JP6840398B2 - Magnetic field application device - Google Patents

Magnetic field application device Download PDF

Info

Publication number
JP6840398B2
JP6840398B2 JP2018558051A JP2018558051A JP6840398B2 JP 6840398 B2 JP6840398 B2 JP 6840398B2 JP 2018558051 A JP2018558051 A JP 2018558051A JP 2018558051 A JP2018558051 A JP 2018558051A JP 6840398 B2 JP6840398 B2 JP 6840398B2
Authority
JP
Japan
Prior art keywords
magnetic field
base
magnet
resonance
application device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018558051A
Other languages
Japanese (ja)
Other versions
JPWO2018117185A1 (en
Inventor
英雄 内海
英雄 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2018117185A1 publication Critical patent/JPWO2018117185A1/en
Application granted granted Critical
Publication of JP6840398B2 publication Critical patent/JP6840398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/10Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using electron paramagnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、電子スピン共鳴/核磁気共鳴画像装置に関し、特に、電子スピン共鳴/核磁気共鳴画像装置用磁場印加装置に関する。 The present invention relates to an electron spin resonance / nuclear magnetic resonance imaging device, and more particularly to a magnetic field application device for an electron spin resonance / nuclear magnetic resonance imaging device.

電子スピン共鳴画像法(ESRI)とは、フリーラジカルの不対電子スピンの磁気モーメントを電磁波の共鳴吸収で観測する分析・画像化方法をいう。核磁気共鳴画像法(MRI)とは、強い静磁場中に置いた水素核を含む原子核スピンの磁気モーメントにパルス状の電磁波を照射して共鳴させ、電磁波の照射を停止してからの緩和速度を観測する分析・画像化方法をいう。 Electron spin resonance imaging (ESRI) is an analysis / imaging method in which the magnetic moment of unpaired electron spins of free radicals is observed by resonance absorption of electromagnetic waves. Magnetic resonance imaging (MRI) is the relaxation rate after stopping the irradiation of electromagnetic waves by irradiating the magnetic moment of the nuclear spin containing hydrogen nuclei placed in a strong static magnetic field with a pulsed electromagnetic wave to resonate it. An analysis / imaging method for observing.

電子スピン共鳴画像法及び核磁気共鳴画像法を利用した分析装置としては、分析対象物に存在するフリーラジカルの画像(ESRI)に、水素原子核を含む組織の画像(MRI)を重畳できる、電子スピン共鳴/核磁気共鳴画像装置が知られている。また、電子スピン共鳴を起こすことでフリーラジカルと相互作用する水素核を含む原子核スピンを超偏極させる動的核偏極(オーバーハウザー効果はその一つ)を通じてMRIで間接的にフリーラジカルを観測する分析・画像化方法(DNP−MRI)が知られている。 As an analyzer using electron spin resonance imaging and magnetic resonance imaging, electron spin can superimpose an image of a structure containing hydrogen nuclei (MRI) on an image of free radicals (ESRI) existing in an object to be analyzed. Resonance / magnetic resonance imaging is known. In addition, free radicals are indirectly observed by MRI through dynamic nuclear polarization (the Overhauser effect is one of them) that hyperpolarizes nuclear spins including hydrogen nuclei that interact with free radicals by causing electron spin resonance. An analysis / imaging method (DNP-MRI) is known.

特許文献1には、DNP−MRIを用いた、所定の大きさの磁場を発生させる第1の磁場発生手段と、前記第1の磁場発生手段の磁場の大きさと異なる大きさの磁場を発生させる第2の磁場発生手段と、計測対象物を回転移動させることにより、前期対象物中の画像を異なる磁場かで計測する計測手段と、を有する計測装置が記載されている。また、他の実施形態として、所定の大きさの磁場を発生させる第1の磁場発生手段と、前記第1の磁場発生手段の磁場の大きさと異なる大きさの磁場を発生させる第2の磁場発生手段と、前記第1及び第2の磁場発生手段を回転移動させることにより、前記計測対象物を前記第1及び第2の磁場発生手段の磁場中を順に通過させる回転移動手段と、前記回転移動手段によって前記第1及び第2の磁場発生手段が回転移動している間に、前記第1及び第2の磁場発生手段を停止させることなく、前記計測対象物中の画像を異なる磁場下で計測する計測手段と、を有する計測装置が記載されている。 In Patent Document 1, a first magnetic field generating means for generating a magnetic field of a predetermined magnitude using DNP-MRI and a magnetic field having a magnitude different from the magnitude of the magnetic field of the first magnetic field generating means are generated. A measuring device including a second magnetic field generating means and a measuring means for measuring an image in the object in the previous period with a different magnetic field by rotating and moving the object to be measured is described. Further, as another embodiment, a first magnetic field generating means for generating a magnetic field of a predetermined magnitude and a second magnetic field generating means for generating a magnetic field having a magnitude different from that of the magnetic field of the first magnetic field generating means are generated. The means, the rotational movement means, and the rotational movement, in which the measurement object is sequentially passed through the magnetic fields of the first and second magnetic field generating means by rotating and moving the first and second magnetic field generating means. While the first and second magnetic field generating means are rotationally moved by the means, the image in the measurement object is measured under different magnetic fields without stopping the first and second magnetic field generating means. The measuring means and the measuring device having the measuring means are described.

特許文献1の計測装置で使用されている磁場印加装置は、特許文献1の図8で他の実施形態として、所定の大きさの磁場を発生させる第1の磁場発生手段と、前記第1の磁場発生手段の磁場の大きさと異なる大きさの磁場を発生させる第2の磁場発生手段と、前記第1及び第2の磁場発生手段を回転移動させることにより、前記計測対象物を前記第1及び第2の磁場発生手段の磁場中を順に通過させる回転移動手段を例示的に示し、測定対象を挟む2つのリングの先端部に、それぞれ、電子スピン共鳴用弱磁力磁石と核磁気共鳴用強磁力磁石とを配置し、測定対象は固定しておきながら、2つのリングを回転させるものであるが具体的記載がない。 The magnetic field applying device used in the measuring device of Patent Document 1 includes, as another embodiment in FIG. 8 of Patent Document 1, a first magnetic field generating means for generating a magnetic field of a predetermined magnitude and the first magnetic field generating means. By rotating and moving the second magnetic field generating means for generating a magnetic field having a magnitude different from that of the magnetic field of the magnetic field generating means and the first and second magnetic field generating means, the measurement object is moved to the first and the first and the second. An exemplary example shows a rotational moving means that sequentially passes through the magnetic field of the second magnetic field generating means, and a weak magnetic force magnet for electron spin resonance and a strong magnetic force for nuclear magnetic resonance are attached to the tips of two rings sandwiching a measurement target, respectively. The two rings are rotated while the magnet is arranged and the measurement target is fixed, but there is no specific description.

特許文献2及び3には、MRI/ESR共鳴画像装置の基本構成は記載されているが、磁石の種類及び配置を工夫することで安定性及び実用性を高めた磁場印加装置は記載されていない。 Patent Documents 2 and 3 describe the basic configuration of the MRI / ESR resonance imaging device, but do not describe the magnetic field application device whose stability and practicality are improved by devising the type and arrangement of magnets. ..

特表2011−527222号公報Japanese Patent Publication No. 2011-527222 国際公開公報第97/07412号International Publication No. 97/07412 国際公開公報第94/03824号International Publication No. 94/03824 特願2017−515452号Japanese Patent Application No. 2017-515452

図1(A)は、未だ出願公開されていない特許文献4に記載の回転型磁場印加装置の磁石ハウス部を上部から見たもの、図1(B)はその構造を示す断面図である。この磁場印加装置は中心軸Iに沿った心棒101と、心棒に固定され、盤面が水平になる向きに配置された第1の基盤102と、心棒に固定され、第1の基盤に対して平行に間隔を開けて配置された第2の基盤103と、両基盤の内側の盤面に配置された電子スピン共鳴用弱磁力磁石104と核磁気共鳴用強磁力磁石105とを有する。心棒はモーター等の駆動機構(非表示)に連結されている。測定部位106は磁場が最も高く安定する位置であり、一般に、磁石の中心部が通過する軌道V上の領域、即ち、その一部が上記軌道と重複する領域である。 FIG. 1 (A) is a top view of the magnet house portion of the rotary magnetic field applying device described in Patent Document 4, which has not yet been published, and FIG. 1 (B) is a cross-sectional view showing the structure thereof. This magnetic field application device has a mandrel 101 along the central axis I, a first base 102 fixed to the mandrel and arranged so that the board surface is horizontal, and fixed to the mandrel and parallel to the first base. It has a second base 103 arranged at intervals, a weak magnetic field magnet 104 for electron spin resonance and a strong magnetic field magnet 105 for nuclear magnetic resonance arranged on the inner board surfaces of both bases. The mandrel is connected to a drive mechanism (not displayed) such as a motor. The measurement site 106 is a position where the magnetic field is the highest and stable, and is generally a region on the orbit V through which the central portion of the magnet passes, that is, a region in which a part thereof overlaps with the orbit.

測定を行う際には測定対象物(非表示)を測定部位106に固定し、中心軸Iを中心にして心棒101を回転させる。そのことで基盤102及び103が同時に同一速度で回転し、測定対象物は静止したまま、周期的に、高磁場中及び低磁場中に置かれることができる。 When performing the measurement, the object to be measured (not displayed) is fixed to the measurement site 106, and the mandrel 101 is rotated around the central axis I. As a result, the bases 102 and 103 rotate at the same speed at the same time, and the object to be measured can be periodically placed in a high magnetic field and a low magnetic field while remaining stationary.

従来の回転型磁場印加装置(DNP−MRI)は一つの基盤に電子スピン共鳴用弱磁力磁石と核磁気共鳴用強磁力磁石とを設置し、回転させる必要がある。そのために、例えば、次の問題点が存在する。
磁場強度が異なる二種類の磁石を備えた基盤を製造するために労力及びコストを要し、異なる磁場強度を変換するフィールドサイクリング法で任意の周期で磁場変換できない。即ち、高磁場と低磁場の切り替えタイミングを最適化するために、前もって、磁石の寸法、種類、形状、位置関係を厳密に設計及び調節する必要がある。
二種類の磁石を備えた基盤はバランスが不均一であり、回転が不安定になり易い。また、実質的に、高磁場及び低磁場を一回印加するために基盤を一回転させなければならず、基盤を高速で回転させる必要がある。
In the conventional rotary magnetic field application device (DNP-MRI), it is necessary to install a weak magnetic field magnet for electron spin resonance and a strong magnetic force magnet for nuclear magnetic resonance on one base and rotate them. Therefore, for example, the following problems exist.
It takes labor and cost to manufacture a substrate having two types of magnets having different magnetic field strengths, and the field cycling method for converting different magnetic field strengths cannot convert the magnetic field at an arbitrary cycle. That is, in order to optimize the switching timing between the high magnetic field and the low magnetic field, it is necessary to strictly design and adjust the size, type, shape, and positional relationship of the magnet in advance.
The board with the two types of magnets is unevenly balanced and tends to rotate unstable. In addition, substantially, the base must be rotated once in order to apply a high magnetic field and a low magnetic field once, and the base must be rotated at a high speed.

本発明は上記従来の問題を解決するものであり、その目的とするところは、簡単に低コストで製造することができ、DNP−MRIを実施する際に任意の周期で磁場変換でき、低労力で安定した運転が可能な磁場印加装置を提供することにある。 The present invention solves the above-mentioned conventional problems, and an object of the present invention is that it can be easily manufactured at low cost, magnetic field conversion can be performed at an arbitrary cycle when performing DNP-MRI, and low labor is required. It is an object of the present invention to provide a magnetic field application device capable of stable operation.

本発明は、所定の位置に固定された測定部位と、
測定部位を挟む位置に対向して設置された電子スピン共鳴用電磁石と、
該電磁石に対して電流を供給し調節し停止する電流制御機構と、
電子スピン共鳴用電磁石に対して電流が停止されている間は測定部位を挟む位置に対向して存在し、電子スピン共鳴用電磁石に対して電流が供給されている間は測定部位を挟む位置に存在しない核磁気共鳴用磁石と、
核磁気共鳴用磁石を、測定部位を挟む位置に配置し撤収する核磁気共鳴用磁石移動機構とを、
備える磁場印加装置を提供する。
The present invention includes a measurement site fixed in a predetermined position and a measurement site.
Electromagnets for electron spin resonance installed facing each other across the measurement site,
A current control mechanism that supplies current to the electromagnet, adjusts it, and stops it.
While the current is stopped for the electron spin resonance electromagnet, it exists opposite to the position that sandwiches the measurement part, and while the current is supplied to the electron spin resonance electromagnet, it is in the position that sandwiches the measurement part. A magnet for nuclear magnetic resonance that does not exist,
A magnet moving mechanism for nuclear magnetic resonance, in which the magnet for nuclear magnetic resonance is placed at a position sandwiching the measurement site and withdrawn.
Provided is a magnetic field application device provided.

ある一形態においては、前記電子スピン共鳴用電磁石が測定対象物に印加する磁場強度が1〜10ミリテスラである。 In one embodiment, the magnetic field strength applied by the electron spin resonance electromagnet to the object to be measured is 1 to 10 millitesla.

ある一形態においては、前記核磁気共鳴用磁石が永久磁石である。 In one embodiment, the nuclear magnetic resonance magnet is a permanent magnet.

ある一形態においては、前記核磁気共鳴用磁石移動機構は、
測定部位を挟む相互に平行な第1の基盤及び第2の基盤であって、それらの盤面と平行に回転する第1の基盤及び第2の基盤、
第1の基盤及び第2の基盤の各盤面において、回転中心から測定部位に対応する位置までの距離を半径とする円弧上のいずれかの位置に、対向して設置された核磁気共鳴用磁石、及び
第1の基盤及び第2の基盤を同期回転させる機構
を備えるものである。
In one embodiment, the nuclear magnetic resonance magnet moving mechanism is
A first base and a second base that are parallel to each other and sandwich the measurement site, and the first base and the second base that rotate in parallel with their board surfaces.
On each board surface of the first base and the second base, magnets for nuclear magnetic resonance are installed facing each other at any position on an arc whose radius is the distance from the center of rotation to the position corresponding to the measurement site. , And a mechanism for synchronously rotating the first base and the second base.

ある一形態においては、前記第1の基盤及び第2の基盤が、実質的に、円形、円筒形又は円盤形である。 In one form, the first and second substrates are substantially circular, cylindrical or disc-shaped.

ある一形態においては、前記核磁気共鳴用磁石が測定対象物に印加する磁場強度が約0.1テスラ以上である。 In one embodiment, the magnetic field strength applied to the object to be measured by the nuclear magnetic resonance magnet is about 0.1 tesla or more.

ある一形態においては、前記磁場印加装置は、電流制御機構と磁石移動機構を同期して任意の周期で磁場を変換する機構を更に有する。 In one embodiment, the magnetic field applying device further comprises a mechanism that synchronizes the current control mechanism and the magnet moving mechanism to convert the magnetic field at an arbitrary period.

ある一形態においては、前記磁場印加装置は、電子スピン共鳴/核磁気共鳴画像装置用である。 In one embodiment, the magnetic field application device is for an electron spin resonance / nuclear magnetic resonance imaging device.

また、本発明は、上記のいずれかの磁場印加装置を備える電子スピン共鳴/核磁気共鳴画像装置を提供する。 The present invention also provides an electron spin resonance / nuclear magnetic resonance imaging apparatus including any of the above magnetic field application devices.

本発明によれば、磁場変換周期を任意に設定変更でき、簡単に低コストで製造することができ、低労力で安定した運転が可能な磁場印加装置が提供される。磁場印加条件を最適化することで最も高感度の画像を得ることが可能となる。 According to the present invention, there is provided a magnetic field application device capable of arbitrarily setting and changing the magnetic field conversion cycle, easily manufacturing at low cost, and capable of stable operation with low labor. By optimizing the magnetic field application conditions, it is possible to obtain the most sensitive image.

(A)は、特許文献2に記載の回転型磁場印加装置の磁石ハウス部を上部から見たもの、(B)はその構造を示す断面図である。(A) is a view of the magnet house portion of the rotary magnetic field applying device described in Patent Document 2 from above, and (B) is a cross-sectional view showing the structure thereof. (A)は、本発明の回転型磁場印加装置の磁石ハウス部を上部から見たもの、(B)はその装置を横から見た正面図である。(A) is a view of the magnet house portion of the rotary magnetic field application device of the present invention from above, and (B) is a front view of the device as seen from the side. 本発明で使用するコイルユニットの断面図である。It is sectional drawing of the coil unit used in this invention. (A)は、本発明の回転型磁場印加装置の磁石ハウス部を上部から見たもの、(B)はその装置を横から見た正面図である。(A) is a view of the magnet house portion of the rotary magnetic field application device of the present invention from above, and (B) is a front view of the device as seen from the side. 本発明で使用する核磁気共鳴用磁石の配置の変形例を示す平面図である。It is a top view which shows the modification of the arrangement of the magnet for nuclear magnetic resonance used in this invention.

図2は、本発明の磁場印加装置の構造を示す模式図である。(A)は当該装置を上から見た平面図である。(B)は当該装置を横から見た正面図である。 FIG. 2 is a schematic view showing the structure of the magnetic field application device of the present invention. (A) is a plan view of the device as viewed from above. (B) is a front view of the device as viewed from the side.

この磁場印加装置は、中心軸Iに沿った心棒1と、心棒に固定され、盤面が水平になる向きに配置された第1の基盤2と、心棒に固定され、第1の基盤に対して平行に間隔を開けて配置された第2の基盤3とを有する。 This magnetic field applying device is fixed to the mandrel 1 along the central axis I, the first base 2 fixed to the mandrel and arranged so that the board surface is horizontal, and fixed to the mandrel with respect to the first base. It has a second base 3 arranged in parallel and spaced apart from each other.

基盤は、盤面、即ち、実質的に面積を有する、平行な相対する二枚の平面、を有する。それぞれの基盤の盤面は、一対の磁石を一定間隔で支持する機能を奏する。第1の基盤2及び第2の基盤3の盤面は、一対の磁石の間に形成される磁界を均一にするために、実質的に平行である。 The substrate has a board surface, i.e., two parallel opposing planes having a substantially area. The board surface of each base functions to support a pair of magnets at regular intervals. The board surfaces of the first base 2 and the second base 3 are substantially parallel in order to make the magnetic field formed between the pair of magnets uniform.

第1の基盤及び第2の基盤の内側の盤面には、回転中心から測定部位に対応する位置までの距離を半径とする円弧上のいずれかの位置に、核磁気共鳴用磁石4が配置されている。核磁気共鳴用磁石4を配置する盤面は、両基盤の中に組み込んでも良く、あるいは外側であってもよく、第1の基盤2の内側と第2の基盤3の外側、又は第1の基盤2の外側と第2の基盤3の内側であってもよい。本発明の磁場印加装置では、基盤に設置する磁石が一種類でよいため、回転速度を変えることで磁場変換周期を容易に設定でき、少ない労力及び低コストで基盤を製造することができる。 On the inner board of the first base and the second base, a magnet 4 for nuclear magnetic resonance is arranged at any position on an arc whose radius is the distance from the center of rotation to the position corresponding to the measurement site. ing. The board surface on which the nuclear magnetic resonance magnet 4 is arranged may be incorporated in both substrates or may be outside, and may be inside the first substrate 2 and outside the second substrate 3, or the first substrate. It may be the outside of 2 and the inside of the second base 3. In the magnetic field application device of the present invention, since only one type of magnet is installed on the substrate, the magnetic field conversion cycle can be easily set by changing the rotation speed, and the substrate can be manufactured with less labor and low cost.

本明細書において単に「基盤」というときは、第1の基盤2及び第2の基盤3の両方を意味する。基盤の形状は特に限定されないが、円形が好ましい。基盤は盤面を有する部材であれば足り、全体的に板状である必要はない。例えば、基盤は一部がスポーク又は網で構成された板状部材であってよく、全体的に磁石を収納するハウジングを有する箱状部材、円筒状部材又は円盤状部材であってもよい。 As used herein, the term "base" simply means both the first base 2 and the second base 3. The shape of the base is not particularly limited, but a circular shape is preferable. The base may be a member having a board surface, and does not have to be plate-shaped as a whole. For example, the base may be a plate-shaped member partially composed of spokes or nets, or may be a box-shaped member, a cylindrical member, or a disk-shaped member having a housing for accommodating magnets as a whole.

心棒1はモーター等の駆動機構(非表示)に連結されている。測定部位5は磁場が最も高く安定する位置であり、一般に、核磁気共鳴用磁石の中心部が通過する軌道V上の領域、即ち、その一部が上記軌道と重複する領域である。しかし、心棒1以外の方法で連結することも可能であり、その場合には心棒は不要である。また、核磁気共鳴用磁石の外形が心棒を超える大きさにすることも可能である。 The mandrel 1 is connected to a drive mechanism (not displayed) such as a motor. The measurement site 5 is a position where the magnetic field is the highest and stable, and is generally a region on the orbit V through which the central portion of the nuclear magnetic resonance magnet passes, that is, a region in which a part thereof overlaps with the orbit. However, it is also possible to connect by a method other than the mandrel 1, and in that case, the mandrel is unnecessary. It is also possible to make the outer shape of the nuclear magnetic resonance magnet larger than the mandrel.

第1の基盤2と第2の基盤3の間には、測定部位5を有するコイルユニット6が備えられている。測定部位5はコイルユニット6に固定され、その周囲には、一般に、RFコイル(非表示)が捲かれている。コイルユニット6は、フレーム等の磁場印加装置を支持する構造体(非表示)に固定されている。コイルユニット6は一対の核磁気共鳴用磁石4に接触しない位置に設置される。 A coil unit 6 having a measurement site 5 is provided between the first base 2 and the second base 3. The measurement site 5 is fixed to the coil unit 6, and an RF coil (not displayed) is generally wound around the measurement site 5. The coil unit 6 is fixed to a structure (not displayed) that supports a magnetic field application device such as a frame. The coil unit 6 is installed at a position where it does not come into contact with the pair of nuclear magnetic resonance magnets 4.

図3は、上記コイルユニット6の断面図である。コイルユニット6の測定部位5を挟む位置に、一対の電子スピン共鳴用電磁石7が対向して設置されている。電子スピン共鳴用電磁石7に積層して、傾斜磁場コイル8を設置してもよい。傾斜磁場コイル8を設置する位置は電子スピン共鳴用電磁石7の内側でも外側でもよい。電子スピン共鳴用電磁石7及び傾斜磁場コイル8は一体的に形成してもよい。 FIG. 3 is a cross-sectional view of the coil unit 6. A pair of electron spin resonance electromagnets 7 are installed facing each other at a position sandwiching the measurement portion 5 of the coil unit 6. The gradient magnetic field coil 8 may be installed by stacking it on the electron spin resonance electromagnet 7. The position where the gradient magnetic field coil 8 is installed may be inside or outside the electron spin resonance electromagnet 7. The electron spin resonance electromagnet 7 and the gradient magnetic field coil 8 may be integrally formed.

本発明の磁場印加装置は、電子スピン共鳴用電磁石7に対して電流を供給し調節し停止する電流制御機構を有する。電流は、核磁気共鳴用磁石4が測定部位を挟む位置に存在していない間は供給される。そのことで、測定対象物には電子スピン共鳴用磁場が印加される。一方、電流は、核磁気共鳴用磁石が測定部位を挟む位置に対向して存在している間は停止される。そのことで、測定対象物には核磁気共鳴用磁場が印加される。 The magnetic field application device of the present invention has a current control mechanism that supplies, adjusts, and stops a current to the electron spin resonance electromagnet 7. The current is supplied while the nuclear magnetic resonance magnet 4 is not present at a position sandwiching the measurement site. As a result, a magnetic field for electron spin resonance is applied to the object to be measured. On the other hand, the current is stopped while the nuclear magnetic resonance magnet is present facing the position sandwiching the measurement site. As a result, a magnetic field for nuclear magnetic resonance is applied to the object to be measured.

電子スピン共鳴用電磁石7は、印加する磁場を単純にオンオフするだけなく、核磁気共鳴用磁石4の漏洩磁場をキャンセリングする働きもする。即ち、電流制御機構は、核磁気共鳴用磁石4の漏洩磁場の強さに応じて電子スピン共鳴用電磁石7に供給する電流量(向きを含め)を徐々に変え、電子スピン共鳴磁場を限りなく広い範囲で一定にする機構を持つ。電流制御機構は、電磁石の電気特性に適した制御方式のバイポーラ型安定電源、磁場検出装置、制御部及びソフトウェア等の目的に適した装置を組み合わせて製造することができる。 The electron spin resonance electromagnet 7 not only simply turns the applied magnetic field on and off, but also cancels the leakage magnetic field of the nuclear magnetic resonance magnet 4. That is, the current control mechanism gradually changes the amount of current (including the direction) supplied to the electron spin resonance electromagnet 7 according to the strength of the leakage magnetic field of the nuclear magnetic resonance magnet 4, and makes the electron spin resonance magnetic field infinite. It has a mechanism to make it constant over a wide range. The current control mechanism can be manufactured by combining devices suitable for the purpose such as a bipolar stable power supply of a control method suitable for the electrical characteristics of the electromagnet, a magnetic field detection device, a control unit, and software.

従って、電流制御機構は、電子スピン共鳴用電磁石7に供給する電流量を制御することで、電子スピン共鳴用電磁石7の極を変えて最大限の磁力を出すことで漏洩磁場を抑えつつ、徐々に電流量(電力)を減じつつ一定の磁場を保つことで、電子スピン共鳴の時間を長くすることが好ましい。 Therefore, the current control mechanism gradually changes the pole of the electron spin resonance electromagnet 7 to generate the maximum magnetic force by controlling the amount of current supplied to the electron spin resonance electromagnet 7, while suppressing the leakage magnetic field. It is preferable to prolong the time of electron spin resonance by maintaining a constant magnetic field while reducing the amount of current (power).

核磁気共鳴用磁石4は、測定部位を挟む位置に配置され、撤収される。核磁気共鳴用磁石4の周期的な配置及び撤収は、例えば、第1の基盤2及び第2の基盤3を、同期及び等速度で回転させて行うことができる。同期回転とは、同時に同一速度で回転することをいう。その場合、核磁気共鳴用磁石4の配置及び撤収は周期的に行われる。 The nuclear magnetic resonance magnet 4 is arranged at a position sandwiching the measurement site and is withdrawn. The periodic arrangement and withdrawal of the nuclear magnetic resonance magnet 4 can be performed, for example, by rotating the first base 2 and the second base 3 at a synchronous and constant speed. Synchronous rotation means rotating at the same speed at the same time. In that case, the arrangement and withdrawal of the nuclear magnetic resonance magnet 4 is performed periodically.

図2では、核磁気共鳴用磁石4が測定部位5を挟む位置に存在していない。そのため、電子スピン共鳴用電磁石7に対して電流が供給され、測定対象物に電子スピン共鳴用磁場が印加されている状態にある。 In FIG. 2, the nuclear magnetic resonance magnet 4 does not exist at a position sandwiching the measurement site 5. Therefore, a current is supplied to the electron spin resonance electromagnet 7, and an electron spin resonance magnetic field is applied to the object to be measured.

図4は、図2と同様に、本発明の磁場印加装置の構造を示す模式図である。(A)は当該装置を上から見た平面図である。(B)は当該装置を横から見た正面図である。図4では、核磁気共鳴用磁石4が測定部位5を挟む位置に対向して存在している。そのため、電子スピン共鳴用電磁石7に対する電流は停止され、測定対象物に核磁気共鳴用磁場が印加されている状態にある。 FIG. 4 is a schematic view showing the structure of the magnetic field applying device of the present invention, as in FIG. (A) is a plan view of the device as viewed from above. (B) is a front view of the device as viewed from the side. In FIG. 4, the nuclear magnetic resonance magnet 4 is present so as to face the position where the measurement site 5 is sandwiched. Therefore, the current to the electron spin resonance electromagnet 7 is stopped, and the magnetic field for nuclear magnetic resonance is applied to the object to be measured.

基盤を配置する向きは、基盤の支持及び駆動に支障がない限り、限定されない。基盤を配置する向きは、盤面が水平面に対して垂直になる縦向き、盤面が水平面に対して平行になる横向き、及び盤面が水平面に対して垂直にも平行にもならない斜め向きのいずれでもよい。 The orientation in which the base is placed is not limited as long as the support and drive of the base are not hindered. The orientation of the base may be either vertical orientation in which the board surface is perpendicular to the horizontal plane, horizontal orientation in which the board surface is parallel to the horizontal plane, and diagonal orientation in which the board surface is neither vertical nor parallel to the horizontal plane. ..

測定を行う際に、第1の基盤2及び第2の基盤3は中心軸Iを中心にして同期回転する。基盤の駆動は、例えば、モーターの駆動力をプーリー、ローラー、ギア又はベルト等を介して心棒又は盤面の外周部に伝達する等の従来知られた駆動機構を利用して行うことができる。 When performing the measurement, the first base 2 and the second base 3 rotate synchronously with respect to the central axis I. The board can be driven by using a conventionally known drive mechanism such as transmitting the driving force of the motor to the mandrel or the outer peripheral portion of the board surface via a pulley, a roller, a gear, a belt or the like.

基盤を外周部で支持し、基盤の駆動力を外周部に伝達する場合は、磁石が配置される盤面に、第1の基盤及び第2の基盤を支持するための心棒を有しなくてもよい。基盤を外周部で支持する手段の具体例としては、ローラー及びベアリングが挙げられる。 When the base is supported by the outer peripheral portion and the driving force of the base is transmitted to the outer peripheral portion, it is not necessary to have a mandrel for supporting the first base and the second base on the board surface on which the magnet is arranged. Good. Specific examples of the means for supporting the base on the outer peripheral portion include rollers and bearings.

基盤の盤面に心棒を有しない場合、磁石の設置領域が心棒によって制限されないため、磁石の配置及び寸法の自由度が拡大する。また、第1の基盤と第2の基盤の間隔を変化させ易い。そのことで、測定対象の寸法に応じて測定部位の寸法を最適なものに調節することが可能になる。 When the mandrel is not provided on the board surface of the base, the magnet installation area is not limited by the mandrel, so that the degree of freedom in the arrangement and dimension of the magnet is increased. In addition, the distance between the first base and the second base can be easily changed. As a result, the size of the measurement site can be adjusted to the optimum size according to the size of the measurement target.

電子スピン共鳴用電磁石7は約−10〜+10ミリテスラの磁場を発生させる。電子スピン共鳴用電磁石7が測定対象物に印加する磁場強度が約1ミリテスラ未満であると測定感度が低下し易くなる。電子スピン共鳴用電磁石7が磁場を発生させる能力は大きければ大きいほどよい。電子スピン共鳴用電磁石7の磁場発生能力が大きいほど、核磁気共鳴用磁石4の漏洩磁場をキャンセリングする能力も大きくなる。 The electron spin resonance electromagnet 7 generates a magnetic field of about -10 to +10 millitesla. If the magnetic field strength applied to the object to be measured by the electron spin resonance electromagnet 7 is less than about 1 millitesla, the measurement sensitivity tends to decrease. The greater the ability of the electron spin resonance electromagnet 7 to generate a magnetic field, the better. The greater the magnetic field generation ability of the electron spin resonance electromagnet 7, the greater the ability of the nuclear magnetic resonance magnet 4 to cancel the leakage magnetic field.

電子スピン共鳴画像を測定する際には、電子スピン共鳴用電磁石7が測定対象物に印加する磁場は電流制御機構が適当な大きさに調節する。電子スピン共鳴用電磁石7が測定対象物に印加する磁場強度は、生体試料の場合には約1〜10ミリテスラ、好ましくは約3〜約7ミリテスラ、より好ましくは約4〜約6ミリテスラである。なお、小さな生物試料や固体試料など電子スピン共鳴電磁波の浸透性が高い場合には、10ミリテスラを大きく超えても良い。 When measuring an electron spin resonance image, the current control mechanism adjusts the magnetic field applied to the object to be measured by the electron spin resonance electromagnet 7 to an appropriate magnitude. The magnetic field strength applied to the object to be measured by the electron spin resonance electromagnet 7 is about 1 to 10 millitesla, preferably about 3 to about 7 millitesla, and more preferably about 4 to about 6 millitesla in the case of a biological sample. When the permeability of the electron spin resonance electromagnetic wave is high, such as a small biological sample or a solid sample, it may greatly exceed 10 millitesla.

核磁気共鳴用磁石4は約0.1テスラ以上の磁場を発生させる。核磁気共鳴用磁石が発生する磁場が約0.1テスラ未満であると測定部位における磁場の強度が不十分になり、磁石対の間隔を十分に大きくすることができなくなる。核磁気共鳴用磁石が測定対象物に印加する磁場を大きくすることで電子スピン共鳴/核磁気共鳴画像装置の感度及び空間分解能が向上する。核磁気共鳴用磁石が測定対象物に印加する磁場強度は、好ましくは約0.2〜約2テスラであり、より好ましくは約0.3〜約0.6テスラである。 The nuclear magnetic resonance magnet 4 generates a magnetic field of about 0.1 tesla or more. If the magnetic field generated by the nuclear magnetic resonance magnet is less than about 0.1 tesla, the strength of the magnetic field at the measurement site becomes insufficient, and the distance between the magnet pairs cannot be sufficiently increased. By increasing the magnetic field applied to the object to be measured by the magnet for nuclear magnetic resonance, the sensitivity and spatial resolution of the electron spin resonance / nuclear magnetic resonance imaging device are improved. The magnetic field strength applied to the object to be measured by the magnet for nuclear magnetic resonance is preferably about 0.2 to about 2 Tesla, and more preferably about 0.3 to about 0.6 Tesla.

磁石対の間隔は、測定対象物が測定部位に入る寸法に調節する。測定対象が小物又は分離した生体の一部(例えば、歯)等である場合、磁石対の間隔は、約2cm以上であることが好ましい。測定対象が小型動物又は生体の一部(例えば、関節)等である場合、磁石対の間隔は、約10cm以上であることが好ましい。測定対象が大型動物又は人体全部等である場合は、磁石対の間隔は約50cm以上であることが好ましい。磁石対の間隔の上限は必要になる磁力及び設備の寸法等を考慮して、約1mと考えられる。 The distance between the magnet pairs is adjusted so that the object to be measured enters the measurement site. When the measurement target is a small object or a part of a separated living body (for example, a tooth), the distance between the magnet pairs is preferably about 2 cm or more. When the measurement target is a small animal or a part of a living body (for example, a joint), the distance between the magnet pairs is preferably about 10 cm or more. When the measurement target is a large animal or the entire human body, the distance between the magnet pairs is preferably about 50 cm or more. The upper limit of the distance between the magnet pairs is considered to be about 1 m in consideration of the required magnetic force and the dimensions of the equipment.

核磁気共鳴用磁石4に使用しうる磁石の具体例としては、永久磁石、電磁石、及び超伝導磁石等が挙げられる。これらの磁石は併用してもよい。磁石の種類は、要求される磁場の大きさを考慮して適宜選択される。本発明では、核磁気共鳴用磁石は基盤に固定した状態で回転させる必要があり、かかる使用形態を考慮すると、電力供給が不要の永久磁石が望ましい。磁石の形状は、特に限定されないが、実質的に円柱形又は多角柱形のものを使用してよい。 Specific examples of magnets that can be used for the nuclear magnetic resonance magnet 4 include permanent magnets, electromagnets, superconducting magnets, and the like. These magnets may be used together. The type of magnet is appropriately selected in consideration of the required magnetic field magnitude. In the present invention, the magnet for nuclear magnetic resonance needs to be rotated while being fixed to the substrate, and in consideration of such a usage pattern, a permanent magnet that does not require power supply is desirable. The shape of the magnet is not particularly limited, but a substantially cylindrical or polygonal prism shape may be used.

図5は、本発明で使用する核磁気共鳴用磁石の配置の変形例を示す平面図である。第1の基盤1の盤面の上に、核磁気共鳴用磁石4が3個設置されている。盤面に設置する核磁気共鳴用磁石の数は2個であっても、4個以上であってもよい。核磁気共鳴用磁石の数が多いほど、基盤のバランスの均一性が向上する。また、核磁気共鳴用磁石の数が多いほど、測定を行う際に、基盤の回転数を低くすることができる。その結果、磁場印加装置の低労力で安定した運転が可能になる。 FIG. 5 is a plan view showing a modified example of the arrangement of the magnet for nuclear magnetic resonance used in the present invention. Three magnets 4 for nuclear magnetic resonance are installed on the board surface of the first base 1. The number of nuclear magnetic resonance magnets installed on the board may be two or four or more. The greater the number of magnets for nuclear magnetic resonance, the better the uniformity of the balance of the substrate. Further, the larger the number of magnets for nuclear magnetic resonance, the lower the rotation speed of the substrate when performing the measurement. As a result, stable operation of the magnetic field applying device becomes possible with low labor.

本発明の電子スピン共鳴/核磁気共鳴画像装置は、本発明の磁場印加装置、通常の様式により上記磁場印加装置に接続された、RFパルス照射装置、測定対象が発信する信号を検出する装置及び検出した信号を画像化する装置等の通常使用される周辺機器、及び要すれば、これらを適当な配置で固定するフレーム等を有するものである。 The electron spin resonance / magnetic resonance imaging device of the present invention includes a magnetic field application device of the present invention, an RF pulse irradiation device connected to the magnetic field application device in a usual manner, a device for detecting a signal transmitted by a measurement target, and a device for detecting a signal transmitted by a measurement target. It has a commonly used peripheral device such as a device for imaging the detected signal, and if necessary, a frame or the like for fixing these in an appropriate arrangement.

本発明は電子スピン共鳴/核磁気共鳴画像化装置としてだけでなく、外部磁場に依存する磁気共鳴画像装置に広く活用できる。即ち、本発明は電子スピン共鳴を行わない場合でも外部磁場が画像に影響するフィールドサイクル法を含む全ての核磁気共鳴画像法に応用でき、その場合の適正外部磁場は本記載と異なる。 The present invention can be widely used not only as an electron spin resonance / nuclear magnetic resonance imaging device but also as a magnetic resonance imaging device that depends on an external magnetic field. That is, the present invention can be applied to all nuclear magnetic resonance imaging methods including the field cycle method in which an external magnetic field affects an image even when electron spin resonance is not performed, and the appropriate external magnetic field in that case is different from the present description.

I…中心軸、
V…磁石の中心部が通過する軌道、
1、101…心棒、
2、102…第1の基盤、
3、103…第2の基盤、
4…核磁気共鳴用磁石、
5、106…測定部位、
6…コイルユニット、
7…電子スピン共鳴用電磁石、
8…傾斜磁場コイル、
104…電子スピン共鳴用弱磁力磁石、
105…核磁気共鳴用強磁力磁石。
I ... Central axis,
V ... The orbit through which the center of the magnet passes,
1, 101 ... Mandrel,
2, 102 ... First base,
3, 103 ... Second foundation,
4 ... Magnet for nuclear magnetic resonance,
5, 106 ... Measurement site,
6 ... Coil unit,
7 ... Electromagnet for electron spin resonance,
8 ... Inclined magnetic field coil,
104 ... Weak magnetic magnet for electron spin resonance,
105 ... Strong magnetic magnet for nuclear magnetic resonance.

Claims (9)

所定の位置に固定された測定部位と、
測定部位を挟む位置に対向して設置された電子スピン共鳴用電磁石と、
該電磁石に対して電流を供給し調節し停止する電流制御機構と、
電子スピン共鳴用電磁石に対して電流が停止されている間は測定部位を挟む位置に対向して存在し、電子スピン共鳴用電磁石に対して電流が供給されている間は測定部位を挟む位置に存在しない核磁気共鳴用磁石と、
核磁気共鳴用磁石を、測定部位を挟む位置に配置し撤収する核磁気共鳴用磁石移動機構とを、
備える磁場印加装置。
A measurement site fixed in place and
Electromagnets for electron spin resonance installed facing each other across the measurement site,
A current control mechanism that supplies current to the electromagnet, adjusts it, and stops it.
While the current is stopped for the electron spin resonance electromagnet, it exists opposite to the position that sandwiches the measurement part, and while the current is supplied to the electron spin resonance electromagnet, it is in the position that sandwiches the measurement part. A magnet for nuclear magnetic resonance that does not exist,
A magnet moving mechanism for nuclear magnetic resonance, in which the magnet for nuclear magnetic resonance is placed at a position sandwiching the measurement site and withdrawn.
A magnetic field application device provided.
前記電子スピン共鳴用電磁石が測定対象物に印加する磁場強度が1〜10ミリテスラである請求項1に記載の磁場印加装置。 The magnetic field application device according to claim 1, wherein the magnetic field strength applied to the object to be measured by the electron spin resonance electromagnet is 1 to 10 millitesla. 前記核磁気共鳴用磁石が永久磁石である請求項1又は2に記載の磁場印加装置。 The magnetic field application device according to claim 1 or 2, wherein the magnet for nuclear magnetic resonance is a permanent magnet. 前記核磁気共鳴用磁石移動機構は、
測定部位を挟む相互に平行な第1の基盤及び第2の基盤であって、それらの盤面と平行に回転する第1の基盤及び第2の基盤、
第1の基盤及び第2の基盤の各盤面において、回転中心から測定部位に対応する位置までの距離を半径とする円弧上のいずれかの位置に、対向して設置された核磁気共鳴用磁石、及び
第1の基盤及び第2の基盤を同期回転させる機構
を備えるものである、請求項1〜3のいずれか一項に記載の磁場印加装置。
The magnet moving mechanism for nuclear magnetic resonance is
A first base and a second base that are parallel to each other and sandwich the measurement site, and the first base and the second base that rotate in parallel with their board surfaces.
On each board surface of the first base and the second base, magnets for nuclear magnetic resonance are installed facing each other at any position on an arc whose radius is the distance from the center of rotation to the position corresponding to the measurement site. The magnetic field application device according to any one of claims 1 to 3, further comprising a mechanism for synchronously rotating the first base and the second base.
前記第1の基盤及び第2の基盤が、円形、円筒形又は円盤形である請求項4に記載の磁場印加装置。 The first base and second base is, the magnetic field application device according to claim 4 yen form a cylindrical or disk-shaped. 前記核磁気共鳴用磁石が測定対象物に印加する磁場強度が0.1テスラ以上である請求項1〜5のいずれか一項に記載の磁場印加装置。 The magnetic field strength applied to the object to be measured by the nuclear magnetic resonance magnet is 0 . The magnetic field application device according to any one of claims 1 to 5, which is 1 tesla or more. 電流制御機構と磁石移動機構を同期して任意の周期で磁場を変換する機構を更に備える請求項1〜6のいずれか一項に記載の磁場印加装置。 The magnetic field application device according to any one of claims 1 to 6, further comprising a mechanism for synchronizing a current control mechanism and a magnet moving mechanism to convert a magnetic field at an arbitrary cycle. 電子スピン共鳴/核磁気共鳴画像装置用である請求項1〜7のいずれか一項に記載の磁場印加装置。 The magnetic field application device according to any one of claims 1 to 7, which is for an electron spin resonance / nuclear magnetic resonance imaging device. 請求項1〜7のいずれか一項に記載の磁場印加装置を備える電子スピン共鳴/核磁気共鳴画像装置。 An electron spin resonance / nuclear magnetic resonance imaging apparatus comprising the magnetic field application device according to any one of claims 1 to 7.
JP2018558051A 2016-12-21 2017-12-20 Magnetic field application device Active JP6840398B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016248000 2016-12-21
JP2016248000 2016-12-21
PCT/JP2017/045799 WO2018117185A1 (en) 2016-12-21 2017-12-20 Magnetic field imparting device

Publications (2)

Publication Number Publication Date
JPWO2018117185A1 JPWO2018117185A1 (en) 2019-10-31
JP6840398B2 true JP6840398B2 (en) 2021-03-10

Family

ID=62627451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018558051A Active JP6840398B2 (en) 2016-12-21 2017-12-20 Magnetic field application device

Country Status (2)

Country Link
JP (1) JP6840398B2 (en)
WO (1) WO2018117185A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276241A (en) * 1996-04-10 1997-10-28 Toshiba Corp Magnetic resonance imaging device
EP1593342B1 (en) * 2003-02-10 2011-12-14 Hitachi Metals, Ltd. Magnetic field-producing device
JP4890945B2 (en) * 2006-05-29 2012-03-07 国立大学法人九州大学 Magnetic resonance imaging system
EP2296546B1 (en) * 2008-07-08 2016-02-10 Kyushu University Measurement device and measurement method
JPWO2016174993A1 (en) * 2015-04-28 2018-02-22 国立大学法人九州大学 Measuring device

Also Published As

Publication number Publication date
WO2018117185A1 (en) 2018-06-28
JPWO2018117185A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
KR102020534B1 (en) System and method for portable magnetic resonance imaging using a rotating array of permanent magnets
US20140111202A1 (en) System and Method for Portable Magnetic Resonance Imaging Using a Rotating Array of Magnets
CN1524187A (en) Method for high resolution magnetic resonance analysis using magic angle technique
JPS62117541A (en) Magnetic resonance imaging apparatus
JP5574386B2 (en) Measuring device and measuring method
KR102350779B1 (en) Low-noise magnetic resonance imaging using low harmonic pulse sequences
JP2002010993A (en) Magnetic resonance device provided with rose ring
US20210116525A1 (en) Hybrid mpi and mri/ct imaging apparatus and method
JP6840398B2 (en) Magnetic field application device
Madsen et al. Observation of force-detected nuclear magnetic resonance in a homogeneous field
Bauer et al. Design of a permanent magnet with a mechanical sweep suitable for variable-temperature continuous-wave and pulsed EPR spectroscopy
JP2008039699A (en) Magnetic field application device for particle orientation, and particle structure analysis method
JP5892246B2 (en) Magnetic circuit
US11143725B2 (en) Sensor for a nuclear magnetic resonance device
JP5212972B2 (en) Measuring device and measuring method
Ajithkumar et al. Homonuclear correlation experiments for quadrupolar nuclei, spinning away from the magic angle
JP2018051069A (en) External magnetic field generator for electron spin resonance/nuclear magnetic resonance imaging apparatus
JP2018051068A (en) External magnetic field generator for electron spin resonance/nuclear magnetic resonance imaging apparatus
JP2005147693A (en) Electron spin resonance state measuring device and measuring method
Phuc Development of portable low field NMR magnet: Design and construction
JP4034223B2 (en) Superconducting magnet for NMR apparatus and NMR apparatus
WO2014007124A1 (en) Magnetic field application device
Kamide et al. 14N NMR of magnetically oriented microcrystals
CN116148727A (en) Multi-detection mode magnetic field compensation device, magnetic field compensation method and magnetic shielding system
JPH07163539A (en) Magnetic resonance imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201005

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201005

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6840398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250