JP6999897B2 - Biometric information measuring device - Google Patents

Biometric information measuring device Download PDF

Info

Publication number
JP6999897B2
JP6999897B2 JP2017182833A JP2017182833A JP6999897B2 JP 6999897 B2 JP6999897 B2 JP 6999897B2 JP 2017182833 A JP2017182833 A JP 2017182833A JP 2017182833 A JP2017182833 A JP 2017182833A JP 6999897 B2 JP6999897 B2 JP 6999897B2
Authority
JP
Japan
Prior art keywords
detection unit
measuring device
information measuring
subject
biometric information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017182833A
Other languages
Japanese (ja)
Other versions
JP2018057843A (en
Inventor
茂徳 川端
泰士 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Tokyo Medical and Dental University NUC
Original Assignee
Ricoh Co Ltd
Tokyo Medical and Dental University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd, Tokyo Medical and Dental University NUC filed Critical Ricoh Co Ltd
Priority to US15/715,591 priority Critical patent/US11076790B2/en
Publication of JP2018057843A publication Critical patent/JP2018057843A/en
Application granted granted Critical
Publication of JP6999897B2 publication Critical patent/JP6999897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は、生体情報計測装置に関する。 The present invention relates to a biological information measuring device.

被検体の心臓や脊髄、末梢神経等から発生する微弱な生体磁気を計測する生体情報計測装置は、これら器官を構成する細胞の興奮に伴う微弱電流によって生じる磁気を検出する機能を有しており、心臓病や神経疾患等の診断にとって重要な技術である。 The biometric information measuring device that measures the weak biomagnetism generated from the heart, spinal cord, peripheral nerves, etc. of the subject has a function to detect the magnetism generated by the weak current accompanying the excitement of the cells constituting these organs. It is an important technique for diagnosing heart diseases and neurological diseases.

そこで、生体情報計測装置とは別の場所でX線照射装置(例えば、特許文献1に記載されたようにフィルムを使用するX線照射装置)による形態画像を重ね合わせることがある。 Therefore, a morphological image by an X-ray irradiation device (for example, an X-ray irradiation device using a film as described in Patent Document 1) may be superimposed at a place different from the biological information measurement device.

しかしながら、画像診断装置(X線照射装置等)と生体情報計測装置との間を被検体が移動するため計測結果を精度よく合わせられない問題があった。例えば、被検体がX線照射装置と生体情報計測装置との間を移動するに際し、被検体の体幹(脊椎)が前後方向や左右方向に屈んだり反ったり、被検体の四肢の関節が曲がったり伸びたりすることから、画像診断装置による被検体の位置情報と、生体情報計測装置での検査時の被検体の位置を精度良く一致させることは、極めて難しい。 However, since the subject moves between the diagnostic imaging device (X-ray irradiation device, etc.) and the biological information measuring device, there is a problem that the measurement results cannot be accurately matched. For example, when the subject moves between the X-ray irradiation device and the biometric information measuring device, the subject's trunk (spine) bends or warps in the anterior-posterior or lateral direction, and the joints of the subject's limbs bend. It is extremely difficult to accurately match the position information of the subject by the diagnostic imaging apparatus with the position of the subject at the time of the examination by the biometric information measuring apparatus because it stretches and stretches.

他方、画像診断結果と生体情報計測結果を良好な精度で検出するには、感度の高い磁気センサが求められる場合がある。 On the other hand, in order to detect the image diagnosis result and the biometric information measurement result with good accuracy, a highly sensitive magnetic sensor may be required.

本発明は以上の実情に鑑みてなされたものであり、画像診断結果と生体情報計測結果を良好な精度でかつ簡便に検出可能な生体情報計測装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a biometric information measuring device capable of detecting diagnostic imaging results and biometric information measurement results with good accuracy and easily.

本生体情報計測装置は、温度調節機構を有し、被検体の生体磁気を検出可能な生体磁気検出部と、照射された放射線をデジタル画像データとして取得可能なフラット・パネル・ディテクターと、前記生体磁気検出部が生体磁気を検出している間、前記フラット・パネル・ディテクターには電源供給を行わないように制御可能な制御部と、を備え、前記フラット・パネル・ディテクターは、前記被検体の計測領域と前記生体磁気検出部との間に配置されることを要件とする。 This biometric information measuring device has a biomagnetic detector that has a temperature control mechanism and can detect the biomagnetism of the subject, a flat panel detector that can acquire the irradiated radiation as digital image data, and the biomagnetism. The flat panel detector is provided with a control unit capable of controlling not to supply power to the flat panel detector while the magnetic detection unit detects biomagnetism, and the flat panel detector is of the subject. It is a requirement that it be arranged between the measurement area and the biomagnetic detection unit.

本発明によれば、画像診断結果と生体情報計測結果を良好な精度でかつ簡便に検出可能な生体情報計測装置を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a biometric information measuring device capable of easily detecting an image diagnosis result and a biometric information measurement result with good accuracy.

本実施形態に係る生体情報計測装置の構成を示す構成図である。It is a block diagram which shows the structure of the biological information measuring apparatus which concerns on this embodiment. 第1の実施例に係る生体情報計測装置の要部構成を示す断面図である。It is sectional drawing which shows the main part structure of the biological information measuring apparatus which concerns on 1st Embodiment. 第2の実施例に係る生体情報計測装置の要部構成を示す断面図である。It is sectional drawing which shows the main part structure of the biological information measuring apparatus which concerns on 2nd Embodiment. 第3の実施例に係る生体情報計測装置の要部構成を示す断面図である。It is sectional drawing which shows the main part structure of the biological information measuring apparatus which concerns on 3rd Example. 別の実施例に係る生体情報計測装置の構成を示す構成図である。It is a block diagram which shows the structure of the biometric information measuring apparatus which concerns on another Example. 生体情報計測結果とX線画像とを重ね合わせた計測結果を示す図である。It is a figure which shows the measurement result which superposed the biological information measurement result and the X-ray image.

以下、本発明の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be carried out with appropriate modifications within the scope of the object of the present invention. ..

本発明者らは、照射された放射線をデジタル画像データとして取得可能な、いわゆるX線検出用のデジタルパネル装置が、生体磁気測定用の磁気センサと被検体との間にある状態においても、X線の検出が可能であることを見出し、本発明を完成するに至った。以下に、具体例を挙げて説明する。
<生体情報計測装置>
図1は、本実施形態に係る生体情報計測装置1の構成を示す構成図である。図1に示すように、生体情報計測装置1は、温度調節機構を有し、被検体の生体磁気を検出可能な生体磁気検出部2と、照射された放射線をデジタル画像データとして取得可能な放射線検出部3とを備え、放射線検出部3は、被検体Sの計測領域Tと生体磁気検出部2との間に配置される。また、本実施形態に係る生体情報計測装置1は、被検体Sに放射線を照射する放射線照射部4をさらに備える。
The present inventors have X-ray even when a so-called digital panel device for X-ray detection, which can acquire the irradiated radiation as digital image data, is located between the magnetic sensor for biomagnetic measurement and the subject. We have found that it is possible to detect lines, and have completed the present invention. A specific example will be described below.
<Biological information measuring device>
FIG. 1 is a configuration diagram showing a configuration of a biological information measuring device 1 according to the present embodiment. As shown in FIG. 1, the bioinformation measuring device 1 has a biomagnetic detection unit 2 that has a temperature control mechanism and can detect the biomagnetism of a subject, and radiation that can acquire the irradiated radiation as digital image data. A detection unit 3 is provided, and the radiation detection unit 3 is arranged between the measurement region T of the subject S and the biomagnetic detection unit 2. Further, the biological information measuring device 1 according to the present embodiment further includes a radiation irradiating unit 4 that irradiates the subject S with radiation.

本実施形態に係る生体情報計測装置1によれば、生体磁気検出部2から得られる生体磁気検出結果と、放射線検出部3から得られるデジタル画像データである形態画像とを、一度の計測で得ることができ、これらを精度よく重ね合わせることができる。 According to the biometric information measuring device 1 according to the present embodiment, the biomagnetic detection result obtained from the biomagnetic detection unit 2 and the morphological image which is the digital image data obtained from the radiation detection unit 3 can be obtained by one measurement. It is possible to superimpose these accurately.

以下、生体磁気検出部2、放射線検出部3、放射線照射部4についてそれぞれ説明する。
[生体磁気検出部]
生体磁気検出部2は、生体磁気を検出する複数の磁気センサ21と、複数の磁気センサ21を収容する断熱容器22とから構成され、寝台5に備え付けられている。
(磁気センサ)
磁気センサ21は、被検体から生じる生体磁気を検知する。具体的に、磁気センサ21としては、超伝導量子干渉素子(SQUID:Superconducting QUantum Interference Device)や原子磁気センサ等が挙げられる。これらSQUIDセンサや原子磁気センサは、10-18T程度の極めて弱い生体磁気も検出できるほどの検出感度を有する。
Hereinafter, the biomagnetic detection unit 2, the radiation detection unit 3, and the radiation irradiation unit 4 will be described.
[Biomagnetic detector]
The biomagnetic detection unit 2 is composed of a plurality of magnetic sensors 21 for detecting biomagnetism and a heat insulating container 22 accommodating the plurality of magnetic sensors 21, and is provided in the sleeper 5.
(Magnetic sensor)
The magnetic sensor 21 detects the biomagnetism generated from the subject. Specifically, examples of the magnetic sensor 21 include a superconducting quantum interference element (SQUID: Superconducting Quantum Interference Device), an atomic magnetic sensor, and the like. These SQUID sensors and atomic magnetic sensors have a detection sensitivity sufficient to detect even extremely weak biomagnetism of about 10-18 T.

磁気センサ21は、通常、断熱容器22内にアレイ状に複数配列されている。複数の磁気センサ21を有することにより、多くの生体磁気情報を得ることができ、より詳細な生体情報を得ることが可能である。磁気センサ21の個数や配列方法は、特に制限されず、被検体Sの計測領域Tに応じて適宜設定されればよい。 A plurality of magnetic sensors 21 are usually arranged in an array in the heat insulating container 22. By having a plurality of magnetic sensors 21, a large amount of biomagnetic information can be obtained, and more detailed biomagnetic information can be obtained. The number and arrangement method of the magnetic sensors 21 are not particularly limited, and may be appropriately set according to the measurement region T of the subject S.

上記磁気センサ21で検出された検出信号は、図示しない演算部に送られる。演算部では、磁気センサ21で検出された信号から生体磁気情報を生成し、画像情報化して表示装置に表示出力する。
(温度調節機構)
温度調節機構は、磁気センサ21が動作するのに適した所定の温度に、磁気センサ21の温度を調整する機構であり、従来公知の冷却装置又は加熱装置であってよい。例えば、磁気センサ21がSQUIDセンサである場合、磁気センサ21が超伝導状態を実現するためには、磁気センサ21を絶対零度近くで動作させる必要がある。本実施形態では、断熱容器22が温度調節機構の機能の一部を果たしている。
(断熱容器)
例えば、図1に示すように、断熱容器22は、内槽221と外槽222とからなり、内槽221内に複数の磁気センサ21を収容し、内槽221と外槽222との間の空間が真空となっており、内槽221内に液体ヘリウム等の冷媒が供給される。これにより、生体磁気検出部2では、磁気センサ21が動作するのに適した温度に制御されている。
The detection signal detected by the magnetic sensor 21 is sent to a calculation unit (not shown). The calculation unit generates biomagnetic information from the signal detected by the magnetic sensor 21, converts it into image information, and displays and outputs it to the display device.
(Temperature control mechanism)
The temperature control mechanism is a mechanism for adjusting the temperature of the magnetic sensor 21 to a predetermined temperature suitable for operating the magnetic sensor 21, and may be a conventionally known cooling device or heating device. For example, when the magnetic sensor 21 is a SQUID sensor, it is necessary to operate the magnetic sensor 21 near absolute zero in order for the magnetic sensor 21 to realize a superconducting state. In this embodiment, the heat insulating container 22 fulfills a part of the function of the temperature control mechanism.
(Insulated container)
For example, as shown in FIG. 1, the heat insulating container 22 is composed of an inner tank 221 and an outer tank 222, accommodates a plurality of magnetic sensors 21 in the inner tank 221 and is located between the inner tank 221 and the outer tank 222. The space is evacuated, and a refrigerant such as liquid helium is supplied into the inner tank 221. As a result, the biomagnetic detection unit 2 is controlled to a temperature suitable for operating the magnetic sensor 21.

断熱容器22の形状は特に制限されるものではないが、被検体Sと対向する面(以下、先端面22aという)が、被検体Sの計測領域Tの体表面に沿った形状であることが好ましく、平面であっても、円弧状であってもよい。例えば、図1に示すように、生体磁気検出部2を脊磁計として機能させる場合には、先端面22aの形状は円弧状であることが好ましい。 The shape of the heat insulating container 22 is not particularly limited, but the surface facing the subject S (hereinafter referred to as the tip surface 22a) may have a shape along the body surface of the measurement region T of the subject S. Preferably, it may be flat or arcuate. For example, as shown in FIG. 1, when the biomagnetic detection unit 2 functions as a spinometer, the shape of the tip surface 22a is preferably arcuate.

なお、断熱容器としては、図1に示す真空断熱容器を用いる断熱容器22を含むものに限定されず、発泡材によりなる断熱容器22等であってもよい。これら、断熱容器は、非磁性材料で構成されることが好ましい。断熱容器22が非磁性材料で構成されることにより、断熱容器22が振動しても、環境磁気の変動による影響が磁気センサ21に及ぶことを抑制することができる。非磁性材料としては、アクリル樹脂等のプラスチック材料、銅・真鍮等の非鉄金属等が挙げられる。 The heat insulating container is not limited to the one including the heat insulating container 22 using the vacuum heat insulating container shown in FIG. 1, and may be a heat insulating container 22 made of a foaming material or the like. These heat insulating containers are preferably made of a non-magnetic material. Since the heat insulating container 22 is made of a non-magnetic material, even if the heat insulating container 22 vibrates, it is possible to suppress the influence of the fluctuation of the environmental magnetism on the magnetic sensor 21. Examples of the non-magnetic material include plastic materials such as acrylic resin and non-ferrous metals such as copper and brass.

(寝台)
寝台5は、生体磁気検出部2を保持することができれば、その形状は特に制限されるものではないが、例えば、図1に示すように、被検体Sの頭部を位置させる頭部用寝台5aと胴部用寝台5bとを含んで構成される。生体磁気検出部2は、頭部用寝台5aと胴部用寝台5bとの間に配置され、被検体Sの計測領域Tに対向するように設けられる。
(bed)
The shape of the sleeper 5 is not particularly limited as long as it can hold the biomagnetic detection unit 2, but for example, as shown in FIG. 1, the head sleeper on which the head of the subject S is positioned is positioned. It is configured to include 5a and a sleeper 5b for the body. The biomagnetic detection unit 2 is arranged between the head bed 5a and the body bed 5b, and is provided so as to face the measurement region T of the subject S.

なお、図1では、生体磁気検出部2は、寝台5に固定されている構成を示しているが、寝台5に対して可動に構成されていてもよい。生体磁気検出部2が寝台5に対して可動であることにより、生体磁気検出部2は、所望の計測領域Tへの移動や、計測領域Tの体表面により密着させることが可能となる。 Although FIG. 1 shows a configuration in which the biomagnetic detection unit 2 is fixed to the sleeper 5, it may be movably configured with respect to the sleeper 5. Since the biomagnetic detection unit 2 is movable with respect to the bed 5, the biomagnetic detection unit 2 can move to a desired measurement area T and can be brought into close contact with the body surface of the measurement area T.

また、図1では、被検体Sが寝台5上で臥位の体勢で計測される態様を示しているが、被検体Sが座位の体勢で計測される態様であってもよい。
[放射線検出部]
放射線検出部3は、被検体Sの計測領域Tと生体磁気検出部2との間に配置され、照射された放射線Rをデジタル画像データである形態画像として取得する。
Further, although FIG. 1 shows a mode in which the subject S is measured in a lying position on the bed 5, the subject S may be measured in a sitting position.
[Radiation detection unit]
The radiation detection unit 3 is arranged between the measurement area T of the subject S and the biomagnetic detection unit 2, and acquires the irradiated radiation R as a morphological image which is digital image data.

上記放射線検出部3で検出された信号は、図示しない演算部に送られる。演算部では、放射線検出部3で検出された信号から形態画像を生成し、画像情報化して表示装置に表示出力する。 The signal detected by the radiation detection unit 3 is sent to a calculation unit (not shown). The calculation unit generates a morphological image from the signal detected by the radiation detection unit 3, converts it into image information, and displays and outputs it to the display device.

ところで、被検体Sが発する磁気は微弱であることから、磁性を帯びた放射線検出部を生体磁気検出部2と被検体Sとの間に配置すると、生体磁気検出部2での検出結果に大きな影響を与える。そこで、放射線検出部3は、生体磁気検出部2の検出精度に大きな影響を与えない構成部品から構成する。 By the way, since the magnetism emitted by the subject S is weak, if a magnetic radiation detection unit is placed between the biomagnetic detection unit 2 and the subject S, the detection result by the biomagnetic detection unit 2 will be large. Affect. Therefore, the radiation detection unit 3 is composed of components that do not significantly affect the detection accuracy of the biomagnetic detection unit 2.

例えば、放射線検出部3には、フラット・パネル・ディテクター(以下、FPDという。)を用いることができる。 For example, a flat panel detector (hereinafter referred to as FPD) can be used for the radiation detection unit 3.

FPDには、照射された放射線の線量に応じて検出素子で電荷を発生させて電気信号に変換するいわゆる直接変換方式や、照射された放射線をシンチレータ等で可視光等の他の波長の電磁波に変換した後、変換され照射された電磁波のエネルギーに応じてフォトダイオード等の光電変換素子で電荷を発生させて電気信号に変換するいわゆる間接方式がある。 The FPD has a so-called direct conversion method in which an electric charge is generated by a detection element according to the dose of the irradiated radiation and converted into an electric signal, and the irradiated radiation is converted into electromagnetic waves of other wavelengths such as visible light by a scintillator or the like. After conversion, there is a so-called indirect method in which an electric charge is generated by a photoelectric conversion element such as a photodiode according to the energy of the converted and irradiated electromagnetic wave and converted into an electric signal.

一般に、FPDには、これらの工程を行う種々の部品が、カセッテ等の筐体内に内蔵されている。しかし、上述したように、放射線検出部3が磁性を帯びていると好ましくないことから、放射線検出部3で使用されるFPDは、これらの種々の部品のうち、外部に配置可能な、磁性体を複数有する回路基板、制御基板、バッテリ等の種々の部品を、放射線検出部3から取り除き、外部に配置する。また、従来より、金属等で構成されているカセッテ等の部品は、非磁性材料より構成するか、用いずに構成する。 Generally, in an FPD, various parts that perform these steps are built in a housing such as a cassette. However, as described above, since it is not preferable that the radiation detection unit 3 is magnetic, the FPD used in the radiation detection unit 3 is a magnetic material that can be arranged outside among these various parts. Various parts such as a circuit board, a control board, and a battery having a plurality of parts are removed from the radiation detection unit 3 and arranged outside. Further, conventionally, parts such as cassettes made of metal or the like are made of non-magnetic materials or are not used.

このように、FPDの構成部品の分解、又は構成部品材料の変更等により、放射線検出部3が生体磁気検出部2の検出精度に大きな影響を与えないようにすることが好ましい。また、被検体Sと生体磁気検出部2とはできるだけ近接していることが好ましいことから、放射線検出部3から外部に配置可能な部品を取り除き、その厚み(被検体Sに直交する方向)をできるだけ薄くするとよい。例えば、FPDの厚みは、好ましくは2mm以上~10mm以下程度、より好ましくは2mm以上~5mm以下にするとよい。 As described above, it is preferable that the radiation detection unit 3 does not significantly affect the detection accuracy of the biomagnetic detection unit 2 by disassembling the components of the FPD or changing the material of the components. Further, since it is preferable that the subject S and the biomagnetic detection unit 2 are as close as possible to each other, a component that can be arranged outside is removed from the radiation detection unit 3 and its thickness (direction orthogonal to the subject S) is set. It should be as thin as possible. For example, the thickness of the FPD is preferably about 2 mm or more and 10 mm or less, and more preferably 2 mm or more and 5 mm or less.

また、放射線検出部3が生体磁気検出部2の検出精度に与える影響を小さくする点から、生体情報計測装置1は、生体磁気検出部2が生体磁気を検出している間(生体磁気検出部2に電源供給を行っている間)、放射線検出部3に電源供給を行わないように制御可能な制御部6を備えていることが好ましい。放射線検出部3に電源供給を行うと、放射線検出部3内で電荷が発生して磁気が発生し、この磁気を生体磁気検出部2が検出してしまうからである。 Further, from the viewpoint of reducing the influence of the radiation detection unit 3 on the detection accuracy of the biomagnetism detection unit 2, the bioinformation measurement device 1 is used while the biomagnetism detection unit 2 is detecting the biomagnetism (biomagnetism detection unit 2). (While power is being supplied to 2), it is preferable that the radiation detection unit 3 is provided with a control unit 6 that can be controlled so as not to supply power. This is because when power is supplied to the radiation detection unit 3, an electric charge is generated in the radiation detection unit 3 to generate magnetism, and the biomagnetism detection unit 2 detects this magnetism.

よって、制御部6により、放射線検出部3への電源供給の制御を行うことにより、放射線検出部3による影響を最小限に小さくすることが可能である。なお、放射線検出部3による検出結果を得る際には、生体磁気検出部2に電源供給を行っても、行わなくてもよいが、省電力化の点では、電源供給を行わない方が好ましい。 Therefore, by controlling the power supply to the radiation detection unit 3 by the control unit 6, it is possible to minimize the influence of the radiation detection unit 3. When obtaining the detection result by the radiation detection unit 3, it is not necessary to supply power to the biomagnetic detection unit 2, but it is preferable not to supply power from the viewpoint of power saving. ..

また、放射線検出部3は、生体磁気検出部2に保持されていることが好ましい。つまり、生体磁気検出部2と放射線検出部3との相対位置は定まっていることが好ましい。生体磁気検出部2と放射線検出部3との相対位置が定まっていることにより、互いの位置情報を特定する位置特定手段を設けることなく、生体磁気検出部2から得られる生体磁気検出結果と、放射線検出部3から得られる形態画像とを精度よく重ね合わせることができる。 Further, it is preferable that the radiation detection unit 3 is held by the biomagnetic detection unit 2. That is, it is preferable that the relative positions of the biomagnetic detection unit 2 and the radiation detection unit 3 are fixed. Since the relative positions of the biomagnetic detection unit 2 and the radiation detection unit 3 are fixed, the biomagnetic detection result obtained from the biomagnetic detection unit 2 and the biomagnetic detection result can be obtained without providing a position specifying means for specifying each other's position information. The morphological image obtained from the radiation detection unit 3 can be accurately superimposed.

放射線検出部3の形状は、被検体Sの所望の計測領域Tに対応した大きさであればよく、生体磁気検出部2の先端面22aに沿う形状であることが好ましく、先端面22aが円弧状に形成される場合には、同様に円弧状とすることが好ましい。また、放射線検出部3は、生体磁気検出部2の先端面22aに沿う形状となるように、可撓性を有していてもよい。 The shape of the radiation detection unit 3 may be any size corresponding to the desired measurement region T of the subject S, and is preferably a shape along the tip surface 22a of the biomagnetic detection unit 2, and the tip surface 22a is a circle. When it is formed in an arc shape, it is preferably formed in an arc shape as well. Further, the radiation detection unit 3 may have flexibility so as to have a shape along the tip surface 22a of the biomagnetic detection unit 2.

放射線検出部3の設置位置は、具体的には、以下の3つの態様(実施例)が含まれる。なお、計測中に生体磁気検出部2に放射線検出部3を固定し、かつ着脱可能にするために、断熱容器22の所望の位置に放射線検出部3を保持するための、レールや溝、へこみなどの保持部を設けてもよい。このようなガイドを設けることで、計測中に着脱する場合であっても、精度良く位置あわせ可能である。
(第1の実施例)
第1の実施例に係る生体情報計測装置1において、放射線検出部3は、断熱容器22の外側に設けられている。図2は、第1の実施例に係る生体情報計測装置の要部構成を示す断面図である。なお、図2中、図1で示した部材と同一部材には、同一符号を付し説明を省略する。
Specifically, the installation position of the radiation detection unit 3 includes the following three aspects (examples). In addition, in order to fix the radiation detection unit 3 to the biomagnetic detection unit 2 during measurement and to make it removable, a rail, a groove, or a dent for holding the radiation detection unit 3 at a desired position of the heat insulating container 22. A holding portion such as may be provided. By providing such a guide, it is possible to accurately align the position even when the guide is attached / detached during measurement.
(First Example)
In the biological information measuring device 1 according to the first embodiment, the radiation detection unit 3 is provided on the outside of the heat insulating container 22. FIG. 2 is a cross-sectional view showing a configuration of a main part of the biological information measuring device according to the first embodiment. In FIG. 2, the same members as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

図2に示すように、第1の実施例に係る生体情報計測装置1は、放射線検出部3が断熱容器22の外側、すなわち外槽222の外壁面(先端面22a)に沿うように設置されている。断熱容器22の先端面22aの外周面に設置された放射線検出部3は、着脱しやすいため、メンテナンスが容易である。また、生体磁気検出部2の検出結果のみが必要である場合には、放射線検出部3を生体磁気検出部2から外してもよい。なお、放射線検出部3を断熱容器22とアタッチメントで一体化させてもよい。
(第2の実施例)
第2の実施例に係る生体情報計測装置1'において、放射線検出部3は、断熱容器22の内側に設けられている。図3は、第2の実施例に係る生体情報計測装置の要部構成を示す断面図である。なお、図3中、図1で示した部材と同一部材には、同一符号を付し説明を省略する。
As shown in FIG. 2, in the biometric information measuring device 1 according to the first embodiment, the radiation detection unit 3 is installed so as to be outside the heat insulating container 22, that is, along the outer wall surface (tip surface 22a) of the outer tank 222. ing. Since the radiation detection unit 3 installed on the outer peripheral surface of the tip surface 22a of the heat insulating container 22 is easy to attach and detach, maintenance is easy. If only the detection result of the biomagnetic detection unit 2 is required, the radiation detection unit 3 may be removed from the biomagnetic detection unit 2. The radiation detection unit 3 may be integrated with the heat insulating container 22 by an attachment.
(Second Example)
In the biological information measuring device 1'according to the second embodiment, the radiation detection unit 3 is provided inside the heat insulating container 22. FIG. 3 is a cross-sectional view showing a configuration of a main part of the biological information measuring device according to the second embodiment. In FIG. 3, the same members as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

図3に示すように、第2の実施例に係る生体情報計測装置1'は、放射線検出部3が断熱容器22の内側、すなわち先端面22aに対向する、外槽222の内壁面に沿うように設置されている。放射線検出部3が断熱容器22の外槽222の内壁面に設置されているため、第1の実施例に比べ、被検体Sと磁気センサ21との距離が小さくなり、生体磁気検出部2(磁気センサ21)は生体磁気の検出強度を上げることができる。
(第3の実施例)
第3の実施例に係る生体情報計測装置1''において、放射線検出部3は、断熱容器22の部材中に設けられている。図4は、第3の実施例に係る生体情報計測装置の要部構成を示す断面図である。なお、図4中、図1で示した部材と同一部材には、同一符号を付し説明を省略する。
As shown in FIG. 3, in the biometric information measuring device 1'according to the second embodiment, the radiation detection unit 3 is located inside the heat insulating container 22, that is, along the inner wall surface of the outer tank 222 facing the tip surface 22a. It is installed in. Since the radiation detection unit 3 is installed on the inner wall surface of the outer tank 222 of the heat insulating container 22, the distance between the subject S and the magnetic sensor 21 is smaller than that of the first embodiment, and the biomagnetic detection unit 2 ( The magnetic sensor 21) can increase the detection intensity of biomagnetism.
(Third Example)
In the biological information measuring device 1 ″ according to the third embodiment, the radiation detection unit 3 is provided in the member of the heat insulating container 22. FIG. 4 is a cross-sectional view showing a configuration of a main part of the biological information measuring device according to the third embodiment. In FIG. 4, the same members as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

図4に示すように、第3の実施例に係る生体情報計測装置1''は、放射線検出部3が断熱容器22の部材中、すなわち、先端面22aに対向する外槽222の壁部材内に設置されている。放射線検出部3が断熱容器22の外槽222の壁部材内に設置されているため、第1の実施例に比べ、被検体Sと磁気センサ21との距離が小さくなり、生体磁気検出部2(磁気センサ21)は生体磁気の検出強度を上げることができる。
[放射線照射部]
放射線照射部4は、生体に放射可能な放射線を照射可能であれば、従来公知のものを使用することができる。本発明において、「放射線」とは、一般的に用いられるX線に限るものでなく、放射性崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線等のほか、これらと同程度以上のエネルギーを有するビーム、例えば、粒子線や宇宙線等も含む包括概念である。汎用性の高さを考慮すると、放射線として、X線を用いることが好ましい。
[計測手順]
例えば、図1に示すように、被検体(ヒト)の脊髄又は心臓のX線撮影と生体磁気測定を同時に行う検査では、被検体(ヒト)Sは、寝台5の上に仰臥位(仰向け)になり、所定の位置で待機する。検査者は、図示しない操作部により、放射線照射部4から放射線を被検体Sに向けて放射し、放射線検出部3からの検出結果であるX線画像を得る。その後、制御部6により放射線検出部3への電源供給が行われない状態で、生体磁気検出部2への電力供給を行って、生体磁気検出部2からの検出結果である脊髄誘発磁場等を得る。
As shown in FIG. 4, in the biometric information measuring device 1'' according to the third embodiment, the radiation detection unit 3 is in the member of the heat insulating container 22, that is, in the wall member of the outer tank 222 facing the tip surface 22a. It is installed in. Since the radiation detection unit 3 is installed in the wall member of the outer tank 222 of the heat insulating container 22, the distance between the subject S and the magnetic sensor 21 is smaller than that of the first embodiment, and the biomagnetic detection unit 2 (Magnetic sensor 21) can increase the detection intensity of biomagnetism.
[Irradiation section]
As the irradiation unit 4, a conventionally known one can be used as long as it can irradiate a living body with radiation that can be radiated. In the present invention, "radiation" is not limited to generally used X-rays, but includes α-rays, β-rays, γ-rays, etc., which are beams produced by particles (including photons) emitted by radioactive decay. In addition, it is a comprehensive concept that includes beams having energies equal to or higher than these, such as particle beams and cosmic rays. Considering the high versatility, it is preferable to use X-rays as radiation.
[Measurement procedure]
For example, as shown in FIG. 1, in an examination in which X-ray photography and biomagnetic measurement of the spinal cord or heart of a subject (human) are performed simultaneously, the subject (human) S is in the supine position (on his back) on the bed 5. And wait at the specified position. The inspector emits radiation from the radiation irradiation unit 4 toward the subject S by an operation unit (not shown), and obtains an X-ray image which is a detection result from the radiation detection unit 3. After that, the power is supplied to the biomagnetic detection unit 2 while the power is not supplied to the radiation detection unit 3 by the control unit 6, and the spinal cord-induced magnetic field or the like which is the detection result from the biomagnetic detection unit 2 is obtained. obtain.

又は、検査者は、制御部6により放射線検出部3への電源供給が行われない状態で、生体磁気検出部2への電力供給を行って、生体磁気検出部2からの検出結果である脊髄誘発磁場を得た後、放射線照射部4から放射線を被検体Sに向けて放射し、放射線検出部3からの検出結果であるX線画像を得てもよい。 Alternatively, the inspector supplies power to the biomagnetic detection unit 2 while the control unit 6 does not supply power to the radiation detection unit 3, and the inspector performs the detection result from the biomagnetic detection unit 2. After obtaining the evoked magnetic field, radiation may be emitted from the radiation irradiation unit 4 toward the subject S to obtain an X-ray image which is the detection result from the radiation detection unit 3.

なお、本実施形態に係る生体情報計測装置は、図1に示す形態に制限されるものではない。図5は、他の実施形態に係る生体情報計測装置の構成図である。なお、図5中、図1で示した部材と同一部材には、同一符号を付し説明を省略する。 The biological information measuring device according to the present embodiment is not limited to the embodiment shown in FIG. FIG. 5 is a configuration diagram of a biological information measuring device according to another embodiment. In FIG. 5, the same members as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

例えば、図5に示すように、被検体(ヒト)の胸部のX線撮影と生体磁気計測とを同時に行う検査では、被検体(ヒト)Sは、寝台5の上に伏臥位(うつ伏せ)になり、所定の位置で待機するようにするとよい。また、このように、被検体Sの胸部を計測する場合には、図5に示すように、断熱容器23の先端面23aの形状を平面状とし、放射線検出部31の形状も平面状とすることにより、被検体Sの体表面と先端面23a及び/又は放射線検出部31とを密着させるとよい。 For example, as shown in FIG. 5, in an examination in which an X-ray image of the chest of a subject (human) and a biomagnetic measurement are performed at the same time, the subject (human) S is placed in a prone position on the bed 5. Therefore, it is advisable to wait at a predetermined position. Further, when measuring the chest of the subject S in this way, as shown in FIG. 5, the shape of the tip surface 23a of the heat insulating container 23 is made flat, and the shape of the radiation detecting part 31 is also made flat. As a result, the body surface of the subject S and the tip surface 23a and / or the radiation detection unit 31 may be brought into close contact with each other.

本実施形態に係る生体情報計測装置の計測領域Tは、脊髄、胸部等に制限されず、脳等、他の部位、器官であってもよい。本実施形態に係る断熱容器は、計測領域Tに応じて、被検体Sに対向する先端面を計測領域Tの体表面に密着させることができるように、先端面の形状を適宜形成するとよい。 The measurement area T of the biological information measuring device according to the present embodiment is not limited to the spinal cord, chest, or the like, and may be other parts or organs such as the brain. In the heat insulating container according to the present embodiment, the shape of the tip surface may be appropriately formed so that the tip surface facing the subject S can be brought into close contact with the body surface of the measurement region T according to the measurement region T.

なお、断熱容器の先端面の形状に応じて、放射線検出部の形状も、断熱容器の先端面の形状に沿った形状とすることが好ましい。例えば、上述したように、放射線検出部を可撓性材料で構成することにより、放射線検出部を断熱容器の先端面の形状に沿った撓ませることも可能である。また、断熱容器の形状に応じて、断熱容器内部に収容される磁気センサも最適な位置に配置することはいうまでもない。 Depending on the shape of the tip surface of the heat insulating container, the shape of the radiation detection unit is preferably a shape that follows the shape of the tip surface of the heat insulating container. For example, as described above, by forming the radiation detection unit with a flexible material, it is possible to bend the radiation detection unit along the shape of the tip surface of the heat insulating container. Needless to say, the magnetic sensor housed inside the heat insulating container is also arranged at an optimum position according to the shape of the heat insulating container.

以下、上述した生体情報計測装置1により、ヒトの脊髄を計測した結果を図6に示す。図6からもわかるように、一度の計測で、脊髄のX線撮影像と脊髄誘発磁場図とを良好な精度で重ね合わせた生体情報を得ることができる。 Hereinafter, FIG. 6 shows the results of measuring the human spinal cord by the biometric information measuring device 1 described above. As can be seen from FIG. 6, it is possible to obtain biometric information by superimposing the X-ray image of the spinal cord and the spinal cord evoked magnetic field diagram with good accuracy by one measurement.

1 生体情報計測装置
2 生体磁気検出部
21 磁気センサ
22 断熱容器
22a 先端面
221 内槽
222 外槽
3 放射線検出部
4 放射線照射部
5 寝台
5a 頭部用寝台
5b 胴部用寝台
6 制御部
S 被検体
R 放射線
T 計測領域
1 Biometric information measurement device 2 Biomagnetic detection unit 21 Magnetic sensor 22 Insulation container 22a Tip surface 221 Inner tank 222 Outer tank 3 Radiation detection unit 4 Radiation irradiation unit 5 Sleeper 5a Head sleeper 5b Body sleeper 6 Control unit S Specimen R Radiation T Measurement area

特開2009-172175号公報Japanese Unexamined Patent Publication No. 2009-172175

Claims (7)

温度調節機構を有し、被検体の生体磁気を検出可能な生体磁気検出部と、
照射された放射線をデジタル画像データとして取得可能なフラット・パネル・ディテクターと
前記生体磁気検出部が生体磁気を検出している間、前記フラット・パネル・ディテクターには電源供給を行わないように制御可能な制御部と、を備え、
前記フラット・パネル・ディテクターは、前記被検体の計測領域と前記生体磁気検出部との間に配置される、生体情報計測装置。
A biomagnetic detector that has a temperature control mechanism and can detect the biomagnetism of the subject,
A flat panel detector that can acquire the irradiated radiation as digital image data ,
The flat panel detector is provided with a control unit that can be controlled so as not to supply power while the biomagnetism detection unit detects biomagnetism .
The flat panel detector is a biometric information measuring device arranged between the measurement area of the subject and the biomagnetic detection unit.
前記生体磁気検出部は、複数の磁気センサを備え、
該複数の磁気センサは、断熱容器に覆われている、請求項1に記載の生体情報計測装置。
The biomagnetic detection unit includes a plurality of magnetic sensors and has a plurality of magnetic sensors.
The biometric information measuring device according to claim 1, wherein the plurality of magnetic sensors are covered with a heat insulating container.
前記フラット・パネル・ディテクターは、前記断熱容器の外側に設けられている、請求項2に記載の生体情報計測装置。 The biometric information measuring device according to claim 2, wherein the flat panel detector is provided on the outside of the heat insulating container. 前記フラット・パネル・ディテクターは、前記断熱容器の内側に設けられている、請求項2に記載の生体情報計測装置。 The biometric information measuring device according to claim 2, wherein the flat panel detector is provided inside the heat insulating container. 前記フラット・パネル・ディテクターは、前記断熱容器の部材中に設けられている、請求項2に記載の生体情報計測装置。 The biometric information measuring device according to claim 2, wherein the flat panel detector is provided in a member of the heat insulating container. 前記断熱容器の前記被検体に対向する面は、円弧状又は平面で形成される、請求項2乃至5の何れか一項に記載の生体情報計測装置。 The biometric information measuring device according to any one of claims 2 to 5, wherein the surface of the heat insulating container facing the subject is formed in an arc shape or a flat surface. 前記被検体に放射線を照射する放射線照射部をさらに備える、請求項1乃至6の何れか一項に記載の生体情報計測装置。 The biometric information measuring device according to any one of claims 1 to 6, further comprising an irradiation unit that irradiates the subject with radiation.
JP2017182833A 2016-09-30 2017-09-22 Biometric information measuring device Active JP6999897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/715,591 US11076790B2 (en) 2016-09-30 2017-09-26 Biological information measuring apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016195107 2016-09-30
JP2016195107 2016-09-30

Publications (2)

Publication Number Publication Date
JP2018057843A JP2018057843A (en) 2018-04-12
JP6999897B2 true JP6999897B2 (en) 2022-01-19

Family

ID=61907978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017182833A Active JP6999897B2 (en) 2016-09-30 2017-09-22 Biometric information measuring device

Country Status (1)

Country Link
JP (1) JP6999897B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11051737B2 (en) 2017-05-19 2021-07-06 Ricoh Company, Ltd. Biomagnetic measurement method, biomagnetic measuring device, and biomagnetic measuring system
US11375934B2 (en) 2017-12-01 2022-07-05 Ricoh Company, Ltd. Biomagnetic measurement apparatus, biological information measurement apparatus, and biomagnetic measurement method
CN117255649A (en) * 2021-03-31 2023-12-19 株式会社有泽制作所 Heat insulation container and spine magnetic meter using same
CN117378298A (en) * 2021-05-28 2024-01-09 株式会社有泽制作所 Heat insulation container and spine magnetometer using same
EP4371478A1 (en) * 2022-11-16 2024-05-22 TDK Corporation Biological signal measurement device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037761A (en) 1990-10-26 2001-02-13 Hitachi Ltd Vital measuring instrument
JP2003290184A (en) 2002-04-03 2003-10-14 Canon Inc Radiation imaging unit, system for radiation image, program and computer readable memory medium
JP2005274586A (en) 2005-05-30 2005-10-06 Hitachi Ltd Radiation inspection apparatus
JP2006296520A (en) 2005-04-18 2006-11-02 Hitachi Medical Corp X-ray ct apparatus
WO2007099697A1 (en) 2006-02-23 2007-09-07 University Corporation, Kanazawa Institute Of Technology Superconducting magnetism measuring device, biomagnetism measuring method, biomagnetism measuring device-use sensor tube cover and sheet
WO2016175020A1 (en) 2015-04-30 2016-11-03 国立大学法人東京医科歯科大学 Biological information measuring apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037761A (en) 1990-10-26 2001-02-13 Hitachi Ltd Vital measuring instrument
JP2003290184A (en) 2002-04-03 2003-10-14 Canon Inc Radiation imaging unit, system for radiation image, program and computer readable memory medium
JP2006296520A (en) 2005-04-18 2006-11-02 Hitachi Medical Corp X-ray ct apparatus
JP2005274586A (en) 2005-05-30 2005-10-06 Hitachi Ltd Radiation inspection apparatus
WO2007099697A1 (en) 2006-02-23 2007-09-07 University Corporation, Kanazawa Institute Of Technology Superconducting magnetism measuring device, biomagnetism measuring method, biomagnetism measuring device-use sensor tube cover and sheet
WO2016175020A1 (en) 2015-04-30 2016-11-03 国立大学法人東京医科歯科大学 Biological information measuring apparatus

Also Published As

Publication number Publication date
JP2018057843A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP6999897B2 (en) Biometric information measuring device
US11076790B2 (en) Biological information measuring apparatus
JP6513798B2 (en) Biological information measuring device
JP6113919B2 (en) Medical device with radiation therapy device and radiation detection system
JP7176689B2 (en) Biomagnetism measuring device and biomagnetism measuring method
US7935939B2 (en) Radiotherapy apparatus controller and radiation irradiation method
US6101239A (en) Medical imaging apparatus
US20070102645A1 (en) Diagnosis device for radiographic and nuclear medical examinations
US11375934B2 (en) Biomagnetic measurement apparatus, biological information measurement apparatus, and biomagnetic measurement method
US20210156936A1 (en) Toroidal system configuration for dedicated mri scanners
JP2011050736A (en) Grid assembly positioning circuit and detector assembly including the circuit
US9492107B2 (en) Medical imaging apparatus with a movement detection unit and a method for detecting patient movement
US20130274590A1 (en) Method and apparatus for generating a signal indicative of motion of a subject in a magnetic resonance apparatus
CN109983356A (en) Medical image system including magnet unit and radiating element
KR101948800B1 (en) 3d scattering radiation imager, radiation medical apparatus having the same and method for placing the 3d scattering radiation imager
US7945020B2 (en) Medical inspection apparatus
US6263043B1 (en) Medical examination system allowing MR images and x-ray exposures to be made without re-situating a patient on a patient bed
KR101899009B1 (en) Magnetic resonance imaging device and controlling method thereof
JP7026356B2 (en) Biometric information measuring device
US20160073926A1 (en) Apparatus and method for determining the position of a medical instrument
JP6857345B2 (en) Biological information measuring device
JPH08173398A (en) Cerebral function measuring device
Stucchi et al. The use of an electronic portal imaging device for exit dosimetry
PL194256B1 (en) Method of interactively imaging in tomographic and threedimensional manner the changes in electric and megnetic impedance of living organism structure and apparatus therefor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20171012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R150 Certificate of patent or registration of utility model

Ref document number: 6999897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150