JPS60221608A - Method of operating fluidized-bed furnace - Google Patents

Method of operating fluidized-bed furnace

Info

Publication number
JPS60221608A
JPS60221608A JP7663684A JP7663684A JPS60221608A JP S60221608 A JPS60221608 A JP S60221608A JP 7663684 A JP7663684 A JP 7663684A JP 7663684 A JP7663684 A JP 7663684A JP S60221608 A JPS60221608 A JP S60221608A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
fluidized
fluidized bed
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7663684A
Other languages
Japanese (ja)
Inventor
Korehiko Nishimoto
西本 是彦
Kiyomichi Taoda
太尾田 清通
Kikuji Tsuneyoshi
紀久士 常吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7663684A priority Critical patent/JPS60221608A/en
Publication of JPS60221608A publication Critical patent/JPS60221608A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE:To make a starting operation in a fluidized-bed furnace easy, by mixing to coexist catalyst particles which are effective to promote combustion of fuel with fluidized medium particles. CONSTITUTION:Combustion catalyst particles to lower the temperature to ignit fuel are mixed with fluidized medium particles. Following can be used as catalyst contents: metallic catalyst contents such as Pt, Pd; metallic mixture catalyst contents such as Pt+Pd, Pt+Rh; catalyst contents of oxide or mixture of those oxides such as Co, Cu, Mn, Cr, Ni, Fe; mixed catalyst contents of metal and oxide such as Pt+Co3O4, Pt+ThO2.CoO2; complex oxide catalyst contents such as LaCoO3, LaMnO3, CuCrO4, CoAl2O4. A catalyst consists of a carrier such as gamma-Al2O3, ZrO2, TiO2 carrying the above-mentioned catalyst contents. With such an arrangement, a starting operation can easily be performed in the titled furnace.

Description

【発明の詳細な説明】 (本発明の技術分野) 本発明は流動層方式の各種加熱炉や焼却炉の運転法の改
良に係るものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to improvements in operating methods of various fluidized bed heating furnaces and incinerators.

(従来技術の概要) 近年、流動層のもつ数々の特性、例えば高い伝熱性能や
混合性に基づく温度の均一性、流動層粒子の持つ大きな
熱容量に起因する運転操業の安定性などによシ、各種の
工業装置としての流動層の応用が極めて活発となってき
た。
(Summary of Prior Art) In recent years, improvements have been made in recent years to improve the many properties of fluidized beds, such as high heat transfer performance, temperature uniformity based on mixability, and operational stability due to the large heat capacity of fluidized bed particles. The application of fluidized beds to various industrial equipment has become extremely active.

即ち流動層装置は一般に層内温度を均一に保ち、かつ一
定温度内に制御する事が容易であシ、温度条件の設定が
重要である反応系及び熱処理系への応用は大変有利であ
る。また焼却、あるいは化学反応を目的とする場合に、
処理物の物性あるいは性状が複雑で融着造粒が起シ易い
もの、あるいは□反応熱の供給が定常的でなく変動し易
いもの等の処理にも容易に応用できる利点がある。
That is, a fluidized bed apparatus generally maintains a uniform bed temperature and easily controls it within a constant temperature range, and is very advantageous for application to reaction systems and heat treatment systems where setting of temperature conditions is important. In addition, when the purpose is incineration or chemical reaction,
This method has the advantage that it can be easily applied to the treatment of products with complex physical properties or properties that are likely to cause fusion granulation, or products where the supply of reaction heat is not constant and tends to fluctuate.

このような観点から最近は特に600〜100゜℃程度
の高温状態で流動層が利用されることが多くなってきて
いる。
From this point of view, fluidized beds have recently been increasingly used, especially at high temperatures of about 600 to 100°C.

通常これらの高温運転状態に流動層装置を到達させるに
は、冷間状態で流動媒体を抜きだした炉(流動層)をス
タートアップバーTで加熱していき、炉の昇温と共に徐
々に流動媒体を炉内に投入して行って流動層全体を使用
燃料の着火温度に到達させた後指定燃料あるいは焼却物
等の燃料投入を開始し、定常運転に移行するのが一般的
である。(場合によっては完全に流動媒体を炉から抜か
ずプロワ−の運転が可能な通常の半量位から始め炉の中
部に設置した昇温バーナで、炉内に静置した流動媒体を
炎であぶって、昇温につれて時々静止媒体層に流動化空
気を送入し転動させて全体の昇温を早める場合もある) bずれにしても冷間状態の流動層装置を昇温しスタート
アップするには長時間を要しく8時間〜半日程度必要)
装置の実働効率を下げる原因となっておシ、流動層装置
実用上の大きな欠点となっていた。
Normally, in order for a fluidized bed apparatus to reach these high-temperature operating conditions, the furnace (fluidized bed) from which the fluidized medium has been extracted in a cold state is heated with a startup bar T, and as the temperature of the furnace rises, the fluidized bed is gradually heated up. Generally, the fluidized bed is charged into the furnace until the entire fluidized bed reaches the ignition temperature of the fuel used, and then the specified fuel or fuel such as incineration material is started and steady operation is started. (In some cases, the fluidized medium left in the furnace may be heated up with a flame using a heating burner installed in the middle of the furnace, allowing the blower to operate without completely removing the fluidized medium from the furnace.) , as the temperature rises, fluidizing air is occasionally introduced into the stationary medium bed and rotated to accelerate the overall temperature rise). (Requires a long time, approximately 8 hours to half a day)
This caused a decrease in the actual operating efficiency of the device, and was a major drawback in practical use of the fluidized bed device.

同、高温で使用される流動層装置を昇温する場合、流動
化ガスに高温ガスを使用する(例えば燃料を燃焼させた
高温の燃焼ガスを流動化ガスとして風箱に吹きこむ)場
合もあるが、装置材料及び構造上からせいぜい600℃
程度までのガスを使用するのが限界であシ、これ以上の
温度にするには問題がある。更にこの程度のガス温度で
流動層を加熱するには長時間が必要である。従って燃料
の着火温度以上になれば層内に燃料を送入して燃焼させ
加熱効率を高める方法がとられるが通常、燃料着火温度
は油燃料で400〜550℃、ガス燃料で550〜70
0℃程度が必要でありとの温度迄の昇温はどうしても前
述のような方法を採る必要があることになる。
Similarly, when raising the temperature of a fluidized bed device used at high temperatures, high-temperature gas may be used as the fluidizing gas (for example, high-temperature combustion gas from burning fuel is blown into the wind box as fluidizing gas). However, due to the equipment materials and structure, the temperature is at most 600℃.
The limit is to use gas up to a certain temperature, and there are problems with raising the temperature above this. Furthermore, it takes a long time to heat the fluidized bed at such a gas temperature. Therefore, when the temperature exceeds the ignition temperature of the fuel, a method is taken to introduce the fuel into the layer and burn it to increase heating efficiency.Usually, the fuel ignition temperature is 400-550℃ for oil fuel and 550-70℃ for gas fuel.
It is necessary to raise the temperature to about 0° C. by using the method described above.

固体燃料の場合は400℃以下の温度でも着火、昇温で
きるが燃焼残渣(灰)が残るので都合が悪い場合が多く
、稀にしか採用されない。
In the case of solid fuel, it is possible to ignite and raise the temperature at temperatures below 400°C, but this is often inconvenient because combustion residue (ash) remains, so it is rarely used.

第1図に従来一般に使用される流動層装置の例を示す。FIG. 1 shows an example of a conventionally commonly used fluidized bed apparatus.

この例では燃料を流動層内で燃焼させ、その燃焼熱を伝
熱管に伝え外部に取り出して利用する場合を示している
This example shows a case where fuel is combusted in a fluidized bed and the combustion heat is transferred to a heat transfer tube and taken out to the outside for use.

流動層本体1内に流動媒体4を充填し流動化ガス分散装
置2を通して風箱3から流動化用空気を送り流動媒体を
流動化している。との時層内バーナ7で流動層内に送入
された燃料が燃焼して発生した熱は層内熱除去用伝熱管
8を通じて流動層外に持ちだされ利用される。
A fluidized bed body 1 is filled with a fluidized medium 4, and fluidizing air is sent from a wind box 3 through a fluidized gas dispersion device 2 to fluidize the fluidized medium. At this time, the heat generated by combustion of the fuel introduced into the fluidized bed by the in-bed burner 7 is taken out of the fluidized bed through the heat transfer tube 8 for removing heat from the bed and used.

この装置のスタートアップにおいては流動層予熱バーナ
5あるいはスタートアップバーナ6を用いて流動層装置
本体1及び流動媒体4の温度を層内バーナ7を通じて送
入される燃料の着火温度壕で予備的に昇温しておくよう
に操業される。
At startup of this device, the fluidized bed preheating burner 5 or startup burner 6 is used to preliminarily raise the temperature of the fluidized bed device main body 1 and the fluidized medium 4 by the ignition temperature trench of the fuel fed through the in-bed burner 7. It is operated as if it were kept.

このように流動層装置の運転においては、常流状態から
のスタートアップに時間を要す。即ち炉を運転温度に到
達さすために流動媒体を炉外に抜きだした空炉の昇温か
ら始め、徐々に流動媒体を投入し加熱を進め運転状態に
もっていくのが普通であり、冷間状態からの迅速な起動
が困難な事が流動層炉の大きな欠点となっていた。
In this way, in the operation of a fluidized bed apparatus, it takes time to start up from a normal flow state. In other words, in order to bring the furnace to operating temperature, it is normal to start by raising the temperature of an empty furnace with the fluidized medium taken out of the furnace, and then gradually introduce the fluidized medium and proceed with heating to bring it to the operating state. A major drawback of fluidized bed reactors is that they are difficult to start up quickly.

(本発明の目的) 本発明は従来法の上述した欠点を解消し、特に流動層炉
のスタートアップ時の操業を容易にぜんとするものであ
る。
OBJECTS OF THE INVENTION The present invention overcomes the above-mentioned drawbacks of the conventional methods and facilitates the operation of a fluidized bed reactor, especially during start-up.

(本発明の構成) 流動層装置の流動媒体は、一般に砂粒などの不活性粒子
が使わねるが、本発明は流動媒体粒子の一部に、燃料が
通常よシ低温で着火燃焼できる燃焼促進触媒を含浸させ
た粒子を混合使用する点を新規とするもので、流動層炉
内で燃料(焼却物を含む)を燃焼させて流動層を高温下
で操業する方法において、流動化媒体粒子の中に燃料の
燃焼を促進する作用をもった触媒粒子を混合共存させる
ことを特徴とする流動層炉の運転方法に関するものであ
る。
(Structure of the present invention) Generally, inert particles such as sand grains are not used as the fluidized medium of a fluidized bed apparatus, but in the present invention, a combustion promoting catalyst that allows fuel to ignite and burn at a lower temperature than usual is added to a part of the fluidized medium particles. This method is new in that it uses a mixture of particles impregnated with The present invention relates to a method of operating a fluidized bed furnace characterized by mixing and coexisting catalyst particles having an effect of promoting combustion of fuel.

(本発明の適用分野) 本発明は、流動層を利用した各種の加熱、焼却、反応装
置に有利に適用することができる。
(Field of Application of the Present Invention) The present invention can be advantageously applied to various heating, incineration, and reaction devices that utilize a fluidized bed.

(本発明の詳細) 前述のように高温で使用される流動層炉では流動媒体と
して砂やアルミナ粒子等の不活性粒子が使われているが
、流動媒体粒子及び炉体を使用燃料の着火温度まで到達
させる為に非常に長時間を要していた。
(Details of the present invention) As mentioned above, inert particles such as sand and alumina particles are used as fluidized media in fluidized bed furnaces used at high temperatures. It took a very long time to reach this point.

本発明では流動媒体中に燃料の着火温度を低下させる燃
焼触媒粒子を混合しておき、通常運転においては燃料が
着火できない低温度し・ベルで燃料を着火させ、流動層
炉を急速(知時間)で加熱・昇温し運転温度に到達させ
るようにしたものである。
In the present invention, combustion catalyst particles that lower the ignition temperature of the fuel are mixed in the fluidized medium, and the temperature is so low that the fuel cannot be ignited in normal operation. ) to reach the operating temperature.

本発明において流動媒体中に混合、共存させる触媒とし
ては、Pt、Pdなどの金属触媒成分、pt−4−pa
、 Pt−4−Rhなどの金属混合物触媒成分、Oo。
In the present invention, the catalysts mixed and coexisting in the fluid medium include metal catalyst components such as Pt and Pd, pt-4-pa
, a metal mixture catalyst component such as Pt-4-Rh, Oo.

Ou、Mn、Or、Ni 、Fe などの酸化物又はそ
れらの混合酸化物触媒成分、P t4−c 0304 
、 P t−4−’rho2・C002などの金属と酸
化物の混合触媒成分、La(!003゜LaMn01 
、0uCr04 、0OA404などの複合酸化物触媒
成分を、γ−AI403 、 Z r 02. T l
 02 などの担体に担持させた触媒が使用される。
Oxide such as Ou, Mn, Or, Ni, Fe or mixed oxide catalyst component, P t4-c 0304
, a mixed catalyst component of metal and oxide such as P t-4-'rho2・C002, La(!003゜LaMn01
, 0uCr04, 0OA404, etc., γ-AI403, Zr02. T l
A catalyst supported on a carrier such as 02 is used.

以下、実施例、比較例をあげ、本発明の有利性を明らか
にする。
Examples and comparative examples will be given below to clarify the advantages of the present invention.

比較例 内径500咽の流動層による廃棄物焼却試験を行うに当
り、LPGを用いて炉のスタートアップ加熱を行った。
Comparative Example When conducting a waste incineration test using a fluidized bed with an inner diameter of 500 mm, startup heating of the furnace was performed using LPG.

試験に用いる流動層炉は鉄皮の外面はカオウール50闘
を巻き保温し鉄皮内面は70篩の断熱キャスタブルを張
っている。
In the fluidized bed furnace used in the test, the outer surface of the steel shell is wrapped with 50% Kao wool to keep it warm, and the inner surface of the steel shell is covered with a 70-sieve insulating castable.

流動媒体として平均径的0.5mのオリビンサンド(鋳
物砂)を約150kg使用している。
Approximately 150 kg of olivine sand (foundry sand) with an average diameter of 0.5 m is used as the fluidizing medium.

またスタートアップ用バーナは炉底に取付けた5本の円
筒スリット式ガス分散装置の内部にLPG供給ノズルを
設置した炉底バーナを用いている。スタートアップ用バ
ーナでν温が670℃に上シ、かつ流動層に空気が導入
され流動化しつ\ある状態の時、直ちにLPGガスを導
入、徐々にガス量を増した所、炉内で内圧変動も少くス
ムーズに着火、燃焼を始めた。次に620℃に炉温か下
った時に同様の操作をすると短時間経過後爆発的に着火
したが炉のメンテナンス上危険操作と考えられた。炉温
600℃では着火ができなかった。
The startup burner is a bottom burner in which an LPG supply nozzle is installed inside a five cylindrical slit type gas distribution device attached to the bottom of the furnace. When the ν temperature in the startup burner reached 670℃ and air was introduced into the fluidized bed and it was beginning to fluidize, LPG gas was immediately introduced and the gas amount was gradually increased, causing internal pressure fluctuations in the furnace. It started to ignite and burn smoothly with little heat. Next, when the furnace temperature dropped to 620°C, a similar operation was performed, and after a short time it ignited explosively, but this operation was considered dangerous in terms of furnace maintenance. Ignition could not be achieved at a furnace temperature of 600°C.

実施例(1) 比較例と同一の炉において流動媒体砂中に、ム40m 
(99,5%)−pt(o、s%)から成る燃焼触媒を
、砂との混合比1:5(燃焼触媒:砂)の割合で混合調
製したもの全量150kgを炉内に投入して比較例と同
一の試験を行ったところ、炉温400℃でも炉温の上昇
が始iD、約10分後にスムーズな着火ができた。35
0℃からでは空気量を50 m3/ hに落しても着火
操作はできなかった。
Example (1) In the same furnace as the comparative example, 40 m of mu
A total of 150 kg of a combustion catalyst consisting of (99.5%)-pt(o, s%) mixed with sand at a mixing ratio of 1:5 (combustion catalyst: sand) was put into the furnace. When the same test as in the comparative example was conducted, even at a furnace temperature of 400°C, smooth ignition was achieved after about 10 minutes after the furnace temperature started to rise. 35
From 0°C, ignition could not be performed even if the air volume was reduced to 50 m3/h.

実施例(2) 実施例1の白金触媒に代えてA/、0. 95%。Example (2) In place of the platinum catalyst in Example 1, A/, 0. 95%.

酸化銅5%から成る燃焼触媒を用い実施例1と同様の着
火試験を実施したところ炉温500℃でスムーズな着火
ができた。
When the same ignition test as in Example 1 was conducted using a combustion catalyst consisting of 5% copper oxide, smooth ignition was achieved at a furnace temperature of 500°C.

実施例(3) 次の各触媒について実施例1と同様の燃焼試験を実施し
だところ各触媒について併記の炉温にてスムーズな着火
が認められた。
Example (3) When the following catalysts were subjected to the same combustion test as in Example 1, smooth ignition was observed for each catalyst at the furnace temperatures listed.

■ AJ0395係 酸化マンガン 5% 500℃■
 A14d、95係 酸化クロム 5チ 480℃■ 
At2o398% パラジウム 2チ 370℃
■ AJ0395 Section Manganese oxide 5% 500℃■
A14d, Section 95 Chromium oxide 5chi 480℃■
At2o398% palladium 2chi 370℃

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般の流動層炉の概略図である。 復代理人 内 1) 明 復代理人 萩 原 亮 − 第1図 1井月ス ↑ FIG. 1 is a schematic diagram of a general fluidized bed furnace. Among the sub-agents: 1) Akira Sub-agent Ryo Hagi Hara - Figure 1 1 Izukisu ↑

Claims (1)

【特許請求の範囲】[Claims] 流動層炉内で燃料(焼却物を含む)を燃焼させて流動層
を高温下で操業する方法において、流動化媒体粒子の中
に燃料の燃焼を促進する作用をもった触媒粒子を混合共
存させることを特徴とする流動層炉の運転方法。
In a method in which fuel (including incineration materials) is burned in a fluidized bed furnace and the fluidized bed is operated at high temperatures, catalyst particles that have the effect of promoting fuel combustion are mixed and coexisted with fluidized media particles. A method of operating a fluidized bed furnace characterized by the following.
JP7663684A 1984-04-18 1984-04-18 Method of operating fluidized-bed furnace Pending JPS60221608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7663684A JPS60221608A (en) 1984-04-18 1984-04-18 Method of operating fluidized-bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7663684A JPS60221608A (en) 1984-04-18 1984-04-18 Method of operating fluidized-bed furnace

Publications (1)

Publication Number Publication Date
JPS60221608A true JPS60221608A (en) 1985-11-06

Family

ID=13610859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7663684A Pending JPS60221608A (en) 1984-04-18 1984-04-18 Method of operating fluidized-bed furnace

Country Status (1)

Country Link
JP (1) JPS60221608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159584A (en) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 Method for starting circulation fluidized bed boiler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546370A (en) * 1978-09-29 1980-04-01 Mitsui Eng & Shipbuild Co Ltd Burning method for hydrocarbon, etc.
JPS5728844A (en) * 1980-06-12 1982-02-16 List Hans Internal combustion engine
JPS58160710A (en) * 1982-03-18 1983-09-24 Himeji Tokushu Genryo:Kk Fluidized bed burning method of mineral fuel
JPS5938512A (en) * 1982-08-26 1984-03-02 インスチツ−ト・カタリザ・シビルスコボ・アツジエレ−ニア・アカデミ−・ナウク・エスエスエスエル Method and device for burning fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546370A (en) * 1978-09-29 1980-04-01 Mitsui Eng & Shipbuild Co Ltd Burning method for hydrocarbon, etc.
JPS5728844A (en) * 1980-06-12 1982-02-16 List Hans Internal combustion engine
JPS58160710A (en) * 1982-03-18 1983-09-24 Himeji Tokushu Genryo:Kk Fluidized bed burning method of mineral fuel
JPS5938512A (en) * 1982-08-26 1984-03-02 インスチツ−ト・カタリザ・シビルスコボ・アツジエレ−ニア・アカデミ−・ナウク・エスエスエスエル Method and device for burning fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159584A (en) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 Method for starting circulation fluidized bed boiler

Similar Documents

Publication Publication Date Title
US3846979A (en) Two stage combustion process
JP3296974B2 (en) Direct reduction method and rotary bed furnace
EP0491481B1 (en) Catalytic combustion
JPS63188702A (en) Small-sized hydrogen generator
JPH0285611A (en) Method of starting combustion system
US3982879A (en) Furnace apparatus and method
US3914090A (en) Method and furnace apparatus
US7261750B1 (en) Method for the autothermal reforming of a hydrocarbon
JP3437684B2 (en) Fuel reformer for fuel cell power plant and operation method thereof
JP4215846B2 (en) Dehydrogenation of ethylbenzene to styrene
JPS60221608A (en) Method of operating fluidized-bed furnace
Simonov et al. Industrial experience of heat supply by catalytic installations
EP0886107A2 (en) Catalytic combustion process using supported palladium oxide catalysts
GB1571809A (en) Method and apparatus for combusting cabronaceous fuel
US2615795A (en) Catalytic gas generator
JP2001227330A (en) Engine system
Farrauto et al. Catalytic combustion for ultra-low emissions
JPS61140707A (en) Operation of fluidized bed
JP2501669B2 (en) Multi-stage catalytic combustor for fuel cell power generation system with built-in start-up means
JP3026671B2 (en) Exhaust gas combustion furnace and combustion control method for exhaust gas combustion furnace
JP2618960B2 (en) Catalytic combustion apparatus and combustion control method therefor
JP3672601B2 (en) Catalytic combustion method
CN107504506A (en) One kind catalysis burning purification technique and its device
JPH04257610A (en) Combustion apparatus of anode waste gas of fuel cell
JPH06288510A (en) Catalyst combustion type boiler system