JPS6055801B2 - optical circuit element - Google Patents

optical circuit element

Info

Publication number
JPS6055801B2
JPS6055801B2 JP4009077A JP4009077A JPS6055801B2 JP S6055801 B2 JPS6055801 B2 JP S6055801B2 JP 4009077 A JP4009077 A JP 4009077A JP 4009077 A JP4009077 A JP 4009077A JP S6055801 B2 JPS6055801 B2 JP S6055801B2
Authority
JP
Japan
Prior art keywords
lens
optical
length
circuit element
gradient index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4009077A
Other languages
Japanese (ja)
Other versions
JPS53125040A (en
Inventor
輝仁 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4009077A priority Critical patent/JPS6055801B2/en
Publication of JPS53125040A publication Critical patent/JPS53125040A/en
Publication of JPS6055801B2 publication Critical patent/JPS6055801B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】 この発明は光回路素子特に光情報伝送における光ファイ
バ用の分配器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to optical circuit elements, particularly to a splitter for optical fibers in optical information transmission.

従来この種の装置として第1図に示すものがあつた。図
において、1、2、3はマルチモード光ファイバ束、4
、5、6はそれら光ファイバの光を混合する為のガラス
製光混合器、4a、5a、6aはそれらのコア部、4b
、5b、6bはクラッド部、7は光ファイバ束の分岐部
、7c、7d、7eはその分岐部の一部分の束、8、9
、10、11、12、13は光ファイバ束用コネクタで
ある。従来の三端子双方向光ファイバ分配器は上記のよ
うに構成され、例えば、光ファイバ束用コネクタ8に入
る光ファイバ束の一部が光源によつて励振されている場
合、コネクタ9を通じて光フアイーバ束1の一部に光が
伝搬される。
A conventional device of this type is shown in FIG. In the figure, 1, 2, 3 are multimode optical fiber bundles, 4
, 5 and 6 are glass optical mixers for mixing the lights of these optical fibers, 4a, 5a and 6a are their core parts, 4b
, 5b, 6b are cladding parts, 7 is a branch part of the optical fiber bundle, 7c, 7d, 7e are part bundles of the branch parts, 8, 9
, 10, 11, 12, and 13 are optical fiber bundle connectors. The conventional three-terminal bidirectional optical fiber distributor is configured as described above. For example, when a part of the optical fiber bundle entering the optical fiber bundle connector 8 is excited by a light source, the optical fiber is connected to the optical fiber through the connector 9. Light is propagated in part of the bundle 1.

次にガラス製光混合器4に光は導かれ、このコア部4a
内で光ファイバ束全体にわたつて光が伝搬するように混
合され、分岐された光ファイバ束7に入る。ここで光フ
ァイバ束7は光ファイバ束7cと7dに分岐・され、そ
れぞれに分けられた光は次の光混合器5、6に導かれ、
光ファイバ束2、3全体を励振するように混合され、光
ファイバ束用コネクタ10,11あるいは12,13を
通じて、他の二端子部へ供給される。コネクタ8,11
,13から先の光ファイバ束を分け光源部と受光部に接
続しておけば、三端子間の双方向光情報伝送ができる。
従来の三端子双方向光ファイバ分配器は以上のように構
成されているので、単芯の光ファイバの場合には適用で
きず、多数のマルチモード光ファイバ束を使用している
関係上、光ファイバ束の面積に対する光ファイバ全コア
部の面積の割合が低く接続部の損失を低く押えることが
困難であるなどの欠点があつた。
Next, the light is guided to a glass optical mixer 4, and this core part 4a
The light is mixed to propagate throughout the optical fiber bundle within the optical fiber bundle 7 and enters the branched optical fiber bundle 7. Here, the optical fiber bundle 7 is branched into optical fiber bundles 7c and 7d, and the separated light is guided to the next optical mixer 5, 6.
The mixture is mixed so as to excite the entire optical fiber bundles 2 and 3, and supplied to the other two terminals through the optical fiber bundle connectors 10 and 11 or 12 and 13. Connectors 8, 11
, 13 and onwards, and connect them to the light source section and the light receiving section, bidirectional optical information transmission between the three terminals is possible.
Conventional three-terminal bidirectional optical fiber distributors are configured as described above, so they cannot be applied to single-core optical fibers, and because they use a large number of multimode optical fiber bundles, There were disadvantages such as the ratio of the area of the entire optical fiber core to the area of the fiber bundle was low, making it difficult to keep the loss at the connection portion low.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、分岐部に屈折率分布形レンズを使
用することにより、単芯の光ファイバにも適用できる低
損失光分配器を提供することを目的としている。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and by using a gradient index lens at the branching part, a low-loss optical splitter that can be applied to a single-core optical fiber is created. is intended to provide.

以下、この発明の一実施例を第2図について説明する。An embodiment of the present invention will be described below with reference to FIG.

図において、21,22,23はそれぞれ単芯ステップ
型光ファイバ、21a,22a,23aはそれらファイ
バのコア部、2↑B,22b,23bはそれらファイバ
のフアツド部、20は光ビーム、24,25,26はそ
れぞれその一端を中心軸24c,25c,26cから反
射の二方向へ中心軸と600を為す二面で研摩された同
一ニの屈折率分布定数、径を持つπ12長屈折率分布形
レンズ、27,28,29はその中心軸27c,28c
,29c上に全反射層を持ち、その両端面の同一側面側
の一部を中心軸に対して30両の角度を為すように研摩
された同一の屈折率分布定数、!径を持つπ長屈折率分
布形レンズ、第3図,第4図,第5図は第2図のそれぞ
れI−1部、■−■部、■−■部の断面図であり、第6
図はπ12長屈折率分布形レンズ24,25,26の光
線の進行を説明する為の図である。以下この発明につい
て第2図に示すこの発明の一実施例を用いて詳細に説明
する。
In the figure, 21, 22, and 23 are single-core step type optical fibers, 21a, 22a, and 23a are the core portions of these fibers, 2↑B, 22b, and 23b are the folded portions of these fibers, and 20 is a light beam; 25 and 26 are π12 long refractive index profile shapes having identical refractive index distribution constants and diameters, which are polished with two surfaces forming an angle of 600 degrees with the central axis in the two directions of reflection from the central axes 24c, 25c, and 26c, respectively. Lenses 27, 28, 29 have their central axes 27c, 28c
, 29c, with the same refractive index distribution constant, which has a total reflection layer on both end faces and polished so as to form an angle of 30 degrees with respect to the central axis. Fig. 3, Fig. 4, and Fig. 5 are cross-sectional views of the I-1 section, ■-■ section, and ■-■ section of Fig. 2, respectively.
The figure is a diagram for explaining the progression of light rays through the π12 long gradient index lenses 24, 25, and 26. This invention will be explained in detail below using an embodiment of the invention shown in FIG.

屈折率がレンズの中心軸から半径方向に外径に向つて半
径の二乗に比例して減少するような分布を持つ媒質はレ
ンズ作用を持つており通常の光学4レンズ同様、結像作
用がある。
A medium with a distribution in which the refractive index decreases in proportion to the square of the radius in the radial direction from the central axis of the lens toward the outer diameter has a lens action, and like the normal four optical lenses, it has an imaging action. .

屈折率分布形レンズ内での幾何学的特性の関係を以下に
説明する。
The relationship between the geometrical characteristics within the gradient index lens will be explained below.

ここでは簡単の為:次元のレンズ状媒質を考え、その屈
折率分布が次式で表わされるものとする。ここでへは中
心軸での屈折率、aは屈折率分布定数、xは中心軸から
の距離である。
For the sake of simplicity, let us consider a dimensional lens-like medium and assume that its refractive index distribution is expressed by the following equation. Here, h is the refractive index at the central axis, a is the refractive index distribution constant, and x is the distance from the central axis.

この媒質中での光線は近軸光線近似を使つて次の光線行
列式(2)によつて記述されることが知られている。た
だし、xはレンズの中心軸からの光線の位置、?はレン
ズの中心軸に対する光線の傾きzはレンズの中心軸の方
向、lはレンズの長さをそれぞれ表わしている。次にこ
の発明の第3図に示す一実施例に関して、動作を説明す
る。例えば、光ファイバ21から出た光20は、中心軸
長π12(=1i1)の屈折率分布形レンズ24に入る
It is known that a ray in this medium can be described by the following ray determinant (2) using paraxial ray approximation. However, x is the position of the ray from the central axis of the lens, ? represents the inclination of the light ray with respect to the central axis of the lens, z represents the direction of the central axis of the lens, and l represents the length of the lens. Next, the operation of the embodiment shown in FIG. 3 of the present invention will be explained. For example, the light 20 emitted from the optical fiber 21 enters the gradient index lens 24 having a central axis length of π12 (=1i1).

24のレンズの反射の端面は中心軸24cから反射の二
方向へ中心軸と60度の角度を為すように研摩されてい
るから、出射面での光の位置!と傾きンンはそれぞれ、
(2)式より入射面での
θx光のレンズの中心軸に対する位置傾
きをX,l2θzとすると で表わされる。
The reflection end face of lens 24 is polished so as to form an angle of 60 degrees with the central axis in the two directions of reflection from the central axis 24c, so the position of the light on the exit surface! and the slope are, respectively.
From equation (2), at the plane of incidence,
Letting the positional inclination of the θx light with respect to the central axis of the lens be X, l2θz, it is expressed as follows.

第6図にその位置関係を示す。次に光は中心軸27c,
28cに、反射面を持つπ長(=1i1)の屈折率分布
形レンズ27,28にそれぞれ11汁つ入るが、(2)
式より出射位置と傾きはレンズの中心軸27c,28c
に対して、入射位置と傾きと同じになる。従つてそれら
のレンズ27,28を通つた光は24のレンズと同じ形
状をした中心軸長π12の屈折率分布形レンズ25,2
6にその中心軸25c,26cに対して、24のレンズ
の中心軸24cに対する出射条件と同一の条件で反射さ
れることになり、(2)式よりレンズ24の場合の逆の
道すじを通つてレンズ25,内の光は端面に結像される
。そこで、レンズ24,25,26のファイバとの結合
部は互いに1:1の結像関係位置となる。従つて、レン
ズ24に入つた光はレンズ25,26にそのパワーの半
分ずつが伝達されることになり、損失の少ない6Bの分
配器ができたことになる。同様に光ファイバ22から出
た光は、光ファイバ21,23に、光ファイバ23から
出た光は、光ファイバ21,22にそれぞれぐBずつ分
配することができる。光ファイバ21,22,23のこ
の分配器部と反射の端にそれぞれ分岐部をもうけ、発光
源と受光源に接続すれば、3ケ所から相互に光の送受信
を行うことができる。光ファイバと屈折率分布形レンズ
、屈折率分布形レンズ同志の接合部には反射損失を防ぐ
為、それらレンズ,光ファイバに近い屈折率を持つ、マ
ッチング液、もしくは接着剤を使用することは損失を低
減化する上て有効である。
Figure 6 shows their positional relationship. Next, the light is centered on the central axis 27c,
In 28c, 11 lenses each enter π-length (=1i1) gradient index lenses 27 and 28 with reflective surfaces, but (2)
From the formula, the exit position and inclination are the central axes 27c and 28c of the lens.
, the incident position and inclination are the same. Therefore, the light passing through those lenses 27 and 28 passes through the gradient index lenses 25 and 2, which have the same shape as the lenses 24 and have a central axis length of π12.
The light is reflected from the central axes 25c and 26c of the lens 6 under the same conditions as the exit conditions for the central axis 24c of the lens 24, and from equation (2), it passes through the opposite path to the central axis 24c of the lens 24. The light inside the lens 25 is focused on the end face. Therefore, the coupling portions of the lenses 24, 25, and 26 with the fibers are in a 1:1 imaging relationship with each other. Therefore, half of the power of the light entering the lens 24 is transmitted to the lenses 25 and 26, resulting in a 6B distributor with low loss. Similarly, the light emitted from the optical fiber 22 can be distributed to the optical fibers 21 and 23, and the light emitted from the optical fiber 23 can be distributed to the optical fibers 21 and 22, respectively. By providing branch portions at the distributor portion and the reflection end of the optical fibers 21, 22, and 23 and connecting them to the light emitting source and the light receiving source, it is possible to mutually transmit and receive light from three locations. In order to prevent reflection loss at the joint between an optical fiber and a gradient index lens, or between gradient index lenses, it is not recommended to use a matching liquid or adhesive that has a refractive index close to that of the lens or optical fiber. It is effective in reducing the

なお上記実施例では、光ファイバ21,22,23は同
一のコア体、開口数を持つものを想定して、屈折率分布
形レンズ24,25,26の屈折率分布定数、径を同一
のものとしたが、違つた光ファイバ間を接続する時は、
光ファイバの特性に応じて違つた特性を持つ屈折率分布
形レンズを組み合わせれはよい。
In the above embodiment, it is assumed that the optical fibers 21, 22, and 23 have the same core body and numerical aperture, and the gradient index lenses 24, 25, and 26 have the same refractive index distribution constant and diameter. However, when connecting different optical fibers,
It is possible to combine gradient index lenses with different characteristics depending on the characteristics of the optical fiber.

第7図は屈折率分布形レンズ24,25,26の替りに
通常の光学凸ンズを使用した場合の他の実施例を示すも
ので、例えば、光ファイバ21と光学レンズ33とπ長
屈折率分布形レンズ27,28の位置関係と光ファイバ
22と光学レンズ34とπ長屈折率分布形レンズ27,
29あるいは光ファイバ23と光学レンズ35とπ長屈
折率分布形レンズ28,29の位置関係を同一にしてお
けば、この発明の実施例と同様の効果を期待できる。
FIG. 7 shows another embodiment in which normal optical convex lenses are used instead of the gradient index lenses 24, 25, and 26. For example, the optical fiber 21, the optical lens 33, and the π-long refractive index The positional relationship between the distributed lenses 27 and 28, the optical fiber 22, the optical lens 34, and the π long refractive index distributed lens 27,
Alternatively, if the optical fiber 23, the optical lens 35, and the π-long gradient index lenses 28 and 29 are kept in the same positional relationship, the same effects as in the embodiments of the present invention can be expected.

この場合光ファイバ21,22,23とレンズ33,3
4,35との間隔をそのレンズの焦点距離の長さとして
いる。第8図はπ長屈折率分布形レンズ27,28,2
9に曲率を持たせた場合のさらに他の実施例を示すもの
で、π12長屈折率分布形レンズ24,25,26を研
摩する必要がなくなり、さらに上記実施例では光が屈折
率分布形レンズ24から出る位置によつて光路差が生じ
るが、この場合は光路差が生じない。
In this case, optical fibers 21, 22, 23 and lenses 33, 3
4 and 35 is the focal length of the lens. Figure 8 shows π-long gradient index lenses 27, 28, 2.
9 has a curvature, it is not necessary to polish the π12 long gradient index lenses 24, 25, and 26, and furthermore, in the above embodiment, the light is transmitted through the gradient index lenses 24, 25, and 26. Although an optical path difference occurs depending on the position where the light exits from 24, in this case, no optical path difference occurs.

第9図及び第10図はπ長屈折率分布形レンズ27,2
8,29の全反射層を内側にした場合のもう一つの他の
実施例を示すもので、上記実施例と同様の効果を期待で
きる。
9 and 10 are π-long gradient index lenses 27, 2.
This shows another example in which the total reflection layers No. 8 and 29 are placed on the inside, and the same effects as the above example can be expected.

第10図は第9図の■−■部の断面図である。第11図
はさらにもう一つの他の実施例を示すもので屈折率分布
形レンズを全反射層の無い2π長の屈折率分布形レンズ
33,34,35に置き替えたもので、これらの屈折率
中心軸33c,34c,35cをπ12長屈折率分布形
レンズの中心軸24c,25c,26cに対して軸ずれ
を持たせることによつて上記実施例と同様の効果を期待
できる。
FIG. 10 is a cross-sectional view taken along the line ■-■ in FIG. 9. FIG. 11 shows yet another embodiment in which the gradient index lens is replaced with gradient index lenses 33, 34, and 35 of 2π length without a total reflection layer, and these refractive index lenses are By making the index center axes 33c, 34c, and 35c deviate from the center axes 24c, 25c, and 26c of the π12 long gradient index lens, the same effects as in the above embodiment can be expected.

なお上記実施例では三端子双方向光分配器について説明
したが、π長屈折率分布形レンズを6個使用し、正四面
体を形成するように配置すれば、四端子双方向光分配器
を構成することもできる。
Although the above embodiment describes a three-terminal bidirectional optical splitter, if six π-long gradient index lenses are used and arranged to form a regular tetrahedron, a four-terminal bidirectional optical splitter can be created. It can also be configured.

また、光ファイバは屈折率分布形でも階段形でも使用す
ることができ、更にシングルモードでもマルチモードタ
イプでも構わない。光ファイバ束の場合にも適用できる
。この発明は以上説明した通り、屈折率分布形レンズを
使用することにより、単芯の光ファイバにも適用出来る
光分配器を、小型且つ安価に構成でノき、低損失で精度
の高いものが得られるという効果がある。
Further, the optical fiber can be used in either a refractive index distribution type or a stepped type, and furthermore, it does not matter if it is a single mode or multimode type. It can also be applied to optical fiber bundles. As explained above, by using a gradient index lens, this invention enables a small and inexpensive optical splitter that can be applied to single-core optical fibers to be constructed with low loss and high precision. There is an effect that can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光分配器を示す側面断面図、第2図はこ
の発明になる光分配器の一実施例を示す5側面断面図、
第3図,第4図,第5図はそれぞれ第2図のI−1部,
■一■部,■一■部,断面図、第6図は光ビームのふる
まいを説明する為の図、第7図はこの発明の他の実施例
を示す断面図、第8図は、この発明のさらに他の実施例
を示Oす断面図、第9図はこの発明のもう一つの他の実
施例を示す断面図、第10図はその■−■部切断面図、
第11図はこの発明のさらにもう一つの他の実施例を示
す側面断面図である。 図において、21,22,23は光ファイバ、24,2
5,26はπ12長屈折率分布形レンズ、27,28,
29はπ長屈折率分布形レンズ、30,31,32は全
反射層、33,34,35は2π長屈折率分布形レンズ
である。
FIG. 1 is a side sectional view showing a conventional optical distributor, and FIG. 2 is a 5 side sectional view showing an embodiment of the optical distributor according to the present invention.
Figures 3, 4, and 5 are part I-1 of Figure 2, respectively.
■Part 1, ■Part 1, sectional view, Fig. 6 is a diagram for explaining the behavior of the light beam, Fig. 7 is a sectional view showing another embodiment of the present invention, Fig. 8 is a sectional view of this invention. 9 is a cross-sectional view showing another embodiment of the invention, FIG. 10 is a cross-sectional view along the line ■-■,
FIG. 11 is a side sectional view showing yet another embodiment of the present invention. In the figure, 21, 22, 23 are optical fibers, 24, 2
5, 26 are π12 long gradient index lenses, 27, 28,
29 is a π-long gradient index lens; 30, 31, and 32 are total reflection layers; and 33, 34, and 35 are 2π-long gradient index lenses.

Claims (1)

【特許請求の範囲】 1 三つの屈折率分布形レンズを三角形状を為すように
衝合配置し、それぞれの頂点部に光導波路とこの光導波
路からの光を上記衝合された二つの屈折率分布形レンズ
に分配する別のレンズとを配置したことを特徴とする光
回路素子。 2 三つの屈折率分布形レンズの長さをnπ長(n=1
、2・・・)とし、その中心軸部に全反射層を設け、三
角形の外側にその反射層を向けたことを特徴とする特許
請求範囲第1項記載の光回路素子。 3 三つの屈折率分布形レンズの長さをnπ長(n=1
、2・・・)とし、その中心軸部に全反射層を設け、三
角形の内側にその反射層を向けたことを特徴とする特許
請求範囲第1項記載の光回路素子。 4 三つの屈折率分布形レンズの長さを2nπ長(n=
1、2・・・)としたことを特徴とする特許請求範囲第
1項記載の光回路素子。 5 三つの屈折率分布形レンズに曲率を持たせたことを
特徴とする特許請求範囲第1項乃至第4項のいずれかに
記載の光回路素子。 6 頂点部のレンズをπ/2(2n−1)長屈折率分布
形レンズ(n=1、2・・・)とした特許請求の範囲第
1項乃至第6項のいずれかに記載の光回路素子。 7 頂点部のレンズを光学凸レンズとし、光ファイバと
レンズとの間隔をその焦点距離の長さとした、特許請求
範囲第1項乃至第5項のいずれかに記載の光回路素子。
[Claims] 1. Three graded index lenses are arranged in abutting fashion to form a triangular shape, and each apex has an optical waveguide and the light from the optical waveguide has the two abutted refractive indexes. An optical circuit element characterized in that a distributed lens and another lens are arranged. 2 Set the length of the three gradient index lenses to nπ length (n=1
, 2...), and a total reflection layer is provided at the central axis portion of the optical circuit element, and the reflection layer is directed to the outside of the triangle. 3 Set the length of the three gradient index lenses to nπ length (n=1
, 2...), and a total reflection layer is provided at the central axis portion of the optical circuit element, and the reflection layer is directed inside the triangle. 4 Set the length of the three gradient index lenses to 2nπ length (n=
1, 2...). The optical circuit element according to claim 1. 5. The optical circuit element according to any one of claims 1 to 4, wherein the three gradient index lenses have curvature. 6. The light according to any one of claims 1 to 6, wherein the apex lens is a π/2 (2n-1) long refractive index gradient lens (n=1, 2...) circuit element. 7. The optical circuit element according to any one of claims 1 to 5, wherein the lens at the apex portion is an optical convex lens, and the distance between the optical fiber and the lens is the length of its focal length.
JP4009077A 1977-04-07 1977-04-07 optical circuit element Expired JPS6055801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4009077A JPS6055801B2 (en) 1977-04-07 1977-04-07 optical circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4009077A JPS6055801B2 (en) 1977-04-07 1977-04-07 optical circuit element

Publications (2)

Publication Number Publication Date
JPS53125040A JPS53125040A (en) 1978-11-01
JPS6055801B2 true JPS6055801B2 (en) 1985-12-06

Family

ID=12571180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4009077A Expired JPS6055801B2 (en) 1977-04-07 1977-04-07 optical circuit element

Country Status (1)

Country Link
JP (1) JPS6055801B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835604A (en) * 1993-11-30 1996-02-06 Miura Co Ltd Water-tube boiler

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1107326B (en) * 1978-04-26 1985-11-25 Cselt Centro Studi Lab Telecom REVERSIBLE COUPLING DEVICE FOR LIGHT BEAMS
JPS59208521A (en) * 1983-05-13 1984-11-26 Yazaki Corp Low loss optical branching body
DE3509053C1 (en) * 1985-03-14 1986-08-07 Daimler-Benz Ag, 7000 Stuttgart Three-way star splitter for fiber optic cables

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835604A (en) * 1993-11-30 1996-02-06 Miura Co Ltd Water-tube boiler

Also Published As

Publication number Publication date
JPS53125040A (en) 1978-11-01

Similar Documents

Publication Publication Date Title
US4213677A (en) Light coupling and branching device using light focusing transmission body
KR900006003B1 (en) Method and apparatus for effecting light energy transmission with lessened reflection
CN1307448C (en) Beam bending apparatus and method of manufacture
JP6366602B2 (en) Multichannel optical connector with coupling lens
US4815807A (en) Collimator lens for optical fiber
US20120014645A1 (en) Single lens, multi-fiber optical connection method and apparatus
JP6787803B2 (en) Optical connector and optical transmission system
JPH08201644A (en) 4-fiber ferrule for constant polarization optical fiber and optical branching/coupling device formed by using this ferrule
US4600267A (en) Optical distributor
JPS60239701A (en) Star-shaped coupler monitor and manufacture thereof
JPH02188706A (en) Optical fiber coupler
JPS5938707A (en) Optical fiber connector
CA1112085A (en) Reversible light beam coupler
US5039192A (en) Interconnection means for optical waveguides
JP7227255B2 (en) Bridge fiber, multi-core fiber unit, multi-core bridge fiber, and multi-core multi-core fiber unit
US4684208A (en) Optical branching element
JPS6055801B2 (en) optical circuit element
JPS5934507A (en) Optical fiber terminal which prevents interference of returned light
JPS59200211A (en) Optical multibranching device
JPS5927884B2 (en) How to connect optical fiber
US4747651A (en) Three-way start splitter for optical wave guides
JP7314684B2 (en) Optical connection structure of multi-core fiber
JPS6075806A (en) Optical coupler
JPS6020722B2 (en) light distributor
US20150331196A1 (en) Smart ar coated grin lens design collimator