JPS5934507A - Optical fiber terminal which prevents interference of returned light - Google Patents

Optical fiber terminal which prevents interference of returned light

Info

Publication number
JPS5934507A
JPS5934507A JP57145273A JP14527382A JPS5934507A JP S5934507 A JPS5934507 A JP S5934507A JP 57145273 A JP57145273 A JP 57145273A JP 14527382 A JP14527382 A JP 14527382A JP S5934507 A JPS5934507 A JP S5934507A
Authority
JP
Japan
Prior art keywords
lens
optical fiber
face
fiber
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57145273A
Other languages
Japanese (ja)
Inventor
Takashi Kishimoto
隆 岸本
Takeshi Koizumi
健 小泉
Joji Suzuki
鈴木 譲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP57145273A priority Critical patent/JPS5934507A/en
Publication of JPS5934507A publication Critical patent/JPS5934507A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • G02B6/327Optical coupling means having lens focusing means positioned between opposed fibre ends with angled interfaces to reduce reflections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To prevent the interference of the returned reflected light from a lens face, by inclining the end face of the lens to be connected to an optical fiber and the end face on the opposite side with respect to an optical axis, joining a transparent body having no refractive index distribution on the end face on the side opposite from the end face of the lens to be connected to the optical fiber in one body thereto, and inclining the surface of the transparent body with respect to the optical axis of the lens. CONSTITUTION:The end face 11A of a distributed index lens 11 on the side to be connected to an optical fiber 10 is the plane perpendicular to the optical axis of a lens, while the end face 11B on the opposite side is the plane inclined by a specified angle theta with respect to the face orthogonal with the optical axis of the lens. The connection is preferably accomplished by deviating the axial line of the fiber by the specified distance W1 from the optical axis of the lens toward the side face where the lens length is longest according to the angle theta of inclination of the lens end face in order to parallel the exit rays. The relation between the deviation W1 of the fiber and the angle theta of inclination of the lens face is expressed by W1=(No-1).theta/Nosq. rt. A. In the equation, No is the refractive index of the lens of the central axis thereof and A is the distribution constant in the above-described equation 1.

Description

【発明の詳細な説明】 本発明は光フアイバ一端に屈折率分布型レンズを接続し
てファイバーからの出射光を平行光に変換したり平行光
を集束させてファイバーに入射させる場合におけるレン
ズ面からの戻り反射光の干渉を防11二した光フアイバ
一端末に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for connecting a gradient index lens to one end of an optical fiber to convert the light emitted from the fiber into parallel light, or to focus the parallel light and make it enter the fiber. The present invention relates to an optical fiber terminal which prevents interference of return reflected light.

光フアイバー内を伝送されてくる光束を他の光ファイバ
ーあるいは各種光信号処理装置に中継伝送したり、ある
いは光源等からの光束を光7アイバー内に入射させる場
合、一般に牙/図に示ずような光ファイバーの端末構造
がとられる。
When relaying the light beam transmitted through the optical fiber to another optical fiber or various optical signal processing devices, or when making the light beam from a light source enter the optical fiber, it is generally necessary to An optical fiber terminal structure is adopted.

牙/図において、/は光ファイバー9.2は屈折率分布
型レンズであり、屈折率分布型レンズ2は中心軸上の屈
折率をNoとして中心軸から半径方向にrの距離におけ
る屈折率N (J)が、N (r) =NO(/−//
、zAr2) ・−=−=(1)ただしAは正の定数 で表われるような周辺に向けて屈折率が放物状如減少す
る分布をもつガラス、ブラスチンタ等の透明円柱体から
なり、その両端面は中心軸に垂直な平行平面である。
/ In the figure, the optical fiber 9.2 is a gradient index lens, and the gradient index lens 2 has a refractive index of No on the central axis and a refractive index of N at a distance r in the radial direction from the central axis. J), but N (r) = NO(/-//
, zAr2) ・−=−=(1) However, A is made of a transparent cylindrical body such as glass or brass tinta, which has a distribution in which the refractive index decreases parabolically toward the periphery as expressed by a positive constant; Both end faces are parallel planes perpendicular to the central axis.

またレンズの長さZは、レンズ内を蛇行しながら進行す
る光線の蛇行周期の//り長(グ分の/ピッチ)の奇数
倍つまりAを前記(1)式の定数2mを正の整数として
、Z= (2711+/)π/ハlよしである。
The length Z of the lens is an odd number multiple of the meandering period of the light ray that meanders through the lens, that is, A is the constant 2m in equation (1) above, which is a positive integer. As, Z= (2711+/)π/haryoshi.

上記のような光フアイバ一端末において、光ファイバー
/から拡散出射する光線3は屈折率分布型レンズ2内を
サインカーブを描いて進行した後、(3) 平行光線となってレンズ端面2Aから出射する。
At one end of the optical fiber as described above, the light ray 3 diffused and emitted from the optical fiber travels inside the gradient index lens 2 while drawing a sine curve, and then (3) becomes a parallel light ray and exits from the lens end surface 2A. .

このように端末レンズ!がら出射した平行光線は、他の
光伝送手段あるいは光信号処理手段に入射する。例えば
光フアイバーコネクターにおいて上記のレンズ2と対向
して配置された他の屈折率分布型レンズグに入射した後
、レンズ内を進行する間に集束されて他方の光ファイバ
ーSに入射する。
Terminal lens like this! The parallel light rays emitted from the optical fiber are incident on other optical transmission means or optical signal processing means. For example, in an optical fiber connector, the light enters another gradient index lens placed opposite the lens 2, and then is focused while traveling through the lens and enters the other optical fiber S.

このように光フアイバー先端に屈折率分布型レンズを接
続して構成した光フアイバ一端末は、光ファイバーから
拡散出射する光線を平行光線に変換したりあるいは平行
光線で入射する光を集束して光フアイバー内に効率良く
伝送できる利点がある半面、次のような問題点がある。
An optical fiber terminal configured by connecting a gradient index lens to the tip of the optical fiber can convert the diffused light rays emitted from the optical fiber into parallel rays, or converge the light incident in parallel rays to form the optical fiber. Although it has the advantage of being able to efficiently transmit data within the network, it also has the following problems.

すなわち、光ファイバー/がら出てレンズ内を進行した
光線がレンズ端面2Aがら出射する際に光線の一部がレ
ンズ端面、2Aで反射され、この反射光6が光ファイバ
ーから出射する光線3と同一の鉾 経絡を辿って戻るため両光線が相互に干渉を生じて信号
ノイズ等の原因ともなる。
In other words, when a light ray that has exited the optical fiber/glass and traveled through the lens exits from the lens end face 2A, a portion of the light ray is reflected by the lens end face 2A, and this reflected light 6 is the same as the light ray 3 that exits from the optical fiber. Since both light beams return by following the meridians, they interfere with each other, causing signal noise and the like.

このような戻り反射光線は出射側のレンズ端面だ(ゲ) けでなく前述の光フアイバーコネクターのように対向す
る他のレンズlがある場合はこのレンズの先端面9Aに
おける戻り反射光線7も問題となる。
Such return reflected light rays are not only caused by the end face of the lens on the exit side (ge), but also if there is another opposing lens l like the aforementioned optical fiber connector, the return reflected light ray 7 at the tip face 9A of this lens is also a problem. becomes.

本発明は上記の問題を解決し、レンズ端面での戻り反射
光による悪影響を排除した新規な光フアイバ一端末を提
供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a novel optical fiber terminal that eliminates the adverse effects of return reflected light at the end face of a lens.

上記目的は、屈折率が中心軸上で最大で周辺に向けて放
物状に減少する分布をもつ透明体からなる屈折率分布型
レンズの一方の端面に光ファイバーの先端を密接または
近接させて配置した光フアイバ一端末において、前記レ
ンズの光フアイバー接続端面とは反対側の端面を光軸に
対して傾斜させることにより達成される。
The above purpose is to place the tip of an optical fiber closely or close to one end surface of a gradient index lens made of a transparent material with a distribution in which the refractive index is maximum on the central axis and decreases parabolically toward the periphery. This is achieved by tilting the end surface of the lens opposite to the optical fiber connection end surface with respect to the optical axis at one end of the optical fiber.

また本願の第2発明では、屈折率が中心軸上で最大で周
辺に向けて放物状に減少する分布をもつ透明体からなる
屈折率分布型レンズの一方の端面に光ファイバーの先端
を密接または近接させて配置した光フアイバ一端末にお
いて、前記レンズの光フアイバー接続端面とは反対側の
端面に屈折率分布を有しない透明体を一体に接合すると
ともに、該透明体表面を前記レンズ光軸忙対して傾斜さ
せる。
In addition, in the second invention of the present application, the tip of the optical fiber is closely or closely connected to one end surface of a gradient index lens made of a transparent material with a distribution in which the refractive index is maximum on the central axis and decreases parabolically toward the periphery. At one terminal of the optical fibers arranged in close proximity, a transparent body having no refractive index distribution is integrally bonded to the end surface of the lens opposite to the optical fiber connection end surface, and the surface of the transparent body is connected to the optical axis of the lens. tilt it against the

上記構成によれば、光ファイバーから出た光線がレンズ
の傾斜端面またはレンズの垂直端面に接合された透明体
の傾斜表面から出射する際に反射される戻り光線は、レ
ンズ内を「往き」の光線経路とは異なる経路を辿って戻
るので「往き」の光線と相互干渉を生じることがない。
According to the above configuration, when the light rays emitted from the optical fiber exit from the inclined end face of the lens or the inclined surface of the transparent body bonded to the vertical end face of the lens, the return light rays reflected are the "outgoing" light rays inside the lens. Since the beam returns along a different route, there is no mutual interference with the outbound beam.

以下本発明を図面に示した実施例について説明する。Embodiments of the present invention shown in the drawings will be described below.

牙2図は本発明に係る光フアイバ一端末の一例を示す断
面図であり、10が光ファイバー、//が屈折率分布型
レンズである。
Figure 2 is a sectional view showing an example of an optical fiber terminal according to the present invention, where 10 is an optical fiber and // is a gradient index lens.

屈折率分布型レンズ//の光フアイバー10接続側端面
//Aはレンズ光軸/、2に垂直な平面であるが反対側
の端面//Bはレンズ光軸に直交する面に対して一定の
角度θだけ傾斜させた゛平面としである。
The optical fiber 10 connection side end surface of the gradient index lens //A is a plane perpendicular to the lens optical axis //2, but the opposite end surface //B is constant with respect to the plane perpendicular to the lens optical axis. Let us assume that the plane is tilted by an angle θ.

このように一方の端面を傾斜面とした屈折率分布型レン
ズにあっては傾斜端面の両エツジ側においてレンズ長さ
が異なるため、光軸」―でのレンズ長さZを部分の/ピ
ッチ長としても従来のようにレンズ光軸にファイバー軸
線を合せて接続した場合には出射光線は完全な平行光と
ならない。     □このため本願で使用する傾斜端
面をもつ屈折率分布型レンズ//に光ファイバ・−10
を接続するに当っては、レンズ端面傾斜角度θに応じて
ファイバーの軸線をレンズ長が最長である側面寄りにレ
ンズ光軸から一定距離Wlだけ偏位させて接続すること
が望ましい。
In a gradient index lens with one end surface being inclined, the lens length is different on both edge sides of the inclined end surface, so the lens length Z at the optical axis is the pitch length of the part. However, if the fiber axis is aligned with the optical axis of the lens and connected as in the conventional method, the emitted light beam will not be perfectly parallel light. □For this reason, an optical fiber -10
When connecting the fibers, it is desirable to deviate the fiber axis by a certain distance Wl from the lens optical axis toward the side surface where the lens length is the longest, depending on the lens end face inclination angle θ.

光ファイバーからの拡散出射光を点光源と見なしてレン
ズからの出射光線を完全平行光とするためのファイバー
偏位置W1 とレンズ面傾斜角θとの関係は、 Wl=  (No−/)・θ/NOv’I  ・・・・
・・(2)で表わすことができる。
The relationship between the fiber polarization position W1 and the lens surface inclination angle θ in order to treat the diffused emitted light from the optical fiber as a point light source and make the emitted light from the lens completely parallel light is as follows: Wl = (No-/)・θ/ NOv'I...
...It can be expressed as (2).

(2)式においてNoはレンズの中心軸上の屈折率。In equation (2), No is the refractive index on the central axis of the lens.

Aは前述(1)式における分布定数である。A is a distribution constant in the above equation (1).

レンズ面傾斜角θについていえば、その最小限度は第3
図に示すようにレンズの傾斜端面//Bからの戻り反射
光線/3が光ファイバー10の先端面を含む面内におい
て少なくともファイバー10のクラッド部10Bから外
れた位置に到達するように選ぶ必要がある。
Regarding the lens surface inclination angle θ, its minimum limit is the third
As shown in the figure, it is necessary to choose a position so that the return reflected light beam /3 from the inclined end surface //B of the lens reaches at least a position away from the cladding portion 10B of the optical fiber 10 within the plane that includes the tip surface of the optical fiber 10. .

−に記の条件を一般的に表わすならば光ファイバーIO
のコアIOAの径とクラッド層10Bの厚みとの和をR
として、 λθ/NO1/i≧ R・・・・・・・・ (3)であ
る。
− If the conditions described in
The sum of the diameter of the core IOA and the thickness of the cladding layer 10B is R
As, λθ/NO1/i≧R (3).

具体的数値例で示すと、光ファイバー10のコア径を!
;Ottmz外径を72jμmとし、屈折率分布型レン
ズ//の中心軸上の屈折率No−/、A、分布定数Vl
r −0,3,2mm−2としたときのレンズ面傾斜角
θと光フアイバー偏位NW]および戻り反射光スポット
の光軸からの偏位量W2の関係をオダ図のグラフに示す
To give a concrete numerical example, the core diameter of the optical fiber 10!
;Ottmz outer diameter is 72jμm, refractive index No-/, A, distribution constant Vl on the central axis of the gradient index lens //
The relationship between the lens surface inclination angle θ and the optical fiber deviation NW] and the deviation amount W2 of the return reflected light spot from the optical axis when r −0, 3, and 2 mm −2 is shown in the Oda diagram graph.

第1図において横軸はレンズ面傾斜角θ、たて軸は偏位
i W l l W2をμmの単位で示し、直線Aはレ
ンズからの出射光線を完全平行光線とするためのファイ
バー偏位量Wlとθとの関係を示し、また直線Bは上記
の各ファイバー偏位量Wlに対する戻り反射光のスポッ
ト偏心量W2を示す。
In Fig. 1, the horizontal axis shows the lens surface inclination angle θ, the vertical axis shows the deviation i W l l W2 in μm, and the straight line A shows the fiber deviation to make the emitted ray from the lens a perfectly parallel ray. The relationship between the amount Wl and θ is shown, and the straight line B shows the spot eccentricity W2 of the return reflected light with respect to each fiber deviation amount Wl described above.

第1図のグラフにおいて、たて軸に平行な直線と両傾斜
直線A、Bとの交点間の距離りが、前述した光ファイバ
ーのコア径とクラッド厚みとの和Rよりも大である領域
(斜線部分)に対応する面傾斜角θを選べば戻り反射光
/3の光フアイバー内への再入射を回避することができ
る。
In the graph of FIG. 1, the region ( By selecting the surface inclination angle θ corresponding to the shaded area), it is possible to avoid the return reflected light /3 from entering the optical fiber again.

前述の数値例の場合はR=ざ、75μmであり、同グラ
フからθの最低限界は約、22ミリラジアン(約7.3
°)であることがわかる。
In the case of the above numerical example, R = 75 μm, and from the same graph, the lowest limit of θ is approximately 22 milliradians (approximately 7.3 μm).
°).

第3図は本発明に係る光フアイバ一端末の一対を用いて
構成した光フアイバーコネクターを示す。
FIG. 3 shows an optical fiber connector constructed using a pair of optical fiber terminals according to the present invention.

本例では先端面を傾斜面とした屈折率分布型レン軸 ズの一対20.2/を4#線を合せて対向配置し、これ
ら両レンズ20..2/の後端にそれぞれ光ファイバー
2.2..23を、その軸線をレンズ光軸からレンズ長
が最長である側面寄り罠偏位させて接続している。
In this example, a pair of gradient index lens axes 20.2/ whose tip surfaces are inclined surfaces are arranged facing each other with their 4# lines aligned. .. 2/ respectively at the rear ends of the optical fibers 2.2. .. 23 are connected with their axes deviated from the lens optical axis toward the side where the lens length is the longest.

これにより前述したように一方の光ファイバー、22(
9) を伝送されて出射した光線コlのうちレンズ、20の出
射端面で反射した戻り光線は前述したようにファイバー
2.2から外れた位置に戻るとともに、このレンズ、2
0から出て対向するレンズ、2/に入射する光線のうち
先端面で反射される光線2jも従来のように同一経路を
辿ってもとのファイバー2.2に入射することなくレン
ズ2/の傾斜面2/Bにより別方向へ外れて出射する。
As a result, one optical fiber, 22 (
9) Of the light rays transmitted and emitted from the fiber 2.2, the return light reflected by the exit end face of the lens 20 returns to the position away from the fiber 2.2 as described above, and returns to the position away from the fiber 2.
Of the rays that come out from 0 and enter the opposing lens 2/, the ray 2j that is reflected at the tip surface also follows the same path as in the conventional case, and instead of being incident on the original fiber 2.2, it returns to the lens 2/. The light deviates from the inclined surface 2/B and is emitted in another direction.

仮りに反射光線かもとのレンズ、2θ内に再び入射した
としても前述したように光ファイバー、2.2から外れ
た位置に集束することになるので光ファイバーからの出
射光に悪影響を及ぼすことはない。
Even if the reflected light were to enter the original lens 2θ again, it would be focused at a position away from the optical fiber 2.2 as described above, so it would not adversely affect the light emitted from the optical fiber.

以上の実施例では屈折率分布型レンズの端面を斜断面と
したが、牙6図に示すように両端を光軸に垂直な平行平
面としだ1分の/ピッチ長の屈折率分布型レンズ30の
一方の端面30Aに、屈折率が全体に一様で且つレンズ
30のそれに近似していて断面がくさび型の非平行透明
板3/を接合することにより、その端面J/Aがレンズ
光軸3.2に対して傾斜面となるように構成しても同様
の効(10) 果が得られる。
In the above embodiments, the end faces of the gradient index lens were oblique sections, but as shown in Figure 6, both ends were made into parallel planes perpendicular to the optical axis.The gradient index lens 30 with a pitch length of 1 minute By bonding a non-parallel transparent plate 3/ having a wedge-shaped cross section and having a uniform refractive index throughout and similar to that of the lens 30 to one end surface 30A of the lens 30, the end surface J/A is aligned with the optical axis of the lens. A similar effect (10) can be obtained by configuring the surface to be inclined relative to 3.2.

本例構造による場合はレンズ光軸に対して接続光ファイ
バー33の軸線を偏位させる必要はなく両者軸芯を合せ
ればよい。
In the case of the structure of this example, there is no need to deviate the axis of the connecting optical fiber 33 with respect to the lens optical axis, and it is sufficient to align both axes.

オフ図の例においてレンズに対し光ファイバー10をレ
ンズ光軸から所定量Wlだけ偏位させて接続するに当っ
ては種々の方法をとることができるが、次のようにする
と非常に容易で高精度の位置合ぜが行なえる。
In the example of the off-line diagram, various methods can be used to connect the optical fiber 10 to the lens by shifting it by a predetermined amount Wl from the optical axis of the lens, but the following method is very easy and can be done with high precision. positioning can be performed.

すなわちオフ図に示すように所定のレンズホルダー3I
I内に傾斜端面をもつ屈折率分布型レンズ//を固着し
てこの傾斜端面側から平行光束3Sを入射させ、レンズ
//の他端面側に実装ファイバーと同一仕様のモニター
用ファイバー31およびこのファイバー先端を通したフ
ァイバースリーブ37を配置し、モニター用ファイバー
3イの他端からの出射光を光検出器3gで受けてその受
光量を測定機39で測定しつつスリーブチューブ37を
光↓゛ 軸に直交する方向に移動させ、検出器3gの受光量が最
大となる位置でファイバースリーブ37と(//) レンズボルダ−31I との間を接着固定する。
That is, as shown in the off view, the predetermined lens holder 3I
A gradient index lens // having an inclined end surface is fixed in I, and a parallel light beam 3S is made incident from this inclined end surface side, and a monitoring fiber 31 having the same specifications as the mounted fiber and this A fiber sleeve 37 is placed through which the tip of the fiber is passed, and the light emitted from the other end of the monitoring fiber 3 is received by the photodetector 3g, and the amount of received light is measured by the measuring device 39. The fiber sleeve 37 is moved in a direction perpendicular to the axis, and the fiber sleeve 37 and the lens boulder 31I are adhesively fixed at a position where the amount of light received by the detector 3g is maximum.

これにより実使用時にファイバースリーブ37の孔41
!Oにファイバー先端を通してファイバーとファイバー
スリーブとの間を接着固定すれば、このファイバーはレ
ンズ光軸から前述した所定方向に所定の偏位量W]離れ
た位置に接続されることになる。
This allows the hole 41 of the fiber sleeve 37 to be removed during actual use.
! By passing the fiber tip through O and adhesively fixing the fiber and the fiber sleeve, this fiber will be connected at a position a predetermined deviation W] away from the lens optical axis in the above-described predetermined direction.

第1図および第9図に本発明に係る光フアイバ一端末の
具体的構造例を示す。
FIGS. 1 and 9 show specific structural examples of an optical fiber terminal according to the present invention.

牙ざ図のものは、レンズホルダー3グ内に先端面//B
が傾斜面となっている屈折率分布型レンズ//を固着し
、このレンズホルダー3’lの内径よりも余裕をもった
小径の突出部II/およびこれに続く余ルグー内径より
も大径の本体部分tI2からナルファイバースリーブ3
7をレンズホルタ−311内に入れ込み、スリーブ37
の突出部Il/に設けられた細孔lOに光フアイバー裸
線10を通し、本体部分グーに設けられた大径孔13に
裸線10を被覆している被覆材llI先端を入れ込み接
着剤IISで固定する。そしてレンズホルダー31側壁
(/、2) に設けた接着剤注入口Il乙を通してレンズホルダー内
壁とファイバースリーブ突出部外周との間に充填した樹
脂接着剤lljで両者を本固定している。
For those with tooth profile, the tip end is located inside the lens holder 3g//B
A gradient index lens // having a sloped surface is fixed, and a protrusion II/ with a small diameter that has a margin larger than the inner diameter of this lens holder 3'l, and a protrusion part II/ with a diameter larger than the inner diameter of the remaining part From main body part tI2 to null fiber sleeve 3
7 into the lens holder 311, and remove the sleeve 37.
Pass the bare optical fiber wire 10 through the pore lO provided in the protrusion Il/ of the main body part, insert the tip of the covering material IlI covering the bare wire 10 into the large diameter hole 13 provided in the main body part, and insert the adhesive IIS. Fix it with. Then, a resin adhesive llj is filled between the inner wall of the lens holder and the outer periphery of the fiber sleeve protrusion through an adhesive inlet Ilb provided on the side wall (/, 2) of the lens holder 31 to permanently fix the two.

なおIl、7は樹脂注入時の空気抜き孔である。Note that Il, 7 is an air vent hole during resin injection.

第9図のものはファイバースリーブ37を、ファイバー
裸線10の径にほぼ等しい孔をもつガラスチー−ブ等か
らなる内管50の外側に金属、樹脂等で形成した例径が
レンズホルダーの内径よりも大な補助部材S/を接合し
て構成している。
In the example shown in FIG. 9, a fiber sleeve 37 is formed of metal, resin, etc. on the outside of an inner tube 50 made of a glass tube or the like having a hole approximately equal to the diameter of the bare fiber wire 10. It is also constructed by joining together large auxiliary members S/.

レンズホルダー3’lの側壁には接着剤注入口l乙およ
び空気抜き孔ゲ7以外に、レンズ端面とファイバ一端面
との間に屈折率整合液を介在させるためにほぼレンズ端
面位置に整合液注入口llざが設けである。
On the side wall of the lens holder 3'l, in addition to the adhesive inlet 1B and the air vent hole 7, there is a matching liquid injector approximately at the position of the lens end surface in order to interpose the refractive index matching liquid between the lens end surface and one end surface of the fiber. There is a separate entrance.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は従来の光フアイバ一端末を用いたコネクターを
示す縦断面図、第2図は本発明の一実施例を示す縦断面
図、第3図は本発明の光フアイバ一端末における光線の
挙動を示す縦断面図、第1図は本発明の端末におけるレ
ンズ面の傾斜角θと(/3) 接続ファイバーの偏心量及び戻り反射光線の偏心量との
関係を示すグラフ、牙S図は本発明の端末を用いたコネ
クターの例を示す縦断面図、オ乙図は本発明の他の実施
例を示す縦断面図、牙7図は接続ファイバーの先端を支
持するためのファイバースリーブを本発明に係る屈折率
分布型レンズに位置合せするための方法の一例を示す縦
断面図。 第1図は本発明の光フアイバ一端末の具体的構造例を示
す縦断面図、第9図は本発明の光フアイバ一端末の他の
具体的構造例を示す縦断面図である。
FIG. 7 is a vertical cross-sectional view showing a conventional connector using one end of an optical fiber, FIG. 2 is a vertical cross-sectional view showing an embodiment of the present invention, and FIG. Fig. 1 is a vertical cross-sectional view showing the behavior, and Fig. 1 is a graph showing the relationship between the inclination angle θ of the lens surface in the terminal of the present invention, the eccentricity of the connecting fiber, and the eccentricity of the return reflected light beam. A vertical cross-sectional view showing an example of a connector using the terminal of the present invention, a vertical cross-sectional view showing another embodiment of the present invention, and a figure 7 showing a fiber sleeve for supporting the tip of the connecting fiber. FIG. 3 is a vertical cross-sectional view showing an example of a method for aligning the gradient index lens according to the invention. FIG. 1 is a vertical sectional view showing a specific structural example of one optical fiber terminal of the present invention, and FIG. 9 is a vertical sectional view showing another specific structural example of one optical fiber terminal of the present invention.

Claims (1)

【特許請求の範囲】 1) 屈折率が中心軸上で最大で周辺に向けて放物状に
減少する分布をもつ透明体からなる屈折率分布型レンズ
の一方の端面に光ファイバーの先端を密接または近接さ
せて配置した光フアイバ一端末において、前記レンズの
光フアイバー接続端面とは反対側の端面を光軸に対して
傾斜させたことを特徴とする戻り光干渉を防止した光フ
アイバ一端末。 2、特許請求の範囲牙/項において、前記光ファイバー
の軸線をレンズの光軸からレンズ長が最長である側部帯
りに偏位させたことを特徴とする光フアイバ一端末。 3)特許請求のオー環において、屈折率分布型レンズの
中心軸からrの距離における屈折率N (r)をN (
r) −No (i−/、/、2Ar2)、前記傾斜端
面ノ光軸垂直面からの傾斜角をθとして、接続光ファイ
バーのレンズ光軸からの偏位量を(No −/)・θ/
Nov’lとしたことを特徴とする光フアイバ一端末。 4)屈折率が中心軸上で最大で周辺に向けて放物状に減
少する分布をもつ透明体からなる屈折率分布型レンズの
一方の端面に光ファイバーの先端を密接または近接させ
て配置した光フアイバ一端末において、前記レンズの光
フアイバー接続端面とは反対側の端面に屈折率分布を有
しない透明体を一体に接合するとともに1該透明体表面
を前記レンズ光軸に対して傾斜させたことを特徴とする
戻り光干渉を防止した光フアイバ一端末。
[Claims] 1) The tip of an optical fiber is closely or closely connected to one end surface of a gradient index lens made of a transparent material with a distribution in which the refractive index is maximum on the central axis and decreases parabolically toward the periphery. An optical fiber terminal that prevents return light interference, characterized in that, in the optical fiber terminals arranged close to each other, the end surface of the lens on the opposite side from the optical fiber connection end surface is inclined with respect to the optical axis. 2. An optical fiber terminal according to claim 1, characterized in that the axis of the optical fiber is deviated from the optical axis of the lens to a side band where the lens length is the longest. 3) In the O ring claimed in the patent, the refractive index N (r) at a distance r from the central axis of the gradient index lens is N (
r) -No (i-/, /, 2Ar2), the angle of inclination of the inclined end face from the plane perpendicular to the optical axis is θ, and the amount of deviation of the connecting optical fiber from the lens optical axis is (No -/)・θ/
An optical fiber terminal characterized by being Nov'l. 4) Light in which the tip of an optical fiber is placed closely or close to one end surface of a gradient index lens made of a transparent material with a distribution in which the refractive index is maximum on the central axis and decreases parabolically toward the periphery. At one end of the fiber, a transparent body having no refractive index distribution is integrally bonded to the end face of the lens opposite to the optical fiber connection end face, and the surface of the transparent body is tilted with respect to the optical axis of the lens. An optical fiber terminal that prevents return light interference.
JP57145273A 1982-08-21 1982-08-21 Optical fiber terminal which prevents interference of returned light Pending JPS5934507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57145273A JPS5934507A (en) 1982-08-21 1982-08-21 Optical fiber terminal which prevents interference of returned light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57145273A JPS5934507A (en) 1982-08-21 1982-08-21 Optical fiber terminal which prevents interference of returned light

Publications (1)

Publication Number Publication Date
JPS5934507A true JPS5934507A (en) 1984-02-24

Family

ID=15381318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57145273A Pending JPS5934507A (en) 1982-08-21 1982-08-21 Optical fiber terminal which prevents interference of returned light

Country Status (1)

Country Link
JP (1) JPS5934507A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140163A (en) * 1984-12-19 1986-02-26 Hitachi Ltd Printing system
US5030021A (en) * 1987-03-26 1991-07-09 Tokyo Electric Co., Ltd. Multi-column dot printing device
JPH09315803A (en) * 1996-05-30 1997-12-09 Fuji Electric Co Ltd Ozonizer
WO2000003279A1 (en) * 1998-07-08 2000-01-20 Optical Switch Corporation Method and apparatus for connecting optical fibers
WO2012096915A1 (en) * 2011-01-11 2012-07-19 Corning Incorporated Optical connector with lenses having opposing angled planar surfaces
CN103975266A (en) * 2012-01-10 2014-08-06 惠普发展公司,有限责任合伙企业 Optical connectors
JP2016057540A (en) * 2014-09-11 2016-04-21 住友電気工業株式会社 Optical connector and manufacturing method therefor
JPWO2017013930A1 (en) * 2015-07-22 2018-05-10 東洋製罐グループホールディングス株式会社 Optical fiber connector with lens
WO2024133462A1 (en) * 2022-12-22 2024-06-27 Orange Interconnecting a hollow-core fibre with a standard silica single-mode fibre

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535347A (en) * 1978-09-01 1980-03-12 Matsushita Electric Ind Co Ltd Optical fiber splicer
JPS5538364B2 (en) * 1975-11-03 1980-10-03
JPS5745608B2 (en) * 1972-11-24 1982-09-29

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745608B2 (en) * 1972-11-24 1982-09-29
JPS5538364B2 (en) * 1975-11-03 1980-10-03
JPS5535347A (en) * 1978-09-01 1980-03-12 Matsushita Electric Ind Co Ltd Optical fiber splicer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140163A (en) * 1984-12-19 1986-02-26 Hitachi Ltd Printing system
US5030021A (en) * 1987-03-26 1991-07-09 Tokyo Electric Co., Ltd. Multi-column dot printing device
JPH09315803A (en) * 1996-05-30 1997-12-09 Fuji Electric Co Ltd Ozonizer
WO2000003279A1 (en) * 1998-07-08 2000-01-20 Optical Switch Corporation Method and apparatus for connecting optical fibers
US9557488B2 (en) 2011-01-11 2017-01-31 Corning Incorporated Optical connector with lenses having opposing angled planar surfaces
WO2012096915A1 (en) * 2011-01-11 2012-07-19 Corning Incorporated Optical connector with lenses having opposing angled planar surfaces
CN103975266A (en) * 2012-01-10 2014-08-06 惠普发展公司,有限责任合伙企业 Optical connectors
US9354398B2 (en) 2012-01-10 2016-05-31 Hewlett Packard Enterprise Development Lp Optical connectors
CN103975266B (en) * 2012-01-10 2016-08-24 惠普发展公司,有限责任合伙企业 Optical conenctor
JP2016057540A (en) * 2014-09-11 2016-04-21 住友電気工業株式会社 Optical connector and manufacturing method therefor
JPWO2017013930A1 (en) * 2015-07-22 2018-05-10 東洋製罐グループホールディングス株式会社 Optical fiber connector with lens
WO2024133462A1 (en) * 2022-12-22 2024-06-27 Orange Interconnecting a hollow-core fibre with a standard silica single-mode fibre
FR3144324A1 (en) * 2022-12-22 2024-06-28 Orange Interconnection of a hollow core fiber with a standard silica single-mode fiber

Similar Documents

Publication Publication Date Title
US4327963A (en) Coupling element with a lens for an optical transmission system
JP6150809B2 (en) Optical substrate having a plurality of staggered light redirecting mechanisms on its main surface
JPH09189826A (en) Optical coupling system device using ball lens, and manufacture of optical coupling system
US9753221B2 (en) Optical coupler for a multicore fiber
JP2006208929A (en) Optical power monitor and its manufacturing method
US10955618B2 (en) Fiber coupling device
JPS61215504A (en) Centering of connector for optical fiber
US4722582A (en) Optical-fibre coupler
JPS5934507A (en) Optical fiber terminal which prevents interference of returned light
EP1457795B1 (en) Optical collimator structure
US4600267A (en) Optical distributor
EP0190146A1 (en) Plural-channel optical rotary joint.
JP4752092B2 (en) Optical waveguide connection structure and optical element mounting structure
KR890002996B1 (en) Axial aligning device for optical fiber
JPH11160569A (en) Optical coupling circuit
WO2020166386A1 (en) Lens structure and optical connection structure
JPS6055801B2 (en) optical circuit element
JPH0836119A (en) Manufacture of low-loss collimator couple
JPH0556483B2 (en)
US20230367076A1 (en) Lens, lens and optical fiber assembly, and optical communication system
JPS606801Y2 (en) optical distribution circuit
JP3798408B2 (en) Optical monitor module
JPS6226724Y2 (en)
KR0156967B1 (en) Optical collimater and optical device using that
JPS6191608A (en) Optical coupler