JPS60220730A - Stretching method of crystalllne high molecules - Google Patents

Stretching method of crystalllne high molecules

Info

Publication number
JPS60220730A
JPS60220730A JP7660584A JP7660584A JPS60220730A JP S60220730 A JPS60220730 A JP S60220730A JP 7660584 A JP7660584 A JP 7660584A JP 7660584 A JP7660584 A JP 7660584A JP S60220730 A JPS60220730 A JP S60220730A
Authority
JP
Japan
Prior art keywords
stretching
stretched
electric field
temperature
frequency electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7660584A
Other languages
Japanese (ja)
Other versions
JPH0513051B2 (en
Inventor
Taiji Hosono
細野 泰司
Minoru Ito
實 伊藤
Yoshiji Ichihara
祥次 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP7660584A priority Critical patent/JPS60220730A/en
Publication of JPS60220730A publication Critical patent/JPS60220730A/en
Publication of JPH0513051B2 publication Critical patent/JPH0513051B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain stretched material of high strength and high elastic modulus by stretching crystalline high molecules economically, efficiently and at a high magnification using the external heating method on the first stage and ultrasonic wave or high frequency electric field on the last stage. CONSTITUTION:Crystalline high molecular stretched material such as polyolefin, polyester, fluoropolymer, etc. is stretched on multiple stages. In the first stage of the stretch said material is heated up to an arbitrary temperature in a temperature zone suitable for the stretch of the material to be stretched by means of the external heating method and then strecthed 3-10 times. In the last stage of the stretch said material to be stretched is stretched giving ultrasonic wave or high frequency electric field including the frequency selected from a zone in which of dispersed frequencies based on the amorphous part in the stretching temperature of the material to be stretched dynamic or dielectric loss tandelta is 1/100 of the peak value or more, preferably, 1/10 thereof or more.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、結晶性高分子を経済的に能率よく、しかも
高倍率に延伸して、高強度、高弾性率の延伸物を得る方
法に関するものである。
[Detailed Description of the Invention] [Technical Field] This invention relates to a method of economically and efficiently stretching a crystalline polymer at a high magnification to obtain a stretched product with high strength and high elastic modulus. .

〔従来技術〕[Prior art]

結晶性高分子を延伸すると、延伸方向の弾性率、強度が
向上し、線膨張係数が低下することが一般に知られてい
る。延伸の手順としては、まず、押出成形や溶液からの
結晶化などにより、無配向ないしは弱い配向を有する未
延伸物を成形し、次にその高分子の特性や延伸速度など
によって決まる延伸に適した温度まで昇温した後、外力
を加え、所定の倍率まで延伸する。
It is generally known that when a crystalline polymer is stretched, the elastic modulus and strength in the stretching direction are improved, and the coefficient of linear expansion is decreased. The stretching procedure involves first forming an unstretched material with no or weak orientation by extrusion molding or crystallization from a solution, and then forming an unstretched material that is suitable for stretching as determined by the properties of the polymer and the stretching speed. After raising the temperature to a certain temperature, an external force is applied and the film is stretched to a predetermined magnification.

この延伸過程のうち、初期の過程は延伸される高分子中
に存在する結晶が延伸される方向に配向しながら、結晶
間に存在する非晶鎖も徐々に延伸方向に配向していく過
程であり、ネック延伸過程と呼ばれる。後期の過程は、
結晶の配向は初期過程で配向した方向からあまり変化せ
ず、結晶内あるいは結晶間のスベリなどによって変形し
ながら、結晶間の非晶部分が延伸方向に配向してゆく過
程で、超延伸過程と呼ばれている(飯田昌造、繊維学会
誌、38.245頁(1982)、市原祥次、繊維学会
誌、38.279頁(1982))。
In the initial stage of this stretching process, the crystals present in the polymer being stretched are oriented in the stretching direction, while the amorphous chains existing between the crystals are also gradually oriented in the stretching direction. Yes, it is called neck stretching process. The later process is
The orientation of the crystals does not change much from the direction they were oriented in the initial process, and the amorphous parts between the crystals become oriented in the stretching direction while being deformed due to slippage within or between the crystals, which is called the super-stretching process. (Shozo Iida, Journal of the Japan Institute of Textile Science, p. 38.245 (1982), Shoji Ichihara, Journal of the Japan Society of Textile Technology, page 38.279 (1982)).

延伸可能な極限の延伸倍率は、被延伸試料中の分子鎖の
からみ合い点間の分子量によって決まると考えられてい
る。例えば、超高分子量のポリエチレンを溶液から結晶
化させることによって、からみ合い点間の分子量の大き
な未延伸物を作成し、これを超延伸することによって、
300倍の一軸延伸が達成されている(松尾勝、Pol
ymer Preprints、JAPAN%32、A
4.841頁(1983)鬼しかし、この方法は、溶媒
を用いるため、経済的に不利であり、また溶液からの結
晶化に時間がかかるため、能率も悪く、実用性という点
で問題が多い。
It is believed that the ultimate stretching ratio that can be stretched is determined by the molecular weight between the entanglement points of molecular chains in the sample to be stretched. For example, by crystallizing ultra-high molecular weight polyethylene from a solution, an unstretched material with a large molecular weight between the entanglement points is created, and by super-stretching this,
Uniaxial stretching of 300 times has been achieved (Masaru Matsuo, Pol
ymer Preprints, JAPAN%32, A
4. Page 841 (1983) Demon However, this method is economically disadvantageous because it uses a solvent, and because it takes time to crystallize from the solution, it is also inefficient and has many problems in terms of practicality. .

延伸の際の外力の加え方としては、被延伸物の供給側と
排出側の速度を変える方法や、被延伸物をクランプして
、これを機械的に拡張する方法、管状の被延伸物の内部
に気体、液体またはガイド体などを入れて、その圧力ま
たは張力で延伸する方法、ロールによる押圧を加えなが
ら延伸する圧延延伸法、延伸点に絞りダイを設けて、引
抜きながら延伸する方法などがある。これ等の方法はど
ちらかというと、延伸の速度を規定するような方法とい
えるが、この外に、ゾーン延伸や固相押出しに代表され
るような定応力延伸とも呼ばれる方法もある。
Methods of applying external force during stretching include changing the speeds on the supply and discharge sides of the object to be stretched, clamping the object to be stretched and mechanically expanding it, and methods for applying external force to tubular objects. There are several methods: a method in which gas, liquid, or a guide body is placed inside and the material is stretched using its pressure or tension; a method in which the film is stretched while applying pressure with rolls; and a method in which a drawing die is provided at the stretching point and the material is stretched while being pulled out. be. These methods can be said to be methods that specify the speed of stretching, but in addition to these methods, there are also methods called constant stress stretching, such as zone stretching and solid phase extrusion.

加熱方法としては、加熱された気体や液体を被延伸物に
吹付けたり、被延伸物を加熱気体や液体中に浸漬させる
方法、加熱された固体に被延伸物を接触させる方法、赤
外線ヒータを用いる方法などの、いわゆる外部加熱法が
一般的である。外部加熱法は表面と内部で温度勾配を生
じやすい。
Heating methods include spraying heated gas or liquid onto the object to be stretched, immersing the object in heated gas or liquid, bringing the object into contact with a heated solid, and using an infrared heater. The so-called external heating method, such as the method used, is common. External heating methods tend to create temperature gradients between the surface and the interior.

外部加熱の場合、通常被延伸物の表面の方が高温となり
、中心部が延伸に適した温度になった時点では、表面は
延伸に適した温度より高温になっているため、全体とし
ては充分に配向した延伸物となりに<<、また表面が延
伸に適した温度になった時点では、中心部の温度が未だ
低いために、延伸可能な限界の延伸倍率迄延伸しようと
すると、被延伸物が白化したり、切断したりすることが
多く、そのために延伸倍率を低く抑えざるをえなくなっ
て、高度の延伸配向物が得られないという欠点がある。
In the case of external heating, the surface of the object to be stretched is usually higher in temperature, and by the time the center reaches a temperature suitable for stretching, the surface is already hotter than the temperature suitable for stretching, so the overall temperature is sufficient. The stretched material is oriented to The film often whitens or breaks, which forces the drawing ratio to be kept low, resulting in a disadvantage that a highly drawn and oriented product cannot be obtained.

特に被延伸物が太く又は厚くなるとその現象は顕著であ
る。
This phenomenon is particularly noticeable when the object to be stretched is thick or thick.

外部加熱法のこのような欠点を克服する加熱方法として
、誘電損失を有するような被延伸物誘電体に、高周波電
界をかけて、被延伸物自体を発熱させて加熱する、いわ
ゆる内部加熱法がある。高周波加熱延伸に関しては、特
開昭57−147603、特開昭57−148616、
特開昭57−193513、特開昭57−208212
、特開昭58−109651等にその延伸方法及び装置
の記述がある。この延伸方法は被延伸物に延伸温度での
非晶部分数周波数帯域中の周波数の高周波電界を加える
ことによって、非晶部を選択的に加熱して延伸するもの
で、この方法によれば、延伸時の結晶部の強度低下が抑
制され、分子鎖が動きやすくなっている非晶部に延伸応
力が有効に働くため、高倍率で延伸することができ、高
強度化を達成することが出来るとされている。
As a heating method that overcomes these drawbacks of the external heating method, there is a so-called internal heating method in which a high-frequency electric field is applied to the dielectric material of the object to be drawn, which has dielectric loss, to generate heat and heat the object itself. be. Regarding high frequency heating stretching, please refer to JP-A-57-147603, JP-A-57-148616,
JP-A-57-193513, JP-A-57-208212
, Japanese Unexamined Patent Publication No. 58-109651, etc., describe the stretching method and apparatus. In this stretching method, a high-frequency electric field having a frequency within the amorphous fraction frequency band at the stretching temperature is applied to the object to be stretched, thereby selectively heating and stretching the amorphous portion.According to this method, The decrease in strength of the crystalline part during stretching is suppressed, and the stretching stress acts effectively on the amorphous part where molecular chains move easily, so it is possible to stretch at a high magnification and achieve high strength. It is said that

この誘電加熱延伸法は高強度、高弾性率化、低線膨張率
化という点では、優れた方法であるが、設備費および加
工費ともに高価となり、経済性の点で不利である。
This dielectric heating stretching method is an excellent method in terms of high strength, high modulus of elasticity, and low coefficient of linear expansion, but it is disadvantageous in terms of economy because it requires high equipment costs and processing costs.

〔発明の目的〕[Purpose of the invention]

この発明は、このような従来の問題点を解決するために
なされたもので、結晶性高分子を多段に延伸し、第1段
目においては外部加熱法により、少なくとも最終段にお
いては超音波または高周波電界を加えながら延伸するこ
とによって、結晶性高分子を経済的に、能率よ<、シか
も高倍率に延伸し、高強度、高弾性率の延伸物を得るこ
とのできる結晶性高分子の延伸方法を提供するものであ
る。
This invention was made to solve these conventional problems, and involves stretching a crystalline polymer in multiple stages, using an external heating method in the first stage and using ultrasound or ultrasonic waves in at least the final stage. By stretching the crystalline polymer while applying a high-frequency electric field, it is possible to stretch the crystalline polymer economically, efficiently, and at a high magnification, and to obtain a stretched product with high strength and high elastic modulus. A stretching method is provided.

〔発明の構成〕[Structure of the invention]

この発明による結晶性高分子の延伸方法は、結晶性高分
子からなる被延伸物を延伸するに際し、延伸工程を少な
くとも2段に分けて延伸し、少なくとも第1段目の延伸
においては、外部加熱法を用いて被延伸物の延伸に適し
た温度域中の任意の温度まで加熱した後、3ないし10
倍の延伸を行い、少なくとも最終段の延伸においては、
被延伸物の延伸温度における非晶質の分散周波数帯域中
の任意の周波数を含む超音波または高周波電界を加えな
がら延伸することを特徴とするものである。
In the method for stretching a crystalline polymer according to the present invention, when stretching a material to be stretched consisting of a crystalline polymer, the stretching process is divided into at least two stages, and at least in the first stage of stretching, external heating is performed. After heating to any temperature in the temperature range suitable for stretching the object to be stretched using the method, 3 to 10
At least in the final stage of stretching,
This method is characterized by stretching while applying an ultrasonic wave or a high-frequency electric field containing an arbitrary frequency in the amorphous dispersion frequency band at the stretching temperature of the object to be stretched.

ここにいう結晶性高分子は、いわゆる結晶性高分子や準
結晶性高分子であって、例としては、ポリオレフィンや
ポリエーテル、ポリエステル、ポリアミド、ポリチオエ
ーテル、ポリアミドイミド、並びに弗素系ポリマー等が
あげられる。
The crystalline polymer referred to herein is a so-called crystalline polymer or quasi-crystalline polymer, and examples thereof include polyolefin, polyether, polyester, polyamide, polythioether, polyamideimide, and fluorine-based polymer. It will be done.

また、被延伸物の形状は、ロンド状、繊維状、フィルム
状、テープ状あるいはチューブ状等のいずれであっても
よい。
Further, the shape of the object to be stretched may be any of a rond shape, a fibrous shape, a film shape, a tape shape, a tube shape, and the like.

この発明で利用しうる外部加熱方法としては、公知の加
熱方法の何れでもよく、また外力の加え方も前述の何れ
の方法でもよい。
As the external heating method that can be used in this invention, any known heating method may be used, and the method of applying external force may also be any of the above-mentioned methods.

第1段目の延伸で外部加熱法を用いる理由は、これに適
当な改良を加えれば、誘電加熱法よりコスト的に有利な
ためである。すなわち、誘電加熱法は温度の均一さにお
いて、上述の公知の外部加熱法より優れていると考えら
れるが、装置費、加工費ともに外部加熱法に比べ高くつ
き、有利とは言い難い。太いものを延伸温度まで短時間
で内部まで均一に加熱するには、外部加熱は不利のよう
であるが、押出成形後押出物を必要以上に冷却しないよ
うにするとか、あるいは予熱部に長時間滞留させて保温
するように工夫すれば、かなりの改善は可能であるから
である。
The reason why the external heating method is used in the first stage of stretching is that if appropriate improvements are made to this method, it is more cost-effective than the dielectric heating method. That is, although the dielectric heating method is considered to be superior to the above-mentioned known external heating method in terms of temperature uniformity, it is difficult to say that it is advantageous because both equipment costs and processing costs are higher than the external heating method. External heating seems to be disadvantageous in order to uniformly heat the inside of a thick object to the drawing temperature in a short time, but it is important to avoid cooling the extrudate after extrusion more than necessary, or to heat it for a long time in the preheating section. This is because significant improvements can be made by devising a way to retain heat and retain heat.

また、最終段で、超音波または高周波電界を加えながら
延伸する理由は、次のとおりである。
The reason why the film is stretched while applying ultrasonic waves or a high-frequency electric field in the final stage is as follows.

結晶性高分子は加熱条件や延伸速度にもよるが、通常結
晶緩和や結晶の粒界緩和に基く誘電分散または力学分散
ピークの周波数が10ないし10’ヘルツになるような
温度域で延伸されており、3ないし10倍程度までは、
工業的な条件でも容易に延伸されている。この範囲での
変形は応力と延伸倍率の関係でみると、延伸のごく初期
の段階で歪の増加とともに応力はかなり急激に増加して
降伏点に至り、降伏点を越えて後高分子の種類や分子量
分布、結晶化度、未延伸物の配向の程度、延伸温度、延
伸速度などによって決るある延伸倍率、通常3ないし1
0倍までは、延伸倍率が増加しても、はとんど応力の増
加なしに、あるいは比較的わずかな応力の増加で延伸さ
れる。
Crystalline polymers are usually stretched in a temperature range where the frequency of dielectric dispersion or mechanical dispersion peaks based on crystal relaxation and crystal grain boundary relaxation is 10 to 10' Hertz, although it depends on the heating conditions and stretching speed. However, up to about 3 to 10 times,
It is easily stretched even under industrial conditions. Deformation in this range is seen from the relationship between stress and stretching ratio.At the very early stage of stretching, as the strain increases, the stress increases quite rapidly and reaches the yield point, and after exceeding the yield point, the type of polymer A certain stretching ratio, usually 3 to 1, is determined by the molecular weight distribution, crystallinity, degree of orientation of the unstretched material, stretching temperature, stretching speed, etc.
Even if the stretching ratio increases up to 0 times, the stretching is performed almost without an increase in stress or with a relatively small increase in stress.

ここで、さらに延伸倍率を増加させると、ポリエチレン
のように容易に超延伸しうるちのを除くと、応力は再び
急激に増加するようになり、この応力が再び急激に増加
していく領域での延伸は一般に困難となる。通常この領
域では、被延伸物の分子鎖が一種のスベリのような変形
を受けながら延伸されていくと考えられるが、実際には
、均一にこのような変形をせず、この延伸過程で局部的
に変形して被延伸物が破断するためである。従って、一
般に、超延伸を高速で行なうことは困難である。
If the stretching ratio is further increased, the stress will again increase rapidly, except for polyethylene, which can be easily superstretched. Stretching is generally difficult. Normally, in this region, it is thought that the molecular chains of the material to be stretched undergo a kind of sliding deformation while being stretched, but in reality, this deformation does not occur uniformly, but rather locally during the stretching process. This is because the object to be stretched is deformed and broken. Therefore, it is generally difficult to perform superstretching at high speed.

ところが、最終段である上記領域での延伸で、」二連の
ような超音波または高周波電界を加えながら延伸を行な
うと、分子鎖に均一に一種のスベリ変形を生じ、この領
域での応力と延伸倍率の関係に変化を生じるとともに、
より高倍率まで延伸できるようになることを見出した。
However, in the final stage of stretching in the above region, when stretching is carried out while applying double ultrasonic waves or high-frequency electric fields, a kind of sliding deformation occurs uniformly in the molecular chains, causing stress and stress in this region. As well as causing a change in the relationship between stretching ratios,
It has been found that it becomes possible to stretch to a higher magnification.

観点を変えていえば、超音波または高周波をかけた状態
で延伸すると、この超延伸の速度をあげることができる
と考えてもよい。従って、高速で延伸し得る領域、即ち
通常の外部加熱法で可能な領域と、低速にしなければな
らない領域、即ち超音波または高周波をかけた領域とに
分けて延伸することが原理的にも経済的にも好ましい。
From a different perspective, it may be considered that the speed of super-stretching can be increased by stretching while applying ultrasonic waves or high frequencies. Therefore, it is theoretically and economically economical to separate the stretching into regions that can be stretched at high speeds, i.e., regions that can be stretched using normal external heating methods, and regions that must be stretched at low speeds, that is, regions where ultrasonic or high-frequency waves are applied. It is also preferable.

これが、少なくとも最終段の延伸を超音波または高周波
電界を加えながら行なう理由である。
This is the reason why at least the final stage of stretching is performed while applying ultrasonic waves or a high frequency electric field.

なお、上述のように、超音波または高周波電界を加えな
がら延伸する過程で、必要に応じて前段までの過程で延
伸されたものを外部加熱を用いて延伸温度に保温した後
、またはさらに延伸するに適した温度まで外部加熱しな
がら延伸すれば、超音波または高周波電界印加の効果を
より有効なものとすることができる。
In addition, as mentioned above, in the process of stretching while applying ultrasonic waves or high-frequency electric fields, if necessary, the stretched material in the previous steps is kept at the stretching temperature using external heating, or further stretched. If the film is stretched while being externally heated to a temperature suitable for this, the effect of applying ultrasonic waves or a high-frequency electric field can be made more effective.

本発明における超音波や高周波電界は、延伸温度におけ
る非晶分散周波数帯域の波長を含んでいればよく、高周
波加熱を目的とする場合のような単一周波数である必要
はない。
The ultrasonic waves and high-frequency electric field in the present invention only need to include a wavelength in the amorphous dispersion frequency band at the stretching temperature, and do not need to have a single frequency as in the case where high-frequency heating is intended.

すなわら、加える超音波または高周波電界の周波数は、
被延伸物の延伸温度における非晶部分に基く分散周波数
のうち、力学的または誘電的損失−δの大きさが、その
ピーク値の1/100以上となる領域から選ぶことが好
ましく、さらには、1/10以上となる領域から選ぶこ
とが好ましい。
In other words, the frequency of the applied ultrasonic wave or high-frequency electric field is
Among the dispersion frequencies based on the amorphous portion at the stretching temperature of the object to be stretched, it is preferable to select from a region where the magnitude of mechanical or dielectric loss -δ is 1/100 or more of its peak value, and further, It is preferable to select from an area where the ratio is 1/10 or more.

次に、この発明の詳細な説明する。Next, the present invention will be explained in detail.

〔実施例1〕 ポリオキシメチレン(密度1.41、融点166℃、数
平均分子量42,000、重量平均分子量96,000
、非晶部に起因する分散のピーク値2〜3 X 10?
Hz)を用いて、押出機より押出し冷却固化させて、テ
ープ状未延伸物を得た。
[Example 1] Polyoxymethylene (density 1.41, melting point 166°C, number average molecular weight 42,000, weight average molecular weight 96,000
, the peak value of dispersion caused by the amorphous part is 2 to 3 x 10?
Hz), the mixture was extruded from an extruder, cooled, and solidified to obtain an unstretched tape.

これをロール加熱型タテ延伸機でタテ方向に6倍延伸(
延伸速度24m/分、延伸温度155℃)して、出来た
被延伸物を外部加熱にて160℃に予熱後、高周波電界
延伸装置(発振周波数2450MH2−、最大出力1!
IKW)にて延伸した。このときの延伸速度は6 cm
 7分で、高周波電界を5分間加えた後、高周波電界を
加えながら行なった。
This was stretched 6 times in the vertical direction using a roll heating type vertical stretching machine (
Stretching speed: 24 m/min, stretching temperature: 155°C), preheat the resulting stretched object to 160°C by external heating, and then use a high-frequency electric field stretching device (oscillation frequency: 2450 MH2-, maximum output: 1!
IKW). The stretching speed at this time was 6 cm.
After 7 minutes, a high-frequency electric field was applied for 5 minutes, and then the high-frequency electric field was applied.

このようにして、上記被延伸物を5倍まで延伸したとこ
ろ、すなわち合計の延伸倍率で30倍まで延伸したとこ
ろ破断した。
In this way, when the object to be stretched was stretched up to 5 times, that is, up to a total stretching ratio of 30 times, it broke.

第1図は、このときの延伸倍率と延伸応力との関係を示
したものである。図より明らかなように、延伸倍率の増
加とともに、応力もなめらかに増加している。これは、
被延伸物が均一に超延伸されているためと考えられる。
FIG. 1 shows the relationship between the stretching ratio and the stretching stress at this time. As is clear from the figure, as the stretching ratio increases, the stress also increases smoothly. this is,
This is thought to be because the object to be stretched is uniformly superstretched.

〔比較例1〕 実施例−1で、タテ方向に6倍まで延伸した被延伸物を
、実施例−1の高周波電界延伸装置にかえて、熱風式加
熱延伸装置(ヒーター容量I KW )を用いて160
℃に予熱した後延伸(延伸速度6crn/分)を行った
。丁度3.3倍延伸したところ、すなわち合計の延伸倍
率で20倍延伸したところで、上記被延伸物は破断した
[Comparative Example 1] The object to be stretched in Example-1 was stretched up to 6 times in the vertical direction using a hot-air heating stretching device (heater capacity I KW ) instead of the high-frequency electric field stretching device in Example-1. Te160
After preheating to .degree. C., stretching was performed (stretching speed: 6 crn/min). The object to be stretched broke when it was stretched exactly 3.3 times, that is, when the total stretching ratio was 20 times.

第2図はこのときの延伸倍率と延伸応力との関係を示し
たものである。図より明らかなように、2段目の延伸の
初期の段階では延伸倍率の増加とともに、応力も増加す
るが、ある段階以上は応力の増加がほとんどなくなり、
破断点附近では、逆に応力は減少している。これは不均
一な変形や局部的な応力集中が生じているためと考えら
れる。
FIG. 2 shows the relationship between the stretching ratio and the stretching stress at this time. As is clear from the figure, at the initial stage of the second stage of stretching, the stress increases as the stretching ratio increases, but after a certain stage, the increase in stress almost disappears.
On the contrary, stress decreases near the breaking point. This is thought to be due to non-uniform deformation and local stress concentration.

〔実施例2〕 実施例−1の高周波電界延伸装置に、比較例−1の熱風
式加熱を併用できるように改造し、充分予熱した後、実
施例−1と同様の実験を行った(発振周波数2450 
MHz、最大出力19KW、熱風温度160℃、延伸速
度6 cm 7分)ところ、2段目の延伸倍率で5.5
倍、丁なわち、合計の延伸倍率で33倍迄延伸したとこ
ろで破断した。
[Example 2] The high-frequency electric field stretching apparatus of Example-1 was modified so that it could be used in combination with the hot air heating of Comparative Example-1, and after sufficient preheating, an experiment similar to Example-1 was conducted (oscillation frequency 2450
MHz, maximum output 19KW, hot air temperature 160℃, stretching speed 6 cm 7 minutes) However, the second stage stretching ratio was 5.5.
The film broke when it was stretched to a total stretching ratio of 33 times.

第3図は、このときの延伸倍率と延伸応力との関係を示
したものである。図より明らかなように、延伸倍率の増
加とともに、応力もなめらかに増加している。これは比
較例−1とくらべ、被延伸物全体が均一に超延伸されて
いるためと考えられる。
FIG. 3 shows the relationship between the stretching ratio and the stretching stress at this time. As is clear from the figure, as the stretching ratio increases, the stress also increases smoothly. This is considered to be because the entire stretched object was super-stretched uniformly compared to Comparative Example-1.

〔比較例2〕 実施例−1で街だ、テープ状未延伸物に、高周波電界延
伸装置(発振周波数2450 MHz、最大出力xo 
KW )にて、高周波電界を5分間加えた後、高周波電
界を加えながら延伸(延伸速度6 cm 7分)を行い
、28倍延伸したところで破断した。
[Comparative Example 2] In Example 1, the tape-shaped unstretched material was subjected to a high-frequency electric field stretching device (oscillation frequency 2450 MHz, maximum output
After applying a high-frequency electric field for 5 minutes at KW), stretching was performed while applying the high-frequency electric field (stretching speed: 6 cm, 7 minutes), and the film broke when stretched 28 times.

第4図は、このときの延伸倍率と延伸応力の関係を示し
たものである。この比較例は、特開昭57−14861
6号で開示されている第1段目の延伸から高周波電界を
加える方法によるもので、ごの発明とは延伸方法が異な
るが、人力。1例1と同じ傾向の結果が得られることが
判る。
FIG. 4 shows the relationship between the stretching ratio and the stretching stress at this time. This comparative example is published in Japanese Unexamined Patent Publication No. 57-14861.
This invention is based on the method of applying a high-frequency electric field from the first stage of stretching disclosed in No. 6, and although the stretching method is different from that of the previous invention, it is performed manually. It can be seen that results with the same tendency as Example 1 can be obtained.

〔実施例3〕 ポリフッ化ビニリデン(密度1.75、融点171℃、
溶融粘度9300 Poisel 02/see 23
0℃・非晶部に起因する分散のピーク値2−3X10τ
)lz )を用いて押出機より押出し冷却固化させて、
モノフィンメント状未延伸物を得た。
[Example 3] Polyvinylidene fluoride (density 1.75, melting point 171°C,
Melt viscosity 9300 Poisel 02/see 23
0℃・Peak value of dispersion caused by amorphous part 2-3X10τ
) lz ) is extruded from an extruder, cooled and solidified,
A monofinment-shaped unstretched product was obtained.

これを熱風加熱型タテ延伸(燻でタテ方向に、5倍延伸
(延伸速度40 rn 7分、延伸温度155℃)して
、出来た被延伸物を超音波延伸装置(発珈周波数17 
MHz、最大出力50W)にて延伸した。延伸温度は6
m/分で温度60℃の温湯に浸漬して、超音波をかけな
がら延伸した。
This was vertically stretched by hot air heating (smoked and stretched 5 times in the vertical direction (stretching speed: 40 rn, 7 minutes, stretching temperature: 155°C), and the resulting stretched object was subjected to ultrasonic stretching equipment (firing frequency: 17°C).
MHz, maximum output 50W). The stretching temperature is 6
It was immersed in hot water at a temperature of 60° C. at a speed of m/min and stretched while applying ultrasonic waves.

このようにして、丁度2.8倍まで延伸したところ、す
なわち、合計の延伸倍率で14倍まで延伸したところ、
上記被延伸物は破断した。
In this way, when stretched to exactly 2.8 times, that is, when stretched to a total stretching ratio of 14 times,
The object to be stretched was broken.

〔比較例3〕 実施例−3で、タテ方向に5璋まで延伸した被延伸物を
、超音波を発振しない以外は、実施例−3と同じ条件で
延伸を行ったところ、1.4倍延伸したところ、すなわ
ち、合計の延伸倍率で7倍迄延伸したところで破断した
[Comparative Example 3] The object to be stretched in Example 3, which had been stretched up to 5 mm in the vertical direction, was stretched under the same conditions as in Example 3, except that no ultrasonic waves were oscillated. When it was stretched, that is, when it was stretched to a total stretching ratio of 7 times, it broke.

〔実施例4〕 実Mn例−2の方法と条件で、ポリオキシメチレンを延
伸し、合計の延伸倍率28倍迄延伸したものの弾性率は
48 GPa、強度2.2 GPaであった。
[Example 4] Polyoxymethylene was stretched according to the method and conditions of Actual Mn Example-2 to a total stretching ratio of 28 times, and the elastic modulus was 48 GPa and the strength was 2.2 GPa.

上記各実施例および比較例について考察すると、次のと
おりである。
A consideration of each of the above Examples and Comparative Examples is as follows.

(1) 実施例1、比較例1.2より、高周波電界の効
果は、未延伸物を数倍まで延伸する範囲ではiよく、そ
れ以上のいわゆる超延伸の領域で有効に作用するもので
あり、これにより高倍率に延伸し潜ることが判る。した
がって、また、第1段目で行なう延伸は、通常の外部加
熱による方法によるから、装置費および加工費の低減に
寄与するものであり、その方が経済的に能率よく延伸し
得ることを示すものである。
(1) From Example 1 and Comparative Example 1.2, the effect of the high-frequency electric field is good in the range of stretching an unstretched material up to several times, and is effective in the so-called super-stretching range beyond that. , which shows that it can be stretched to a high magnification. Therefore, since the stretching carried out in the first stage is carried out by the usual external heating method, it contributes to the reduction of equipment costs and processing costs, and this shows that stretching can be performed more economically and efficiently. It is something.

(2)また、実施例2を、実施例1および比較例1と対
比すれば、高周波電界は、単に被延伸物を加熱すること
のみ意味があるのではなく、上記超延伸の領域における
作用からも明らかなように、被延伸物の超延伸過程で加
えるところに意味があることが判る。また、必要に応じ
、外部加熱を併用すれば、超延伸過程における高周波電
界の効果をさらに高め得ることも判る。これは、また同
時に、実施例3および比較例3との対比より、超音波を
かけながら延伸する場合でも、同様に言い得ることであ
る。
(2) Furthermore, if we compare Example 2 with Example 1 and Comparative Example 1, the high-frequency electric field is not only meaningful for simply heating the object to be stretched, but also because of its effect in the above-mentioned super-stretching region. As is clear from the above, there is a meaning in adding it during the super-stretching process of the object to be stretched. It is also found that the effect of the high-frequency electric field in the super-stretching process can be further enhanced by using external heating, if necessary. At the same time, from a comparison with Example 3 and Comparative Example 3, the same can be said even when stretching is performed while applying ultrasonic waves.

(3)第4実施例から、この発明は延伸倍率の向上を通
してプラスチックの高強度、高弾性率化に有効であるこ
とが判る。
(3) From the fourth example, it can be seen that the present invention is effective in increasing the strength and modulus of plastics by increasing the stretching ratio.

(4)上記各実施例においては、延伸の後期段階ないし
最終段階においてのみ超音波や高周波電界の如き、高分
子鎖に直接作用するような、周期的に変動する場を与え
ながら延伸を行うので、被延伸物の初期段階の延伸温度
までの昇温のために高周波電界を用いる必要がない。ま
た、高周波電界を用いる場合でも、装置が小型ですむた
め経済的であり、ポリエチレンの如き誘電的に加熱でき
ないものについても、超音波を用いうるので、特開昭5
7−148616に記述されているような誘電加熱を行
うために、池の物質を添加する必要もなく、したがって
高強度化にも有利である。
(4) In each of the above embodiments, stretching is performed while applying a periodically fluctuating field such as an ultrasonic wave or a high-frequency electric field that directly acts on the polymer chains only in the late stage or final stage of stretching. There is no need to use a high frequency electric field to raise the temperature of the object to be stretched to the initial stretching temperature. Furthermore, even when using a high-frequency electric field, it is economical because the device is small, and ultrasonic waves can be used even for materials that cannot be heated dielectrically, such as polyethylene.
In order to perform dielectric heating as described in No. 7-148616, it is not necessary to add a pond substance, and therefore it is advantageous for increasing the strength.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、結晶性高分子
の被延伸物を多段に延伸し、第1段目の延伸においては
外部加熱法により、少なくとも最終段においては超音波
または高周波電界を加えながら延伸するようにしたから
、結晶性高分子を経済的に、能率よく、しかも高倍率に
延伸し、高強度、高弾性率の延伸物を得ることができる
As explained above, according to the present invention, a crystalline polymer to be stretched is stretched in multiple stages, and in the first stage of stretching, an external heating method is used, and at least in the final stage, an ultrasonic wave or a high-frequency electric field is applied. Since the crystalline polymer is stretched while adding, it is possible to economically and efficiently stretch the crystalline polymer at a high magnification, and to obtain a stretched product having high strength and high elastic modulus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の¥施例1における被延伸物の延伸倍
率と延伸応力の関係を示すグラフ、第2図は比較例1に
おける同上の関係を示すグラフ、第3図は実施例2にお
ける同上の関係を示すグラフ、第4図は比較例2におけ
る同上の関係を示すグラフである。 第2図 第4図
Fig. 1 is a graph showing the relationship between the drawing ratio and drawing stress of the object to be drawn in Example 1 of the present invention, Fig. 2 is a graph showing the same relationship in Comparative Example 1, and Fig. 3 is a graph showing the relationship between the drawing ratio and the drawing stress in Example 2. FIG. 4 is a graph showing the same relationship as above in Comparative Example 2. Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 結晶性高分子からなる被延伸物を延伸するに際し、延伸
工程を少なくとも2段に分けて延伸し、少なくとも第1
段目の延伸においては、外部加熱法を用いて被延伸物の
延伸に適した温度域中の任意の温度まで加熱した後、3
ないし10倍の延伸を行い、少なくとも最終段の延伸に
おいては、被延伸物の延伸温度における非晶質の分散周
波数帯域中の任意の周波数を含む超音波または高周波電
界を加えながら延伸することを特徴とする結晶性高分子
の延伸方法。
When stretching a material to be stretched consisting of a crystalline polymer, the stretching process is divided into at least two stages, and at least the first
In the stretching of the third stage, after heating to an arbitrary temperature in the temperature range suitable for stretching the object to be stretched using an external heating method,
or 10 times, and at least in the final stage of stretching, the stretching is performed while applying an ultrasonic wave or a high-frequency electric field containing an arbitrary frequency in the amorphous dispersion frequency band at the stretching temperature of the object to be stretched. A method for stretching crystalline polymers.
JP7660584A 1984-04-18 1984-04-18 Stretching method of crystalllne high molecules Granted JPS60220730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7660584A JPS60220730A (en) 1984-04-18 1984-04-18 Stretching method of crystalllne high molecules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7660584A JPS60220730A (en) 1984-04-18 1984-04-18 Stretching method of crystalllne high molecules

Publications (2)

Publication Number Publication Date
JPS60220730A true JPS60220730A (en) 1985-11-05
JPH0513051B2 JPH0513051B2 (en) 1993-02-19

Family

ID=13609960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7660584A Granted JPS60220730A (en) 1984-04-18 1984-04-18 Stretching method of crystalllne high molecules

Country Status (1)

Country Link
JP (1) JPS60220730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434037A (en) * 1990-05-28 1992-02-05 Toshio Kunugi Production of high-modulus fiber
FR2790486A1 (en) * 1999-03-05 2000-09-08 Rhodianyl Production polyamide yarn, fibers or filaments comprises spinning and/or drawing in the presence of an electric field to modify mechanical properties

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434037A (en) * 1990-05-28 1992-02-05 Toshio Kunugi Production of high-modulus fiber
FR2790486A1 (en) * 1999-03-05 2000-09-08 Rhodianyl Production polyamide yarn, fibers or filaments comprises spinning and/or drawing in the presence of an electric field to modify mechanical properties

Also Published As

Publication number Publication date
JPH0513051B2 (en) 1993-02-19

Similar Documents

Publication Publication Date Title
US4335069A (en) Flat sheet process for production of polyolefin shrink film
JPH064274B2 (en) Method for producing polyethylene film having high tensile strength and high modulus
JPS60220730A (en) Stretching method of crystalllne high molecules
US5575968A (en) Process for the preparation of thermoplastic resin film
JPH0367490B2 (en)
JPH0371974B2 (en)
EP0084274A1 (en) Process for the production of ultrahigh-modulus polymers
JPH09141734A (en) Uniaxially stretched molded article of polytetrafluoroethylene and production thereof
JPS6312767B2 (en)
JPH0250817A (en) Method and device for manufacturing plastic continuum
KR0140299B1 (en) Process for preparing biaxially oriented polyester film
JPH05104620A (en) Manufacture of polypropylene oriented matter
KR0173730B1 (en) Manufacturing method of biaxially oriented polyester film
KR0173731B1 (en) Manufacturing method of biaxially oriented polyester film
KR0140311B1 (en) Process for preparing biaxially oriented polyester film
KR0173727B1 (en) Manufacturing method of biaxially oriented polyester film
KR0142039B1 (en) Process for preparing biaxially oriented polyester film
JP2825728B2 (en) Method for producing biaxially oriented polyester film
JP2788775B2 (en) Method for producing biaxially stretched polyester film
KR100526246B1 (en) Method of producing a ceramic sheet
JPH09295344A (en) Manufacture of thermoplastic resin film
JP2002225128A (en) Thermoplastic resin film and method for producing the same
JPS63252719A (en) Orientated object of polyacetal and its manufacture
JPH08174662A (en) Production of biaxially stretched polyester film
JPS61293229A (en) Production of polyethylene molding of improved heat resistance