the left.

引続きマイコン10を操作して、被検者αの患部測定箇
所の磁性材料βが上下磁化器4,5間に位置するよう、
前後Y軸方向および左右X軸方向への移動量に見合った
パルス操作指令信号がY軸周パルスモータ−37および
X軸周パルスモータ−38に送られ、パルスモータ−3
7,38を駆動して駆動伝達機構41.42を介し測定
用ベッド7を移動位置決め停止する。
Continue to operate the microcomputer 10 so that the magnetic material β at the measurement point on the affected area of the subject α is positioned between the upper and lower magnetizers 4 and 5.
A pulse operation command signal commensurate with the amount of movement in the longitudinal Y-axis direction and the left-right X-axis direction is sent to the Y-axis circumferential pulse motor 37 and the X-axis circumferential pulse motor 38.
7 and 38 to move and position and stop the measurement bed 7 via the drive transmission mechanisms 41 and 42.

当該位置決め停止すると自動的に上下磁化器4゜5間に
200ガウスの磁界が所要秒間加えられると自動消磁す
る。
When the positioning is stopped, a magnetic field of 200 gauss is automatically applied between the upper and lower magnetizers 4°5 for a required period of time, and the magnets are automatically demagnetized.

自動消磁すると予め設定されたプログラムに則りマイコ
ン10から駆動に必要な加減速時のパルスレートおよび
動作パルス数等のデータとその他の命令を入出カニニッ
ト69を介し発しパルスモータ−37,38を正逆駆動
して、測定用ベッド7をY軸方向、X軸方向に移動して
差動プローブ6上に磁性材料βを埋込んだ位置の背中側
から患部測定箇所を位置決めし、その都度差動プローブ
6の各第1検出コイル6aと第2検出コイル6bで残留
磁気を検出して磁気測定信号St’、S1”を第1磁束
計61と第2磁束計62に入力し、アナログ測定値信号
321゜82″を出力して差動増幅器63に並行入力す
ると、第1検出コイル6aと第2検出コイル6bはそれ
ぞれ途中第1磁束計61と第2磁束計62をそれぞれ介
し逆方向に直列接続されていることと補正用コイル72
に補正電流が流れているので、第1乃至第2検出コイル
6a、6bは地磁気のように磁界の発生源が遠い所の磁
界は平行であるから打ち消し合い、発生源の近い体内か
らの磁界のみを測定する結果、差動増幅器63は磁気材
料β内における残留磁気に係る純正アナログ測定値信号
S9を出力することとなり、その後フィルタ−65,A
/Dコンバータ回路66を経て入出カニニット69を介
しマイコン67に入り患部測定箇所の温度を演算処理し
逐次ラインプリンター79およびディスプレイ78に出
力表示をする。
When the magnet is automatically demagnetized, the microcomputer 10 issues data such as the pulse rate and number of operating pulses during acceleration/deceleration required for driving and other commands via the input/output crab unit 69 according to a preset program to drive the pulse motors 37 and 38 in forward and reverse directions. drive, move the measurement bed 7 in the Y-axis direction and the X-axis direction, position the affected area measurement point from the back side of the position where the magnetic material β is embedded on the differential probe 6, and move the differential probe each time. 6, the residual magnetism is detected by each of the first detection coil 6a and the second detection coil 6b, and the magnetic measurement signals St', S1'' are inputted to the first magnetometer 61 and the second magnetometer 62, and the analog measurement value signal 321 82'' and input it in parallel to the differential amplifier 63, the first detection coil 6a and the second detection coil 6b are connected in series in opposite directions via the first magnetometer 61 and the second magnetometer 62, respectively, on the way. and correction coil 72.
Since the correction current is flowing through the first and second detection coils 6a and 6b, the magnetic fields in places where the source of the magnetic field is far away, such as earth's magnetism, cancel each other out because they are parallel, and only the magnetic field from within the body is close to the source. As a result of measuring , the differential amplifier 63 outputs a genuine analog measurement value signal S9 related to the residual magnetism in the magnetic material β, and then filters 65 and A
/D converter circuit 66 and enters microcomputer 67 via input/output unit 69 to calculate and process the temperature of the affected area measurement point and sequentially output and display on line printer 79 and display 78.

この患部測定箇所の温度情報に暴づぎ、マイコン67は
同時に入出カニニット69を介しマグネトロン75を制
御動作して指向性アンテナ76からマイクロ波エネルギ
ーを磁性材料βの埋込んである患部測定箇所に目掛は集
中照射し、局部加温して行く内にガン細胞破壊温度に達
すると磁性材料βのキューリ一点温度で急激に磁気特性
の変化を差動プローブ6が検出することによりガン細胞
破壊が進行していることをディスプレイ78やラインプ
リンター79で確認することが出来る。
Based on the temperature information of the affected area measurement point, the microcomputer 67 simultaneously controls the magnetron 75 via the input/output crab unit 69 to direct microwave energy from the directional antenna 76 to the affected area measurement point where the magnetic material β is embedded. Kake is intensively irradiated, and when the cancer cell destruction temperature is reached while local heating is progressing, the differential probe 6 detects a sudden change in magnetic properties at the Curie point temperature of the magnetic material β, and cancer cell destruction progresses. You can check what is being done on the display 78 or line printer 79.

このように差動プローブ6で患部測定箇所の温度情報を
常時捕えて、その情報を基にマイコン67がマイクロ波
治療器74を制御し常に患部測定箇所をガン細胞破壊温
度に持続し続りる。
In this way, the differential probe 6 constantly captures temperature information at the measurement point in the affected area, and based on that information, the microcomputer 67 controls the microwave treatment device 74 to keep the measurement point in the affected area at the cancer cell destruction temperature. .

また本発明は差動プローブ6を測定用ベッド7の上側に
配することなく下側に臨ませたので、差動プローブ6自
体を被検者αの患部測定箇所に埋込まれた磁性材料βに
対し離近上下動する必要性なく固定出来、その結果、被
検者αに接触することなく、磁性材料βを埋込んだ部位
の厚さや男女別2年齢別、胸部の場合は測定時の肝吸状
態に係りなく、背中側から常に一定距離を置いて測定が
可能で安全である。
Furthermore, in the present invention, the differential probe 6 is not disposed above the measurement bed 7, but is placed on the lower side, so that the differential probe 6 itself is exposed to the magnetic material β embedded in the measurement location of the affected area of the subject α. It can be fixed without the need to move up and down toward and away from the subject, and as a result, it can be fixed without touching the subject α, and the thickness of the site where the magnetic material β is implanted, gender and age, and in the case of the chest, at the time of measurement. Regardless of the state of liver suction, measurements can always be taken from a certain distance from the back, making it safe.

また磁性材料βを埋込んだ患部測定箇所に最初マイクロ
波エネルギーを照射してから外部磁界をかけ、その後差
動プローブで測定する手順を踏むことも自由である。
Furthermore, it is also possible to take the following steps: first irradiating microwave energy to the measurement site of the affected area where the magnetic material β is embedded, then applying an external magnetic field, and then measuring with a differential probe.

かくして本発明は磁性材料を使って体内測定箇所の温度
を適確に捕えるとともに各種治療に応用できる等優れた
効果を奏する。
Thus, the present invention has excellent effects such as accurately capturing the temperature at a measurement point within the body using a magnetic material and being applicable to various treatments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法の原理における磁気ダイポールの作る
磁界の大きさの説明図、第2図は本発明の生体内部温度
の磁気測定方法の説明図、13図は温度変化に対する磁
界の特性図、第4図は差動プローブに用いられる磁束検
出コイルの接続図、第5図は本発明装置のシステム概念
を示すブロックダイヤグラム、第6図は測定システム部
と駆動システム部と治療システム部との組合構成を示す
正面斜視図、第7図は測定用ベッドを取り去った構造体
の正面斜視図、第8図は床台部と一部分解した測定用ベ
ッドの正面斜視図、第9図はタイミングベルトとスプラ
イン軸の測定ベッドに対する結合状態説明図、第10図
は本発明装置における電子回路部ブロックダイヤグラム
、第11図は差動プローブと7ラツクス・グー1〜型磁
束計と差動増幅器との詳細ブロックダイヤグラムである
。 A・・・磁気測定装置 B・・・測定システム部C・・
・駆動システム部 D・・・信号処理システム部E・・
・治療システム部 H・・・残留磁界S1’、Sl”・
・・磁気測定信号 α・・・被検者 β・・・磁性材料 1・・・非磁性構造体 2・・・天井部 3・・・床台
部4.5・・・磁化器 6・・・差動プローブ7・・・
測定用ベッド 63・・・差動増幅器64・・・フラッ
クス・ゲート型磁束討65・・・フィルター 66・・・A/Dコンバータ回路 67・・・マイコン
68・・・位置検出カウンター 69・・・入出カニニット 70・・・D/Aコンバータ 71・・・電圧−電流変換器 72・・・補正用コイル
第1図 ^ 第2図 第3図 30 ’40 5054(’C) 第4図 第5図 第8図 0 u 11
Fig. 1 is an explanatory diagram of the magnitude of the magnetic field created by a magnetic dipole according to the principle of the present invention, Fig. 2 is an explanatory diagram of the magnetic measurement method of the internal body temperature of the present invention, and Fig. 13 is a diagram of the characteristics of the magnetic field with respect to temperature changes. , Fig. 4 is a connection diagram of the magnetic flux detection coil used in the differential probe, Fig. 5 is a block diagram showing the system concept of the device of the present invention, and Fig. 6 is a diagram showing the connection of the measurement system section, drive system section, and treatment system section. Fig. 7 is a front perspective view of the structure with the measurement bed removed, Fig. 8 is a front perspective view of the measurement bed partially disassembled with the floor base, and Fig. 9 shows the timing belt. Fig. 10 is a block diagram of the electronic circuit in the device of the present invention, and Fig. 11 shows details of the differential probe, 7 Lux Goo type 1-type magnetometer, and differential amplifier. This is a block diagram. A... Magnetic measurement device B... Measurement system section C...
・Drive system section D...Signal processing system section E...
・Treatment system section H...Residual magnetic field S1', Sl"・
... Magnetic measurement signal α ... Subject β ... Magnetic material 1 ... Non-magnetic structure 2 ... Ceiling part 3 ... Floor table part 4.5 ... Magnetizer 6 ...・Differential probe 7...
Measurement bed 63...Differential amplifier 64...Flux gate type magnetic flux controller 65...Filter 66...A/D converter circuit 67...Microcomputer 68...Position detection counter 69... Input/output crab unit 70...D/A converter 71...Voltage-current converter 72...Correction coil Fig. 1^ Fig. 2 Fig. 3 30 '40 5054 ('C) Fig. 4 Fig. 5 Figure 8 0 u 11

Claims (1)

【特許請求の範囲】 1、 測定箇所の生体内に磁性材料を埋込んで前記磁性
材料に外部磁界を当てて磁気誘導した後、前記外部磁界
を取り去り、前記測定箇所の温度情報を磁気情報に変換
する前記磁性材料から発する残留磁界を体外検出測定し
て測定箇所の温度を計測してなる生体内部温度の磁気測
定法 2、 外部磁界は、約200ガウスの定常磁場である特
許請求の範囲第1項記載の生体内部温度の磁気測定法 3、 測定箇所は、外部からマイクロ波を集中照射され
局部加温されてなる特許請求の範囲第1項又は第2項記
載の生体内部温度の磁気測定法 4、 局部加温は、磁性材料のキューリ一温度にほぼ一
致せしめてなる特許請求の範囲第3項記載の生体内部温
度の磁気測定法 5、 磁性材料は、ガン細胞破壊温度とほぼ一致するキ
ューリ一温度42.5℃のフェライト材を用いてなる特
許請求の範囲第1項、第2項、第3項又は第4項記載の
生体内部温度の磁気測定法 6、 非磁性構造体の天井部内と床台部内に上下相対す
る磁化器を設置し、かつ前記床台部内に差動プローブを
固定するとともに前記床台部上に被検者が仰臥自在な測
定用ベッドを前後Y軸方向かつ左右X軸方向に可動自在
に載設した測定システム部と、前記磁化器を励磁動作す
るとともにX軸用パルスモータ−およびY軸用パルスモ
ータ−で前記測定用ベッドを前後Y軸方向かつ左右X軸
方向に駆動制御する駆動システム部と、前記差動プロー
ブから得た磁気測定信号を7ラツクス・ゲート型磁束計
、差動増幅器。 フィルター、A/Dコンバーターを経てマイクロコンピ
ュータ−に直結仲介する入出カニニットに入力するのと
並行して前記入出力ユニットから出力した補正電流値信
号をD/Aコンバーター、電圧−電流変換器を経て前記
差動プローブに取付けた補正用コイルに補正電流を流ず
一方、前記X軸周パルスモータ−とY軸周パルス−[−
ターに駆動パルス信号をそれぞれ振分は発信するパルス
モータ−コントロールに逐次前記入出カニニットから操
作指令信号を入力し、他方当該パルスモータ−コントロ
ールから発した前記駆動パルス信号を測定位置検出カウ
ンターでカウントし前記入出カニニットに測定位置検出
パルス信号を入力してなる信号処理システム部とからな
る生体内部温度の磁気測定装置
[Claims] 1. A magnetic material is implanted in a living body at a measurement location, and an external magnetic field is applied to the magnetic material to induce magnetic induction, and then the external magnetic field is removed and temperature information at the measurement location is converted into magnetic information. 2. A magnetic measurement method for internal temperature of a living body, in which the residual magnetic field emitted from the magnetic material to be converted is detected outside the body and measured to measure the temperature at the measurement location. 3. Magnetic measurement method for internal body temperature according to claim 1, wherein the measurement location is heated locally by being irradiated with microwaves from the outside. Method 4: Magnetic measurement method for the internal temperature of a living body according to claim 3, wherein the local heating is made to substantially match the Curie temperature of the magnetic material. 5: The magnetic material has a temperature that substantially matches the cancer cell destruction temperature. Magnetic measurement method for internal body temperature according to claim 1, 2, 3 or 4 using a ferrite material having a curie temperature of 42.5° C. 6, non-magnetic structure ceiling Magnetizers are installed vertically opposite each other in the chamber and the floor table, and a differential probe is fixed in the floor table, and a measurement bed on which the subject can lie supine is placed in the front and rear Y-axis directions. A measuring system section mounted movably in the left and right X-axis directions, and an excitation operation of the magnetizer, as well as an X-axis pulse motor and a Y-axis pulse motor, move the measuring bed in the front-rear, Y-axis directions, and left-right X directions. A drive system unit that controls the drive in the axial direction, a 7 lux gate type magnetometer, and a differential amplifier that transmits the magnetic measurement signal obtained from the differential probe. The correction current value signal outputted from the input/output unit is input to the input/output unit which is directly connected to the microcomputer via the filter and A/D converter, and the corrected current value signal is outputted from the input/output unit via the D/A converter and voltage-current converter. While no correction current flows through the correction coil attached to the differential probe, the X-axis circumferential pulse motor and the Y-axis circumferential pulse - [-
The operation command signal is sequentially input from the input/output crab unit to the pulse motor control, which distributes drive pulse signals to the motor, and the measurement position detection counter counts the drive pulse signals emitted from the pulse motor control. and a signal processing system unit which inputs a measurement position detection pulse signal to the input/output crab unit.
JP59077584A 1984-04-19 1984-04-19 Magnetic measuring method and apparatus of temperature in living body Pending JPS60222030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59077584A JPS60222030A (en) 1984-04-19 1984-04-19 Magnetic measuring method and apparatus of temperature in living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59077584A JPS60222030A (en) 1984-04-19 1984-04-19 Magnetic measuring method and apparatus of temperature in living body

Publications (1)

Publication Number Publication Date
JPS60222030A true JPS60222030A (en) 1985-11-06

Family

ID=13638025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59077584A Pending JPS60222030A (en) 1984-04-19 1984-04-19 Magnetic measuring method and apparatus of temperature in living body

Country Status (1)

Country Link
JP (1) JPS60222030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088062A1 (en) * 2008-01-10 2009-07-16 Akita University Temperature measuring method and temperature control method using temperature sensitive magnetic body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136683A (en) * 1976-03-25 1979-01-30 Gordon Robert T Intracellular temperature measurement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136683A (en) * 1976-03-25 1979-01-30 Gordon Robert T Intracellular temperature measurement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088062A1 (en) * 2008-01-10 2009-07-16 Akita University Temperature measuring method and temperature control method using temperature sensitive magnetic body
JP5263894B2 (en) * 2008-01-10 2013-08-14 国立大学法人秋田大学 Temperature measurement method and temperature control method using temperature-sensitive magnetic material
US8801280B2 (en) 2008-01-10 2014-08-12 Akita University Temperature measuring method using temperature-sensitive magnetic substance and temperature controlling method

Similar Documents

Publication Publication Date Title
US8801280B2 (en) Temperature measuring method using temperature-sensitive magnetic substance and temperature controlling method
US20110054237A1 (en) Methods and Systems for Magnetic Focusing of Therapeutic, Diagnostic or Prophylactic Agents to Deep Targets
JPS62117541A (en) Magnetic resonance imaging apparatus
EP0320623A1 (en) Device for determining the position of a catheter or a probe inside a living organ
US20120022792A1 (en) Method of quantization of magnetic nanoparticle absorption into animal tissues, and equipment for doing it
JPH04500163A (en) Thermal imaging method
JPH04503612A (en) magnetic resonance imaging
EP1340994B1 (en) Method of operating a magnetic resonance apparatus and magnetic resonance apparatus
JP6999897B2 (en) Biometric information measuring device
JPS60222030A (en) Magnetic measuring method and apparatus of temperature in living body
JPH0453533A (en) Magnetic resonance monitoring medical treatment apparatus
EP0042255B1 (en) Method and apparatus for nuclear magnetic resonance
CN110646755A (en) Static magnetic field control method and magnetic resonance imaging device
JPH01165010U (en)
CN210446968U (en) Capsule endoscope driving system
Feldmeier et al. Magnetic field correction in normal conducting synchrotrons
JP7026356B2 (en) Biometric information measuring device
CN112326775A (en) Magnetoacoustic magnetic particle concentration imaging device and imaging method for removing thermoacoustic effect influence
JP2860682B2 (en) Method for stabilizing static magnetic field uniformity of magnetic resonance imaging apparatus
CN109541514A (en) A kind of magnetic moment measures the calibration control device and calibrating installation of small coil turn area
CN210249837U (en) Nuclear magnetic resonance detection device for medical treatment
JPH1076018A (en) Medical charged-particle irradiation device
KR20190030088A (en) Ac magnetic field generating device for medical purpose and method for controlling the same
JP6840398B2 (en) Magnetic field application device
JPH05220126A (en) Magnetic resonance imaging device