JPS60220848A - Apparatus for utilizing plasma - Google Patents
Apparatus for utilizing plasmaInfo
- Publication number
- JPS60220848A JPS60220848A JP7658184A JP7658184A JPS60220848A JP S60220848 A JPS60220848 A JP S60220848A JP 7658184 A JP7658184 A JP 7658184A JP 7658184 A JP7658184 A JP 7658184A JP S60220848 A JPS60220848 A JP S60220848A
- Authority
- JP
- Japan
- Prior art keywords
- light
- plasma
- observation window
- light emitted
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、プラズマ中よシ生じる特定発光化学種の発光
量が外部から容具、且つ正確に把握し得るように構成さ
れたプラズマ利用装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a plasma utilization device configured so that the amount of light emitted by a specific luminescent chemical species generated in plasma can be accurately grasped from the outside. It is something.
これまでプラズマ利用装置においては、プラズマの監視
は装置本体内プラズマ中よシ生じる特定発光化学種の発
光量を装置本体外部にて測定することによって行なわれ
ているのが実状である。しかしながら、測定は観測窓な
介し行なわれていることから、観測窓のプラズマ反応物
質などKよる汚れや、その観測窓材質による光の吸収、
散乱、干渉などに原因してその特定発光化学種の発光量
の変化を正確に把握し得ないという不具合がある。Up to now, in plasma utilization devices, plasma monitoring has been carried out by measuring the amount of light emitted by specific luminescent chemical species generated in the plasma inside the device body outside the device body. However, since the measurement is carried out through the observation window, the observation window may be contaminated by K such as plasma reactants, and light absorption by the observation window material may occur.
There is a problem in that changes in the amount of light emitted by a particular luminescent chemical species cannot be accurately determined due to scattering, interference, and the like.
よって本発明の目的は、プラズマの発光状態!正確に把
握し得るプラズマ利用装置を供するにある。Therefore, the purpose of the present invention is to improve the luminescence state of plasma! The purpose of the present invention is to provide a plasma utilization device that can be accurately grasped.
この目的のため本発明は、装置本体外部に設けられた標
準光源からの光を第1の観測窓、装置本体内部、第2の
観測窓を介し測定しその光量変イビ量にもとづき特定対
象の発光化学種の発光量を補正するようになしたもので
ある。。標準光源からの光の光量変化よシ同程度に汚れ
ている第1.第2の観測窓の汚れ具合が知れるものであ
シ、この汚れ具合よシ発光化学種の見掛上の発光量が正
しい発光量に補正され得るものである。For this purpose, the present invention measures light from a standard light source provided outside the device main body through a first observation window, inside the device main body, and a second observation window, and detects a specific target based on the amount of change in light intensity. It is designed to correct the amount of light emitted by the luminescent chemical species. . The first light source is dirty to the same extent as the change in the amount of light from the standard light source. The degree of contamination of the second observation window is known, and the apparent amount of light emitted by the luminescent chemical species can be corrected to the correct amount of light depending on the degree of contamination.
以下、本発明を第1図から第3図により説明する。 The present invention will be explained below with reference to FIGS. 1 to 3.
先ず本発明によるプラズマ利用装置の概要構成について
説明する。第1図はその構成を示したものである。これ
によるとプラズマ利用装置本体1内には一対の電極10
、11が設けられているが、原料ガスが封入された状
態で高周波電源12よシミ力を電極10 、11間に与
えるようにすれは、電極10゜11間には原料ガスが電
離化されることによってプラズマ5が発生するものとな
っている。プラズマ5からの光7は測定窓としての観測
窓8乞介し光検出機構3で特定波長のものが分光、検出
されるようになっているものである。一方、観測窓8に
対向するプラズマ利用装置本体1部分には標準光導入用
の観測窓9が設けられ、標準光源2からの光6は観測窓
9、プラズマ利用装置本体1内部、観測窓8を介し光検
出機構3によって検出器となっている。観測窓8がプラ
ズマ反応物質などによって汚染された場合や、プラズマ
5からの発光量に変化が生じたとき和光量の補正を行な
う場合は、標準光源2からの光6とプラズマ5からの光
7は同時に光検出機構3によって検出される。光6゜7
はその光量に応じた電気信号に変換され7tうえ演算器
4に与えられるが、光6の光量については演算器4でプ
ラズマ発生前の観測窓8が汚染されていない状態で予め
測定しておいた光6の光量との間で光量の変化比率がめ
られるものとなっている。観測窓8,9が同一汚染状態
にあるものとしてその変化比率よシ観測窓8での光6,
7の減光率が知れ、この減光率によって光7(%定対象
発光化学種による光)の検出光量を補正することによっ
てプラズマ5の状態を正しく把握し得るわけである。な
お、標準光源2としてはノ10グンランプや水銀ラング
、タングステンランプ、赤外ラングなど、波長が200
〜2000nmの光を放射し得るものとされる。また、
光検出機構3としては、分光または検出された光の伝送
に光ファイバを用いるものとして回折格子、プリズム、
ビームスプリッタ、干渉フィルタ、スリットなどの分光
手段と、光電子増倍管、光センサ(ホトダイオードなど
)、赤外検出器、半導体検出器などの光検出手段とを測
定対象の化学種の波長に合わせて組合せたものとされる
。更にプラズマ利用装置1本体内における標準光源2か
らの光6の通過位置としては少なくとも光6が観1測窓
8に達し得るならば任意の位置でよく必ずしもプラズマ
5中を通過させる必要はない。First, the general configuration of the plasma utilization apparatus according to the present invention will be explained. FIG. 1 shows its configuration. According to this, there is a pair of electrodes 10 inside the plasma utilization device main body 1.
, 11 are provided, but if the high frequency power supply 12 applies a staining force between the electrodes 10 and 11 in a state where the raw material gas is sealed, the raw material gas will be ionized between the electrodes 10 and 11. As a result, plasma 5 is generated. The light 7 from the plasma 5 is separated by an observation window 8 as a measurement window, and light of a specific wavelength is separated and detected by the light detection mechanism 3. On the other hand, an observation window 9 for introducing standard light is provided in the part of the plasma utilization apparatus main body 1 facing the observation window 8, and the light 6 from the standard light source 2 is transmitted through the observation window 9, inside the plasma utilization apparatus main body 1, and into the observation window 8. The light detection mechanism 3 serves as a detector. When the observation window 8 is contaminated with plasma reactants or the like or when the amount of light emitted from the plasma 5 changes, when correcting the amount of Wako, the light 6 from the standard light source 2 and the light 7 from the plasma 5 are used. is simultaneously detected by the photodetection mechanism 3. light 6゜7
is converted into an electrical signal corresponding to the amount of light 7t and then fed to the computing unit 4. However, the intensity of the light 6 is measured in advance by the computing unit 4 before plasma generation, with the observation window 8 not contaminated. The rate of change in the amount of light can be seen between the amount of light 6 and the amount of light 6. Assuming that observation windows 8 and 9 are in the same state of contamination, the rate of change is the light 6 at observation window 8,
The state of the plasma 5 can be accurately grasped by knowing the light attenuation rate of 7 and correcting the detected amount of light 7 (light due to the target luminescent species) using this light attenuation rate. The standard light source 2 is a light source with a wavelength of 200 nm, such as a No. 10 gun lamp, a mercury lamp, a tungsten lamp, or an infrared lamp.
It is said that it can emit light of ~2000 nm. Also,
The light detection mechanism 3 may include a diffraction grating, a prism, etc. that uses an optical fiber for spectroscopy or transmission of detected light.
Spectroscopic means such as beam splitters, interference filters, and slits, and photodetection means such as photomultiplier tubes, optical sensors (photodiodes, etc.), infrared detectors, and semiconductor detectors are matched to the wavelength of the chemical species to be measured. It is considered to be a combination. Furthermore, the passage position of the light 6 from the standard light source 2 within the main body of the plasma utilization apparatus 1 may be any arbitrary position as long as the light 6 can reach at least the observation window 8, and does not necessarily need to be passed through the plasma 5.
次に第2図によシ本発明によるプラズマ利用装置を用い
SiχNyプラズマ中でのN2の発光i!正確にめる場
合について具体的に説明する。本例では原料ガスとして
混合比1:9の81 H4とNtを用い周波数13.5
6MHzの高周波電力を高周波電源12より電極to
、 it間に与えるようにした。これによりプラズマC
VD装置としてのプラズマ利用装置本体1内部において
はS1ウエノ為(図示せず)上に81.N、薄膜が形成
されるものである。Next, as shown in FIG. 2, the emission of N2 i! in SiχNy plasma using the plasma utilizing apparatus according to the present invention! A case in which it is set accurately will be explained in detail. In this example, 81H4 and Nt with a mixing ratio of 1:9 are used as the raw material gas, and the frequency is 13.5.
6MHz high frequency power is supplied from the high frequency power source 12 to the electrode.
, it is now given between it. As a result, plasma C
Inside the main body 1 of the plasma utilization device as a VD device, 81. N, a thin film is formed.
ところで、標準光源2としてHgラングを使用した場合
、必要に応じHgによる光6とプラズマ5からの光7は
混合された状態で光検出機構3内でビームスプリッタ1
3によ92分されたうえそれぞれフィルタ14 、15
に導かれるようになっている。By the way, when an Hg rung is used as the standard light source 2, the light 6 from Hg and the light 7 from the plasma 5 are mixed and sent to the beam splitter 1 within the photodetection mechanism 3, if necessary.
It is divided into 92 parts by 3 and filters 14 and 15 respectively.
It is designed to be guided by.
フィルタ14においてはN2の発光ピークの波長である
336nmの波長の光のみが、また、フィルタ15にお
いてはHgの発光ピークの波長である436nmの波長
の光のみが選択的に透過されるものである。フィルタ1
4 、15からの特定波長の光はそれぞれ光検出器とし
てのホトダイオード16.17によって電気イキ号に変
換されたうえ演算器4に送られ、演算器4では検出され
たN2の発光tをHgの発光量によシ補正することによ
って正しいNtの発光量を得、これを表示するところと
なるものである。The filter 14 selectively transmits only light with a wavelength of 336 nm, which is the wavelength of the N2 emission peak, and the filter 15 selectively transmits only light with a wavelength of 436 nm, which is the wavelength of the Hg emission peak. . Filter 1
The lights of specific wavelengths from 4 and 15 are each converted into electric signals by photodiodes 16 and 17 as photodetectors and sent to the calculator 4, where the detected N2 emission t is converted into Hg. By correcting the amount of light emission, the correct amount of light emission of Nt is obtained and this is displayed.
これによりプラズマ50発光状態を知り得、ゾラズマ5
を良好な状態に制御することがある程度可能となるもの
である。本発明によるプラズマ利用装置をプラズマCV
D装置として用い不場合には、半導体製造上での歩留シ
向上を期待し得るわけである。Through this, it is possible to know the plasma 50 emission state, and Zolazma 5
It is possible to some extent to control the condition in a good condition. Plasma CV
If it is not used as a D device, it can be expected to improve the yield in semiconductor manufacturing.
第3図は実際に検出されるN2の発光量の経時的変化を
示したものである。N2の発光量が実際には変化しない
場合であっても観測窓の汚れにより見掛上実際に検出さ
れる光量は特性Aとして示すように低下するところとな
る。しかしながら、本発明によるプラズマ利用装置?用
いる場合には実際に検出される光量は正しく補正され得
、特性Bの如くになるものである。FIG. 3 shows the change over time in the amount of N2 light actually detected. Even if the amount of light emitted from N2 does not actually change, the amount of light that is actually detected will apparently decrease as shown by characteristic A due to dirt on the observation window. However, the plasma utilization device according to the present invention? When used, the amount of light actually detected can be correctly corrected and becomes as shown in characteristic B.
以上説明したように本発明による場合は、標準光源によ
って観測窓の汚れ具合が知れこれによシプラズマからの
特定発光化学種による光量を補正し得ることから、プラ
ズマの発光状態を正確に把握し得るという効果がある。As explained above, in the case of the present invention, the degree of dirt on the observation window can be determined using the standard light source, and the amount of light emitted by the specific luminescent chemical species from the plasma can be corrected based on this information, so that the luminescence state of the plasma can be accurately grasped. There is an effect.
第1図は、本発明によるプラズマ利用装置の概要構成を
示す図、第2図は、その構成における光検出機構を一例
として具体的に示したうえで特定発光化学種の発光量を
正しくめる方法を説明するための図、第3図は、実際に
検出される特定発光化学種としてのN2の発光量の経時
的変化を示す図である。
1・・・プラズマ利用装置本体、2・・・標準光源、3
・・・光検出機構、4・・・演算器、8.9・・・観測
窓。
代理人弁理士 秋 本 正 実
%N図
第2図
第3図Fig. 1 is a diagram showing a general configuration of a plasma utilization device according to the present invention, and Fig. 2 is a diagram showing a specific example of a photodetection mechanism in the configuration, and accurately determining the amount of light emitted by a specific luminescent chemical species. FIG. 3, which is a diagram for explaining the method, is a diagram showing changes over time in the amount of luminescence of N2 as a specific luminescent chemical species that is actually detected. 1... Plasma utilization device main body, 2... Standard light source, 3
...Light detection mechanism, 4...Arithmetic unit, 8.9...Observation window. Representative Patent Attorney Tadashi Akimoto %N Figure 2 Figure 3
Claims (1)
外部に取出するための観測窓を有してなるプラズマ利用
装置にして、観測窓に対向する装置本体部分に新たに標
準光導入用の観測窓を設けるとともに、該観測窓用側近
傍に標準光源を設け、装置本体内部を介する上記標準光
源からの光とプラズマからの光を観測窓を介し装置本体
外部に取り出しそれぞれ分光検出手段で分光検出したう
え、演算手段で該分光検出に係る標準光源からの光の光
量と予め分光検出されている観測窓非汚染時での標準光
源からの光の光量とにもとづき上記分光検出手段からの
分光検出されfCfラズマからの光の光量を補正する構
成を特徴とするプラズマ利用装置。The plasma utilization device has an observation window for extracting light from plasma generated inside the device body to the outside of the device body, and an observation window for introducing standard light is added to the part of the device body facing the observation window. A window is provided, and a standard light source is provided near the observation window side, and the light from the standard light source and the light from the plasma are taken out through the observation window to the outside of the device main body, and each is spectrally detected by a spectroscopic detection means. In addition, the calculation means performs spectral detection from the spectral detection means based on the amount of light from the standard light source related to the spectral detection and the amount of light from the standard light source when the observation window is not contaminated, which has been spectrally detected in advance. A plasma utilization device characterized by a configuration for correcting the amount of light from an fCf plasma.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7658184A JPS60220848A (en) | 1984-04-18 | 1984-04-18 | Apparatus for utilizing plasma |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7658184A JPS60220848A (en) | 1984-04-18 | 1984-04-18 | Apparatus for utilizing plasma |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60220848A true JPS60220848A (en) | 1985-11-05 |
Family
ID=13609241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7658184A Pending JPS60220848A (en) | 1984-04-18 | 1984-04-18 | Apparatus for utilizing plasma |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60220848A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62165920A (en) * | 1986-01-17 | 1987-07-22 | Hitachi Ltd | Judging device for end point of etching |
JPH0390576A (en) * | 1989-08-31 | 1991-04-16 | Raimuzu:Kk | Formation of metal nitride coating film |
-
1984
- 1984-04-18 JP JP7658184A patent/JPS60220848A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62165920A (en) * | 1986-01-17 | 1987-07-22 | Hitachi Ltd | Judging device for end point of etching |
JPH0457092B2 (en) * | 1986-01-17 | 1992-09-10 | Hitachi Ltd | |
JPH0390576A (en) * | 1989-08-31 | 1991-04-16 | Raimuzu:Kk | Formation of metal nitride coating film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW586004B (en) | Apparatus and method for spectral analysis of gas | |
US8358416B2 (en) | Methods and apparatus for normalizing optical emission spectra | |
US20070195318A1 (en) | Wavelength calibration method and wavelength calibration apparatus | |
US6636316B1 (en) | Spectroscopic method for analyzing a gas by using laser beam | |
EP0091126A2 (en) | Fluorimeter | |
US6594010B2 (en) | Emission spectrometer having a charge coupled device detector | |
US20230417660A1 (en) | Gas analysis device and gas analysis method | |
GB2026687A (en) | Measurement of oxygen by differential absorption of uv radiation | |
JPS60220848A (en) | Apparatus for utilizing plasma | |
EP1111370A1 (en) | A spectroscopic method for analysing isotopes by using a wavelength-tunable laser | |
JPH0217429A (en) | Concentration measuring method by using laser type gas sensor | |
US4326807A (en) | Photoelectric gas analyzer | |
JPS6197554A (en) | Plasma monitoring | |
JPS61129555A (en) | Monitor with space resolution | |
JPH01235834A (en) | Signal processing system of laser system gas sensor | |
JP2000105152A (en) | Method and apparatus for measurement of temperature | |
JPS599928A (en) | Monitor device for plasma | |
JPH03120386A (en) | Method for detecting ethcing end point | |
JPH01206236A (en) | Discriminating apparatus of quality of quartz | |
SU890083A1 (en) | Method of determination of optically active impurities in solid bodies | |
JPS63208218A (en) | Method and apparatus for judging end point of plasma treatment | |
SU805143A1 (en) | Gas analyser | |
SU717560A1 (en) | Method of determining absolute spectral sensitivity of radiation detector | |
JPH06216080A (en) | Dry etching end point detector | |
SU1062573A1 (en) | Non-phelometric measuring method |