JPS60221710A - Branching method of multicore optical fiber - Google Patents

Branching method of multicore optical fiber

Info

Publication number
JPS60221710A
JPS60221710A JP7908984A JP7908984A JPS60221710A JP S60221710 A JPS60221710 A JP S60221710A JP 7908984 A JP7908984 A JP 7908984A JP 7908984 A JP7908984 A JP 7908984A JP S60221710 A JPS60221710 A JP S60221710A
Authority
JP
Japan
Prior art keywords
optical fiber
refractive index
rod lens
core optical
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7908984A
Other languages
Japanese (ja)
Inventor
Masayuki Nishimura
正幸 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7908984A priority Critical patent/JPS60221710A/en
Publication of JPS60221710A publication Critical patent/JPS60221710A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2848Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers having refractive means, e.g. imaging elements between light guides as splitting, branching and/or combining devices, e.g. lenses, holograms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To branch the multicore optical fiber stably by specifying respective refractive index distributions of two kinds of cascaded distributed index rod lens as principal constituent elements of a demultiplexing part. CONSTITUTION:The multicore optical fiber 3 and a single-core optical fiber 5 are connected mutually by using two kinds of distributed index rod lens 4 and 4'. Refractive index distributions of those rod lenses 4 and 4' are specified as shown by equations I and II. In the equations, n0 is a maximum refractive index, A1 and A2 are different refractive index constants, and (r) is the radius of the rod lenses. Then, when lengths of the rod lenses 4 and 4' are denoted as l1 and l2 and a quarter as long as a snaking period, namely, when l1=pi/2(A1)<1/2> and l2=pi/2(A2)<1/2>, an image on an end surface of one rod lens 4 is magnified and formed on an end surface of the other rod lens 4' to (A1/A2)<1/2>.

Description

【発明の詳細な説明】 [技術分野] 本発明は多芯コア光ファイバの各コアの光信号を分岐す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for branching optical signals of each core of a multi-core optical fiber.

[従来技術とその問題点コ 第1図(tL)、(6)に多芯コア光ファイバを断面図
で例示する。
[Prior art and its problems] Figures 1 (tL) and (6) illustrate a multi-core optical fiber in a cross-sectional view.

図において、1はコアであり、2はクラッド層であり、
コア1およびクラッド層2よりなる光ファイバは通常石
英ガラスにより形成され、 (tL)図に示すように、
複数の光ファイバのクラッド層2が相互に平面状に固着
されたもの、(名)図に示すように、複数の光ファイバ
のクラッド層2が束ねられた状態で相互に固着されたも
のがある。
In the figure, 1 is the core, 2 is the cladding layer,
An optical fiber consisting of a core 1 and a cladding layer 2 is usually made of quartz glass, and as shown in the (tL) figure,
There is one in which the cladding layers 2 of a plurality of optical fibers are fixed to each other in a planar shape, and there is one in which the cladding layers 2 of a plurality of optical fibers are fixed to each other in a bundled state as shown in the figure. .

このような多芯コア光ファイバは、軽量、細径という光
ファイバの利点をさらに進め、高密度な光フアイバケー
ブルを実現できるものとして重要である。
Such multi-core optical fibers are important because they further enhance the advantages of optical fibers, such as light weight and small diameter, and can realize high-density optical fiber cables.

しかし、多芯コア光ファイバは、複数のコアが一体とな
っているため、各々のコアを伝搬している光信号を分離
して取り出す、あるいは別々の光ファイバに分岐して接
続するための特別な技術が必要である。
However, since multi-core optical fibers have multiple cores integrated into one, special methods are required to separate and extract the optical signals propagating through each core, or to branch and connect them to separate optical fibers. technology is required.

これまで提案されている分岐方法として、まず多芯コア
光ファイバの断面寸法をテーパー状に変化させ、その一
方を接続すべき多芯コア光ファイバと同一寸法とし、他
方をコアの配置が相似となるように配列した複数の単芯
コア光ファイバの断面形状と同一寸法としたテーパー状
分岐用多芯コア光ファイバによる方法がある。
The branching method that has been proposed so far is to first change the cross-sectional dimensions of the multi-core optical fiber into a tapered shape, make one side the same size as the multi-core optical fiber to be connected, and make the other side similar in core arrangement. There is a method using a tapered branching multi-core optical fiber having the same cross-sectional shape as the cross-sectional shape of a plurality of single-core optical fibers arranged so as to have the same dimensions.

しかし、このような形状の多芯コア光ファイバの使用は
両端での寸法精度を厳しく要求されるため、極めて製造
が難しい。
However, the use of a multi-core optical fiber having such a shape requires strict dimensional accuracy at both ends, making it extremely difficult to manufacture.

;’j 、多芯コア光ファイバの端面をレンズで適当な
倍率に拡大し、コアの配置が相似となるように配列させ
た単芯コア光ファイバの端面に結像させることにより、
それぞれのコア同志を対応させる分岐方法も考えられる
;'j By enlarging the end face of a multi-core optical fiber to an appropriate magnification with a lens and focusing it on the end face of a single-core optical fiber whose cores are arranged in a similar manner,
A branching method in which each core corresponds to another may also be considered.

しかし、この場合、像の倍率はレンズとそれぞれの光フ
アイバ端面との間の距離に依存し、しかもコア間の漏え
いをな(すためには、光ファイバの端面を正確に結像位
置に配置することが不可欠であるから、光ファイバの端
面とレンズとの間の間隔を高精度に調整する必要がある
。このことは、着脱を繰り返すコネクタの場合などには
、極めて不便であり、簡易な分岐方法とはいえない。
However, in this case, the image magnification depends on the distance between the lens and the end face of each optical fiber, and in order to prevent leakage between the cores, the end face of the optical fiber must be placed precisely at the imaging position. Because it is essential to It cannot be called a branching method.

[発明の開示] 本発明は、以上のような従来技術の欠点を解消し、容易
に作製可能であり、しかも簡単に取り扱える多芯コア光
ファイバの分岐方法を提供するものである。
[Disclosure of the Invention] The present invention solves the above-mentioned drawbacks of the prior art and provides a method for branching a multi-core optical fiber that can be easily produced and handled.

第2図は本発明に基づく分岐部分の構成を示している。FIG. 2 shows the configuration of a branch section according to the invention.

分岐部分の主要構成要素は縦続接続された2種の屈折率
分布型ロッドレンズ4,4′である。
The main components of the branch section are two types of gradient index rod lenses 4 and 4' connected in series.

ここで、それぞれの屈折率分布をほぼ、′ただし、no
は最大屈折率、AI+A2は異なる屈折率分布定数、r
はロッドレンズ半径を示し、それぞれのロッドレンズの
長さQl、Q2を蛇行周期の1/4、すなわち、 Q+=π/25+ + Q 2:π/2はとなるように
、形成すると、第3図に示すように、一方のロッドレン
ズ4の端面上の像は、他方のロッドレンズ4′の端面上
にF口i倍に拡大されて結像する。
Here, each refractive index distribution is approximately ', but no
is the maximum refractive index, AI+A2 is the different refractive index distribution constant, r
indicates the radius of the rod lens, and if the length of each rod lens Ql and Q2 is formed to be 1/4 of the meandering period, that is, Q+=π/25+ + Q2:π/2, then the third As shown in the figure, the image on the end surface of one rod lens 4 is magnified by a factor of F and formed on the end surface of the other rod lens 4'.

前記の理由は次に示すとおりである。通常ロッドレンズ
Rの屈折率分布は、第4図に示すように、はぼ放物線分
布をしている。これを数式で表わすである。ここで、こ
のロッドレンズR内を進む光源の軌跡を考えると、第5
図に示声ように、蛇行A ” A +のロッドレンズの
場合、蛇行周期の1/4の長さ91は、 Q+=□ 0 A=A2のロッドレンズの場合、蛇行周期の1/4の長
さQ2は、 Q2=二となる。
The reason for the above is as follows. Usually, the refractive index distribution of the rod lens R has a nearly parabolic distribution, as shown in FIG. This is expressed as a mathematical formula. Now, considering the trajectory of the light source traveling inside this rod lens R, the fifth
As shown in the figure, in the case of a rod lens with meandering A '' A +, the length 91 is 1/4 of the meandering period, Q + = □ 0 In the case of a rod lens with A = A2, the length 91 is 1/4 of the meandering period The length Q2 is Q2=2.

2r訂 そこで、第3図に示すように、多芯コア光ファイバ3の
端面を一方のロッドレンズ4の端面に密着させ、他方の
ロッドレンズ4′の端面に多芯コア光ファイバのコアの
配置と相似となる形で、しかも凸マi倍の寸法となるよ
う単芯コア光ファイノく5を配列させて密着接続すれば
、個々のコアは、一対一に対応するので、各々のコアを
伝搬する光信号を分離して、取り出すことができる。
2r revision Therefore, as shown in FIG. 3, the end face of the multi-core optical fiber 3 is brought into close contact with the end face of one rod lens 4, and the core of the multi-core optical fiber is placed on the end face of the other rod lens 4'. If the single-core optical fibers 5 are arranged and closely connected in a shape similar to that of the convex i times the convexity, the individual cores will have a one-to-one correspondence, so the propagation of each core will be The optical signals can be separated and extracted.

[効果コ ・λを本発明による分岐方法の実施では、構成部品が2
種の屈折率分布型ロッドレンズのみであり、極めて簡単
に作製できる。
[Effect λ] In the implementation of the branching method according to the present invention, the component parts are 2
It is only a kind of graded refractive index rod lens and can be produced extremely easily.

光ファイバを接続する場合には、光)1イlく端面をロ
ッドレンズ端面に密着させればよいので・、軸方向に位
置を調整する必要がない。しかも端面間に屈折率整合液
を注入すれば、フレネル反射も防止することが、でき、
ロスを小さくすることができる。
When connecting an optical fiber, it is only necessary to bring the end face of the optical fiber into close contact with the end face of the rod lens, so there is no need to adjust the position in the axial direction. Furthermore, by injecting a refractive index matching liquid between the end faces, Fresnel reflection can be prevented.
Loss can be reduced.

さらに、結像倍率は2個のロッドレンズの屈折率定数の
関係のみで決定されるので、極めて安定である。
Furthermore, since the imaging magnification is determined only by the relationship between the refractive index constants of the two rod lenses, it is extremely stable.

以上説明のように、本発明は、多芯コア光ファイバを簡
単な分岐器で容易にしかも安定に分岐することができる
As described above, the present invention allows multi-core optical fibers to be easily and stably branched using a simple splitter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(^)、(6)は多芯コア光フアイバ例の断面図
である。 第2図は本発明に基づく分岐部分の構成を示す。 第3図は2個のロッドレンズによる原理説明図である。 第4図はロッドレンズの断面内部屈折率分布を示す。 第5図は光源軌跡を示す説明図である。 1・・・コア、2・・・クラッド層、3・・・多芯コア
光ファイバ、4.4’・・・屈折率分布型ロッドレンズ
、5・・・単芯コア光ファイバ。 代理人 、弁理士 青木秀實 W1図 (a) (b’) 祈3図
FIGS. 1(^) and 1(6) are cross-sectional views of examples of multi-core optical fibers. FIG. 2 shows the configuration of a branch section according to the invention. FIG. 3 is an explanatory diagram of the principle using two rod lenses. FIG. 4 shows the internal refractive index distribution in the cross section of the rod lens. FIG. 5 is an explanatory diagram showing a light source locus. DESCRIPTION OF SYMBOLS 1... Core, 2... Clad layer, 3... Multicore optical fiber, 4.4'... Gradient index rod lens, 5... Single core optical fiber. Agent, Patent Attorney Hidemi Aoki W1 Figure (a) (b') Inori Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)異なる屈折率分布定数A1. A2により、屈折
率−隻 分布がそれぞれほぼn(r)=no(1+A+r’ )
 およびrはレンズ半径)を満たし、かつそれぞれの長
さがπ/2a1およびπ/2儒である2種の屈折率分布
型ロッドレンズを接続し、一方の端に多芯コア光ファイ
バの端面を密着接続し、他方の端に多芯コア光ファイバ
のコアの配置と相似で、しかも凸フi倍の大きさとなる
ような形に単芯コア光ファイバを配列させて密着接続す
ることを特徴とする多芯コア光ファイバの分岐方法。
(1) Different refractive index distribution constant A1. Due to A2, the refractive index-ship distribution is approximately n(r)=no(1+A+r')
and r is the lens radius), and the lengths of the rod lenses are π/2a1 and π/2a1, respectively, and the end face of a multi-core optical fiber is connected to one end. The method is characterized in that single-core optical fibers are arranged and closely connected at the other end in a shape that is similar to the core arrangement of the multi-core optical fiber and has a convexity i times the size. A method for branching multi-core optical fibers.
(2)端面間に屈折率整合液を注入することを特徴とす
る特許請求の範囲第1項記載の多芯コア光ファイバの分
岐方法。
(2) A method for branching a multi-core optical fiber according to claim 1, characterized in that a refractive index matching liquid is injected between the end faces.
JP7908984A 1984-04-18 1984-04-18 Branching method of multicore optical fiber Pending JPS60221710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7908984A JPS60221710A (en) 1984-04-18 1984-04-18 Branching method of multicore optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7908984A JPS60221710A (en) 1984-04-18 1984-04-18 Branching method of multicore optical fiber

Publications (1)

Publication Number Publication Date
JPS60221710A true JPS60221710A (en) 1985-11-06

Family

ID=13680151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7908984A Pending JPS60221710A (en) 1984-04-18 1984-04-18 Branching method of multicore optical fiber

Country Status (1)

Country Link
JP (1) JPS60221710A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311211A (en) * 1987-06-12 1988-12-20 Natl Aerospace Lab Cylindrical optical star coupler
US5896213A (en) * 1995-03-17 1999-04-20 Nec Corporation Optical fiber network system
WO2003048826A3 (en) * 2001-12-07 2003-07-31 Blazephotonics Ltd Arrayed-waveguide grating with two connected free-propagation regions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146103A (en) * 1980-04-15 1981-11-13 Mitsubishi Electric Corp Optical multidistributor
JPS60189706A (en) * 1984-03-09 1985-09-27 Nippon Telegr & Teleph Corp <Ntt> Branching device for multicore optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146103A (en) * 1980-04-15 1981-11-13 Mitsubishi Electric Corp Optical multidistributor
JPS60189706A (en) * 1984-03-09 1985-09-27 Nippon Telegr & Teleph Corp <Ntt> Branching device for multicore optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311211A (en) * 1987-06-12 1988-12-20 Natl Aerospace Lab Cylindrical optical star coupler
US5896213A (en) * 1995-03-17 1999-04-20 Nec Corporation Optical fiber network system
WO2003048826A3 (en) * 2001-12-07 2003-07-31 Blazephotonics Ltd Arrayed-waveguide grating with two connected free-propagation regions

Similar Documents

Publication Publication Date Title
CA1320372C (en) Non-adiabatically-tapered connector
US4083625A (en) Optical fiber junction device
US4737004A (en) Expanded end optical fiber and associated coupling arrangements
US3917383A (en) Optical waveguide bundle connector
JPH09505907A (en) Optical fiber interconnection structure using core extension with automatic alignment function
US4898444A (en) Non-invasive optical coupler
US4431261A (en) Fiber optic splitter
US6049643A (en) Modal evolution optical coupler and method for manufacturing the coupler
CN1154859C (en) Device for reflecting light
JP2004061830A (en) Optical fiber parts
JPS60221710A (en) Branching method of multicore optical fiber
US12019292B2 (en) Photoinduced optical interconnect
US4747651A (en) Three-way start splitter for optical wave guides
JPS5824110A (en) Circular star coupler
JPS6343111A (en) Optical fiber branching device
JP2805533B2 (en) Fiber fusion type optical branch coupler
JPH10153719A (en) Multiplex-mode optical coupler and its manufacture
CA2320769A1 (en) Optical device
JPS6055801B2 (en) optical circuit element
CN113820792A (en) Fan-in fan-out device based on hot core expansion array tail fiber and implementation method thereof
JPS5848006A (en) Optical branching circuit and its production
GB2170923A (en) Optical waveguide structures and their fabrication
JPH0221563B2 (en)
Kamijo et al. Light propagation in thermally fused biconical taper single-mode optical fiber couplers
JPS6217766Y2 (en)