JPS6021904A - Fiber generating extremely fine fibrils - Google Patents
Fiber generating extremely fine fibrilsInfo
- Publication number
- JPS6021904A JPS6021904A JP12600083A JP12600083A JPS6021904A JP S6021904 A JPS6021904 A JP S6021904A JP 12600083 A JP12600083 A JP 12600083A JP 12600083 A JP12600083 A JP 12600083A JP S6021904 A JPS6021904 A JP S6021904A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- fibers
- component
- ultrafine
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Multicomponent Fibers (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、50本以上の連続した超極細繊維を含有し、
かつこの超極細繊維の集団が群として複数に別れて含有
された構造を有する超極細繊維発生型繊維に関するもの
である。一般には海島型繊維と称されている高分子相互
配列体繊維は極めて有用で、これを用いた新しい製品が
多く世に出ていることはよく知られているところである
。DETAILED DESCRIPTION OF THE INVENTION The present invention contains 50 or more continuous ultrafine fibers,
The present invention also relates to an ultra-microfiber generation type fiber having a structure in which a group of ultra-microfibers is contained in a plurality of groups. It is well known that polymer interlayer array fibers, generally referred to as sea-island fibers, are extremely useful, and that many new products using them are now on the market.
本発明はかかる多成分系繊維の一種である高分子相互配
列体繊維であって、特に他の成分(結合成分)中に分配
されている成分(極細繊維成分)に特別の構成をもたせ
た繊維に関するものである。The present invention relates to a polymer mutual array fiber which is a type of such multi-component fiber, and in particular a fiber in which a component (microfiber component) distributed in other components (binding component) has a special structure. It is related to.
公知の繊維としては1%公昭47−’57648号公報
に記載されているような、島成分がポリマブレンドであ
る高分子相互配列体繊維がある。As a known fiber, there is a polymer interlayer fiber in which the island component is a polymer blend, as described in 1% Japanese Publication No. 1987-57648.
ここに記載されている一繊維は、ポリマブレンドからな
る島成分は繊維軸方向に連続しているが、この島成分を
構成しているポリマブレンド成分のうち、島成分の中に
あるよシ微細な島ブレンド成分は繊維軸方向に連続して
おらず、きわめて短い単繊維として他成分(海ブレンド
成分)中に分散されている。しかも、島ブレンド成分は
、最終的には部分的に文は完全に除去され、残った海ブ
レンド成分が中空極細繊維として使用されることを特徴
とするものである。島成分がポリマブレンドである高分
子相互配列体繊維の紡糸性状は、2種以上のポリマをブ
レンドして紡糸するいわゆる混合紡糸繊維の紡糸性状は
どは不安定ではないが、島成分がブレンドされているこ
とがら満足できる紡糸安定性は得られない。すなわち1
口金から吐出されたポリマは太細状とな凱ポリマの組み
合せによっては、雨だれ状になるのである。まfc、島
成分ブレンド高分子配列体繊維において、島ブレンド成
分を残し、それ以外の成分を除去した場合は、島ブレン
ド成分が微細な単繊維であるために繊維束としての形態
は保ち得すにバラバラの粉末状になってしまうものであ
る。In one fiber described here, the island component made of the polymer blend is continuous in the fiber axis direction, but among the polymer blend components that make up this island component, there are very fine particles in the island component. The island blend component is not continuous in the fiber axis direction, but is dispersed in other components (sea blend component) as extremely short single fibers. Furthermore, the island blend component is characterized in that the fibers are finally partially completely removed and the remaining sea blend component is used as hollow microfibers. The spinning properties of polymer mutual array fibers in which the island component is a polymer blend are not unstable, whereas the spinning properties of so-called mixed spun fibers, which are spun by blending two or more polymers, are not unstable. Satisfactory spinning stability cannot be obtained because of the i.e. 1
Depending on the combination of thick and thin polymers, the polymer discharged from the nozzle can take on the shape of a raindrop. fc, in the island component blend polymer array fiber, if the island blend component is left and the other components are removed, the form as a fiber bundle cannot be maintained because the island blend component is a fine single fiber. It turns into a powder.
他の公知の繊維としては、特開昭54−125718号
公報に記載されている海島型多成分系繊維が知られてい
る。この繊維は、一つの成分流人が複数に分割されて他
成分流Bと合流した構成の複合流によって形成された島
成分を有する繊維である。ただし、ここにおける成分流
Aの分割数は最大10個までである。それ以上に分割し
て他成分流と複合して流そうとしても分割流がとなシ同
志合流してしまい1分割数が10個を越えて多数の島成
分を有する繊維は得られていないのである。As another known fiber, an island-in-the-sea type multicomponent fiber described in Japanese Patent Application Laid-open No. 125718/1984 is known. This fiber has an island component formed by a composite flow in which one component flow is divided into a plurality of flows and merged with another component flow B. However, the number of divisions of component flow A here is up to ten. Even if you try to divide the fiber into more than that and flow it in combination with other component streams, the divided streams will merge together and you will not be able to obtain a fiber with a large number of island components with the number of divisions exceeding 10. be.
したがって1分割された島成分の1本の極細繊維の繊度
は0.01テニールまでには到らず、それ以上細い繊維
を得ることは不可能であった。Therefore, the fineness of one ultrafine fiber of the divided island component did not reach 0.01 tenier, and it was impossible to obtain a finer fiber than that.
本発明は、かかる従来技術の欠点に鑑み、超極細繊維を
得るに適した形態の繊維を提供することを目的とする0
また。他の目的は、繊維のすぬけが生じず、引張シ強度
の大きな繊維束を得ること及び紡糸安定性に優へ、フィ
ブリル化の容易な繊維を得ることにある。In view of the drawbacks of the prior art, the present invention aims to provide fibers with a form suitable for obtaining ultrafine fibers.
Also. Other objects are to obtain fiber bundles with high tensile strength without fiber shedding, and to obtain fibers that have excellent spinning stability and are easily fibrillated.
本発明のかかる目的は、■実質的に連続フィラメント状
で0.01デニール以下の超極細繊維が少なくとも50
本配列集合し、他の成分(結合成分1)で結合されて超
極細繊維群を形成し、■更に該超極細繊維群が複数個集
合し、他の成分(結合成分2:結合成分1と同じ場合を
含む〕で結合されて、全体として1本の繊維を形成して
いることを特徴とする超極細繊維発生型繊維、にょって
達成される。Such an object of the present invention is to (1) contain at least 50 ultrafine fibers having a substantially continuous filament shape and having a diameter of 0.01 denier or less;
This array gathers and is bonded with another component (bonding component 1) to form a group of ultra-fine fibers. This is achieved by the ultra-fine fiber generation type fiber, which is characterized in that the fibers are bonded together to form one fiber as a whole.
本発明の繊維に含有されている超極細繊維は。The ultrafine fibers contained in the fibers of the present invention are as follows.
繊維の長さ方向に実質的に連続しているものである。超
極細繊維が長さ方向に不連続で短く切れている場合は、
結合成分を除去したとき超極細繊維が粉状にバラバラに
なってしまう。またそうならずに超極細繊維の束が得ら
れたとしても、この束を引っばると繊維が切断される前
に繊維のすぬけが生じ、引張シ強さの低い9弱い繊維束
しが得られない。また、超極細繊維が長さ方向に不連続
の場合は、前に述べたように紡糸安定性が悪く、紡糸し
た繊維を延伸するとき均一に延伸されず、太さむらの大
きい繊維しか得られないのである。The fibers are substantially continuous in the length direction. If the ultra-fine fiber is discontinuous and cut short in the length direction,
When the binding components are removed, the ultra-fine fibers fall apart into powder. Even if this does not happen and a bundle of ultra-fine fibers is obtained, when the bundle is pulled, the fibers will slip through before they are cut, resulting in a weak fiber bundle with low tensile strength. I can't do it. In addition, if the ultra-fine fiber is discontinuous in the length direction, the spinning stability is poor as mentioned earlier, and when the spun fiber is drawn, it is not drawn uniformly, and only fibers with large thickness unevenness are obtained. There isn't.
また2本発明における超極細繊維の平均繊度は0.01
デニールよシ小さいものであシ、好ましくはo、 o
o、 iデニール以下である。0.01デニールを超え
ると繊維の剛性が高く、超柔軟な繊維束になシ得ない。In addition, the average fineness of the ultrafine fiber in the present invention is 0.01
Small denier, preferably o, o
o, i denier or less. If it exceeds 0.01 denier, the fibers will have high rigidity and cannot be made into a super flexible fiber bundle.
本発明にかかる超極細繊維群は、少なくとも50本の超
極細繊維から構成されているものである。The ultrafine fiber group according to the present invention is composed of at least 50 ultrafine fibers.
すなわち2本発明の繊維は、従来知られている高分子配
列体繊維などの極側繊維発生型繊維に含まれている極細
繊維に、さらにまたきわめて多数の連続した超極細繊維
が含まれた構造を有する新規な繊維である。超極細繊維
群内の繊維の本数が。In other words, the fiber of the present invention has a structure in which an extremely large number of continuous ultra-fine fibers are further included in the ultra-fine fibers contained in the conventional fiber-generating fibers such as polymer array fibers. It is a new fiber with The number of fibers in the ultra-fine fiber group.
50本未満では繊維の超極細化が困難となる。If the number is less than 50, it becomes difficult to make the fibers ultra-fine.
本発明の繊維は、多数の超極細繊維が他の成分で結合さ
れて超極細繊維群を形成し、さらにこの超極細繊維群が
複数集められて他の成分で結合された構造をしているも
のである。ここで、結合成分とは、超極細繊維と超極細
繊維あるいは超極細繊維群と超極細繊維群・の間やまわ
シにあシ、それぞれを結びつけ一体化している成分のこ
とをいう。The fiber of the present invention has a structure in which a large number of ultra-fine fibers are combined with other components to form a group of ultra-fine fibers, and a plurality of these groups of ultra-fine fibers are further collected and combined with other components. It is something. Here, the bonding component refers to a component that connects and integrates the ultrafine fibers and the ultrafine fibers or between the groups of ultrafine fibers and the groups of ultrafine fibers.
超極細繊維群内の超極細繊維数は、結合成分と該極細繊
維とが海島構造をしていることが好ましい。The number of ultrafine fibers in the ultrafine fiber group is preferably such that the bonding component and the ultrafine fibers have a sea-island structure.
!、た1本発明の繊維の結合成分を除去すると、超極細
繊維が少なくとも50本集まって細い一次の束を形成し
、この−次の束がさらに複数集まって二次の束を形成し
ている構造の繊維束が得られる。! When the binding components of the fibers of the present invention are removed, at least 50 ultrafine fibers gather to form a thin primary bundle, and a plurality of these secondary bundles further gather to form a secondary bundle. A structured fiber bundle is obtained.
これらの本発明の繊維および繊維束はいずれもこれまで
に知られていない新規な構造のものである。These fibers and fiber bundles of the present invention all have novel structures that have not been previously known.
一方、性質の異なるポリマを超極細繊維に用い超極細繊
維群間で異ならしめることによって、天然皮革のコラー
ゲン繊維とはまた異なる特殊な性質を有する繊維が得ら
れる。たとえば、2種のポリマ成分の染色性を異ならし
めた場合は2片方のポリマ成分からなる超極細繊維を染
色し他方を染色しないとか1両者をそれぞれ異色に染色
することによ91色の深み向上、メランジ色調など異色
効果の表現が可能である。また2片方のポリマ成分に通
常の繊維形成性ポリマを用い、他方にエラストマーを用
いることにょシ1弾性回復性の良い糸が得られ、また、
ニジストマーを溶剤処理してバインダーとして利用する
ことも可能である。On the other hand, by using polymers with different properties for the ultrafine fibers and making the ultrafine fiber groups different, fibers with special properties that are different from the collagen fibers of natural leather can be obtained. For example, if two types of polymer components have different dyeing properties, 2) the ultra-fine fiber made of one polymer component may be dyed and the other is not dyed, or 1) both may be dyed in different colors to improve the depth of 91 colors. , it is possible to express unique color effects such as melange tones. In addition, by using a normal fiber-forming polymer for one polymer component and an elastomer for the other, a yarn with good elastic recovery properties can be obtained.
It is also possible to treat the nidistomer with a solvent and use it as a binder.
さらにこのほかに、熱収縮性、融点、溶剤溶解性。In addition to this, heat shrinkability, melting point, and solvent solubility.
導電性、磁性1反応性、加水分解性、イオン交換性、放
射線感能性、感光性2強度、延伸性などの異なるポリマ
を組み合せて用いてもよく、ポリマも2種とはかぎらず
2種以上を用いたものでもかまわない。これらのポリマ
の性質のちがいを利用することだよシ、新是な機能を有
した繊維が得られるのである。さらに、超極細繊維群内
で超極細繊維のポリマ成分を異ならしめることも可能で
。Polymers with different conductivity, magnetism 1 reactivity, hydrolyzability, ion exchange property, radiation sensitivity, photosensitivity 2 strength, stretchability, etc. may be used in combination, and the number of polymers is not limited to two types. It is also possible to use the above. By taking advantage of the differences in the properties of these polymers, fibers with new functions can be obtained. Furthermore, it is also possible to vary the polymer components of the ultrafine fibers within the group of ultrafine fibers.
群間でポリマ成分を異ならしめた場合とはまた異質の効
果が得られるのである。A different effect can be obtained than if the polymer components were different between the groups.
本発明の繊維に使用される物質の具体例としては、たと
えば、ナイロン6、ナイロン66、ナイロン6−10.
ナイロン12. ナイロンilな、!ニーのポリアミド
及びその共重合体、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート、ポリテトラメチレンテレフタ
レート、ポリトリメチレンチレフタレ−) 、・−鳴L
<はポリエチレンオキシベンゾエート、ポリエチレン
セバケート、ポリエチレンアジペートなどのポリエステ
ル及びその共重合体、ポリエチレン、ポリプロピレン等
を主体とするポリオレフィン系ポリマおよびその共重合
体、ポリエチレンオキサイド、ポリメチレンオキシド、
ポリエチレングリコールなどのポリエーテル、ポリスチ
レン、ポリメチルメタクリレート。Specific examples of materials used in the fibers of the present invention include nylon 6, nylon 66, nylon 6-10.
Nylon 12. Nylon IL! polyamide and its copolymer, polyethylene terephthalate, polybutylene terephthalate, polytetramethylene terephthalate, polytrimethylene terephthalate), ・-Nail L
< means polyesters such as polyethylene oxybenzoate, polyethylene sebacate, polyethylene adipate and their copolymers, polyolefin polymers mainly composed of polyethylene, polypropylene, etc. and their copolymers, polyethylene oxide, polymethylene oxide,
Polyethers such as polyethylene glycol, polystyrene, and polymethyl methacrylate.
ポリビニルアルコール、アクリロニトリル系重合体など
のビニール系ポリマ及びその共重合体、ポリウレタン及
びその共重合体があシ、このほかこれらの混合物が挙げ
られる。Examples include vinyl polymers such as polyvinyl alcohol and acrylonitrile polymers and copolymers thereof, polyurethane and copolymers thereof, and mixtures thereof.
しかしながら1本発明の繊維の各成分として用いる上記
ポリマの組合せは該繊維の利用分野、製造コスト、ポリ
マ特性、その他を考嵐して適宜決定すればよく一義的に
決定しえない。However, the combination of the above-mentioned polymers to be used as each component of the fiber of the present invention cannot be uniquely determined, but can be determined appropriately by considering the field of use of the fiber, manufacturing cost, polymer properties, and other factors.
第1図は本発明の繊維の具体例を示した繊維の横断面図
である。共に6つの成分からなる繊維の横断面図である
。しかし、前にも述べたとおシ。FIG. 1 is a cross-sectional view of a fiber showing a specific example of the fiber of the present invention. FIG. 3 is a cross-sectional view of a fiber consisting of six components. But as I said before.
超極細繊維群間あるいは群内において、超極細繊維のポ
リマ成分が異なっていてもよい。また、超極細繊維群内
における結合成分2と群間の結合成分6とは同一の物質
であってもよい。また、2種以上のポリマを混合したも
の、またはポリマに無機物あるいは有機物などの微粉末
を混合したものを一つの成分として考えることもちシう
る。ここでは1,2.3の6成分から成るものとして以
下説明する。The polymer components of the ultrafine fibers may be different between or within the groups of ultrafine fibers. Further, the bonding component 2 within the ultrafine fiber group and the bonding component 6 between the groups may be the same substance. It is also possible to consider a mixture of two or more types of polymers, or a mixture of a polymer and a fine powder of an inorganic or organic substance as one component. Here, the following description will be made assuming that it consists of six components, 1, 2.3.
第1図の繊維は、超極絹繊維成分1.結合成分2と結合
成分6とから構成されている。この1と2からなる成分
は従来の極細繊維とは全く異なっておシ、1つの成分1
がきわめて多数に(少なくとも50本)分割され、他成
分2と結合している構造をとっている。The fiber in FIG. 1 consists of ultra-ultra silk fiber component 1. It is composed of a coupled component 2 and a coupled component 6. This component consisting of 1 and 2 is completely different from conventional ultrafine fibers.
It has a structure in which it is divided into an extremely large number of parts (at least 50 parts) and combined with other components 2.
かかる1と2からなる成分の形状については。Regarding the shape of the component consisting of 1 and 2.
第1図a、bに示した以外にCに示したように。In addition to those shown in Figures 1a and b, as shown in Figure 1C.
成分1と成分2が雲母状に交互に幾重にも重ね合わさっ
た例がある。もちろん、これのみに限定されるものでは
ない。(成分1+成分2)/成分6の重量比率が小さい
ときは、成分1+成分2の形はほぼ円形に゛なる。じ゛
かし、その比率が高くなるにつれ成分1+成分2は成分
6を介在して最密充填の構造に変形していく。つまシ2
段々丸みがとれて第1図dに示したごとく多角形化する
のである。しかし1本発明の主旨は何ら変ることはない
。There is an example in which component 1 and component 2 are layered alternately in a mica-like manner. Of course, it is not limited to this only. When the weight ratio of (component 1 + component 2)/component 6 is small, the shape of component 1 + component 2 becomes approximately circular. However, as the ratio increases, component 1+component 2 transforms into a close-packed structure with component 6 interposed. Tsumashi 2
It gradually becomes less rounded and becomes polygonal as shown in Figure 1d. However, the gist of the present invention remains unchanged.
第1図eは、成分1+成分2の中にさらにまた海島構造
を有するものである。すなわち、成分1と成分2からな
る島において、成分1が島を形成しく以下島内島成分と
いう)、成分2が海を形成しC以下高分割成分という)
、さらにその島内島成分の中に高分割成分と同じ成分が
島として存在する構造を有するものである。第1図・f
は、成分1と成分2からなる成分と、成分6とが[)合
わされ、収束されて吐出されたものである。第1図gは
、グループごとに繊度の異なる1と2からなる成分を有
するものである。第1図h+ 1+j+k 、1は、1
と2からなる成分の一部が繊維の表面に露出した構造の
ものである。In FIG. 1e, component 1+component 2 further has a sea-island structure. In other words, in an island consisting of component 1 and component 2, component 1 forms an island (hereinafter referred to as an island-within-island component), and component 2 forms an ocean and is referred to as a high-division component below C).
Furthermore, it has a structure in which the same components as the high-resolution components exist as islands among the island-within-island components. Figure 1 f
The component consisting of component 1 and component 2 and component 6 are combined [), converged and discharged. Figure 1g has components 1 and 2 with different finenesses for each group. Figure 1 h+ 1+j+k, 1 is 1
It has a structure in which a part of the components consisting of and 2 is exposed on the surface of the fiber.
第2図mは1本発明の繊維の一部切開斜視図である。図
において1は超極細繊維成分、2は群内の結合成分、6
は群間ρ結合成分を示す。図かられかるように1と2か
らなる成分が表面に露出している場合と1図に示すごと
く表面には露出せず内部に埋没している場合がある。し
かもこの成分は繊維軸方向に長く連なっておシ、チップ
tレンド混練シ紡糸繊維や混合紡糸繊維のごとく短繊維
状でなく実質的に連続フィラメント状である。FIG. 2m is a partially cutaway perspective view of a fiber of the present invention. In the figure, 1 is the ultrafine fiber component, 2 is the bonding component within the group, and 6
indicates the intergroup ρ coupling component. As shown in the figure, there are cases in which the components 1 and 2 are exposed on the surface, and cases in which they are buried inside without being exposed on the surface, as shown in Fig. 1. Moreover, this component is long in the fiber axis direction and is substantially in the form of continuous filaments rather than short fibers as in chip T-lend kneaded spun fibers or mixed spun fibers.
第2図mは、1と2からなる成分すなわち一つの超極絹
繊維群の一部切開斜視図であ92図において1は超極細
繊維:2は超極細繊維群内における結合成分である。図
かられかるように本発明の繊維は成分中に超極細繊維1
が多数含有され、しかも、該超極細繊維1は実質的に繊
維軸方向に連続したフィラメント状である。FIG. 2m is a partially cut away perspective view of a component consisting of 1 and 2, that is, one group of ultra-fine silk fibers. In FIG. As can be seen from the figure, the fiber of the present invention contains ultra-fine fibers as a component.
Moreover, the ultrafine fibers 1 are filament-shaped and are substantially continuous in the fiber axis direction.
第6図は9本発明の超極細繊維発生型繊維の成分2と会
成分6を溶剤で溶解除去して得られた超極細繊維からな
る繊維束であり、この繊祿束は。FIG. 6 shows a fiber bundle made of ultrafine fibers obtained by dissolving and removing component 2 and component 6 of the ultrafine fiber-generating fiber of the present invention with a solvent.
超極細繊維が少なくとも50本集まって細い一部の束を
形成し、さらにこの−次の束が多数集まって二次の束を
形成した構造を有しているものである。It has a structure in which at least 50 ultra-fine fibers come together to form a thin partial bundle, and a large number of these next bundles come together to form a secondary bundle.
第1図、第2図の如き構成の・本発明の繊維を作る方法
において基本的な考え方は、第4図のようにまず成分1
と成分2からなる分割複合流Pを構成し、それを成分6
でとりまくか、あるいは貼シ合わせることである。第4
図qで′は一つの分割複合流Pを一つの成分6が被覆し
ているが、複数個の分割複合流Pを一時に成分ろで取シ
囲んでもよい。この場合は一時に成分6で取シ囲むと、
言っても成分6中に、一つの分割複合流Pを一つの成分
3が被覆しているとみる仮想線を入れて考えれば簡単で
あシ、qの複数が寄せ集められ、収束させられ、吐出さ
せられたものであることが容易に理解できよう。The basic idea in the method for producing the fibers of the present invention having the configurations as shown in FIGS. 1 and 2 is that first, as shown in FIG.
A split composite flow P consisting of component 2 is constructed, and it is divided into component 6.
It can be either wrapped around it or pasted together. Fourth
In FIG. q, one component 6 covers one divided composite stream P, but a plurality of divided composite streams P may be surrounded by the component filter at the same time. In this case, if you surround it with component 6 at once,
However, it is easy to think of it by inserting a virtual line in which one component 3 covers one divided composite flow P into component 6, and the plurality of q are brought together and converged, It is easy to understand that it is something that has been ejected.
本発明の繊維に、高速液体柱状流を衝突せしめると、単
なる海島構造の公知の繊維にくらべ繊維の分割フィブリ
ル化が容易におこシ、マタフイプリル化の程度もきわめ
て微細に行なわれる。本発明の繊維を用いたシートやひ
も状繊維構造物に高速液体柱状流を衝突させた場合はフ
ィブリル化と同時に繊維同志の緻密な交絡が達成される
。このことも本発明の繊維の一つの特徴である。本発明
の繊維から得られた超極細繊維又はその束は、シート状
物、ひも状物に加工されて、衣料、靴、カバンなどの袋
物、ボールの表皮1手袋、布巾、タオル、各糧フィルタ
ー、研磨布、ワイピングクロス、ストーブやランプなど
の芯1人工血管、タバ緻密に織られた織物や不織シート
では、水蒸気や空気は透過させる力′;水や水滴は透過
させにくい性質を有しており、これらの機能を必要とす
る用途にも好ましく用いられる。特に本発明の繊維はコ
ラーゲン繊維に構造がきわめて類似しているため9人工
皮革用に最も好ましく用いられ、高級カーフや高級シー
プのような手に吸い付く感触の銀面を有する銀付人工皮
革や、短い毛足の立毛が密ヌ
生した高級ラバツク調人工皮革、やわらかい感触や優雅
な外観を有するスェード調人工皮革などが本発明の繊維
を用いることによって得られることができる。When the fibers of the present invention are bombarded with a high-speed liquid columnar flow, the fibers are easily split and fibrillated compared to known fibers having a simple sea-island structure, and the degree of fibrillation is extremely fine. When a high-speed liquid columnar flow impinges on a sheet or string-like fibrous structure using the fibers of the present invention, fibrillation and dense entanglement of the fibers are achieved. This is also one of the characteristics of the fiber of the present invention. The ultrafine fibers or bundles thereof obtained from the fibers of the present invention can be processed into sheet-like products or string-like products such as clothing, shoes, bags such as bags, ball skins, gloves, dishcloths, towels, and food filters. , abrasive cloths, wiping cloths, wicks for stoves and lamps, artificial blood vessels, and densely woven fabrics and non-woven sheets have the ability to allow water vapor and air to pass through; they have the property of being difficult for water and water droplets to pass through. Therefore, it is preferably used in applications that require these functions. In particular, the fibers of the present invention have a structure very similar to collagen fibers, so they are most preferably used for artificial leathers, such as silver-finished artificial leathers with a silver surface that sticks to the hand like high-grade calf or high-grade sheep. By using the fibers of the present invention, high-quality raback-like artificial leather with dense short piles, suede-like artificial leather with a soft feel and elegant appearance, etc. can be obtained by using the fibers of the present invention.
以下に示す実施例はm;本発明をよシ明確にするための
ものであって1本発明はこれに限定されるものではない
。実施例において9部および係とあるのは、ことわシの
ないかぎシ重量に関するものである。The following examples are provided for the purpose of clarifying the present invention, and the present invention is not limited thereto. In the examples, the parts 9 and 9 refer to the weight of the key without any indication.
実施例1.比較例1
(1) 特願昭57−162241号に記載された紡糸
装置と同様の装置を用いて、超極細繊維成分としてナイ
ロン6を40部、超極細繊維群内結合成分として高流動
性ポリスチレン40部1群間結合成分として高粘度ポリ
スチレン20部の割合で270°Cに溶融したポリマを
それぞれギヤポンプで計量しながら加圧し1口金の12
個の吐出口から吐出させ、1,000yn/’minの
スピードで捲キ取った。紡糸安定性は良好で太さむらの
ほとんどない1本あたシ9,8デニールの繊維が得られ
た。Example 1. Comparative Example 1 (1) Using a spinning device similar to that described in Japanese Patent Application No. 57-162241, 40 parts of nylon 6 was used as the ultra-fine fiber component and highly fluid polystyrene was used as the bonding component within the ultra-fine fiber group. 40 parts of a polymer melted at 270°C at a ratio of 20 parts of high viscosity polystyrene as a bonding component between groups was weighed and pressurized with a gear pump, and 12 parts of one cap was added.
It was discharged from several discharge ports and rolled up at a speed of 1,000 yn/min. The spinning stability was good, and fibers with a thickness of 9.8 denier per fiber with almost no unevenness in thickness were obtained.
(2) 一方、特公昭44−18369号公報に記載さ
れているのと同様の紡糸装置を用いて、ナイとして80
部、高粘度ポリスチレンを海成分として20部の割合で
7.70℃に溶融しそれぞれギヤポンプで計量しながら
加圧し12個の吐出口から吐出させ、前記(1)と同様
に紡糸しようとした。ところが、吐出口から押出された
ポリマは、細い糸となって落下せずに雨ダレ状となシ、
繊維として連続的に捲き取ることができなかった。この
ため吐出口直下に空気を吹きかけ吐出直後のポリマを冷
却したところ雨グレ状はなくなシ捲き取ることができた
。ただし、繊維は太細のはげしいものであった。(2) On the other hand, using a spinning device similar to that described in Japanese Patent Publication No. 44-18369,
20 parts of high viscosity polystyrene as a sea component were melted at 7.70° C., each was pressurized while being metered with a gear pump, and discharged from 12 outlets, and spinning was attempted in the same manner as in (1) above. However, the polymer extruded from the discharge port does not fall into thin threads, but instead looks like raindrops.
It was not possible to continuously wind it up as a fiber. For this reason, when we cooled the polymer immediately after it was discharged by blowing air directly below the discharge port, the rain stain disappeared and we were able to roll it up. However, the fibers were thick and thin.
つぎに、(1)、(2)のそれぞれについてポリマーを
吐出孔から自然落下させて採取したガツト状の太い繊維
1本ずつについて、100m離れた2つの地点の断面を
走査型電子顕微鏡で観察した。この結果、(1)で得ら
れた繊維では、2つの地点での超極細繊維の太さ、数、
配置がほぼ同一で、断面を撮影したそれぞれのフィルム
を光を通して拡大して見たところ、2枚の像がほぼ一致
して重なシ合うほどのものであった。すなわち、これか
ら100m離れた両地点におい・でも超極細繊維は連続
していることがわかった。一方、(2)で得られた繊維
では、繊維そのものの太さが両”地点で異なシ、さらに
内部に含まれる繊維の太さ、数、配置もまちまちであっ
た。2つの地点の距離を10m、10 cm。Next, for each of (1) and (2), the cross sections of each thick gut-shaped fiber collected by letting the polymer fall naturally from the discharge hole at two points 100 m apart were observed using a scanning electron microscope. . As a result, in the fibers obtained in (1), the thickness and number of ultra-fine fibers at two points,
The arrangement was almost the same, and when we enlarged the cross-sectional images of each film through light, we found that the two images almost matched and overlapped. In other words, it was found that the ultra-fine fibers were continuous even at both points 100 meters apart. On the other hand, in the fibers obtained in (2), the thickness of the fiber itself was different at both points, and the thickness, number, and arrangement of the fibers contained inside were also different. 10m, 10cm.
5cmと短くして観察してみたが、同様の結果であった
。I tried observing it with a shorter length of 5 cm, but the results were similar.
つぎに、 (1) 、 (2)の捲き取られた未延伸の
繊維を150°0にカロ熱したホットプレートを用いて
延伸を行なった。(1〕の繊維は2.8倍まで安定に延
伸できたが、(2)の繊維は1.5倍までであった。(
1)の繊維の断面において16個の超極細繊維群内の超
極細繊維本数はそれぞれ約180本はどであった。Next, the rolled-up undrawn fibers of (1) and (2) were drawn using a hot plate heated to 150°. The fibers of (1) could be stably stretched up to 2.8 times, but the fibers of (2) could be stretched up to 1.5 times.
In the fiber cross section of 1), the number of ultrafine fibers in each of the 16 ultrafine fiber groups was approximately 180.
これから、(l〕の延伸後繊維に食肴される超極細繊維
の平均繊度は約o、 o o 、o sテニールである
ことがわかった。From this, it was found that the average fineness of the ultrafine fibers fed to the stretched fibers of (l) was approximately o, o o, o s tenier.
つぎに、 (1)、 f21の延伸後の繊維をトリクロ
ルエチレンの中に浸漬し放置しておいたところ、(1)
の繊維からは超極細繊維からなる繊維束が得られたが、
(2)の繊維の場合はトリクロルエチレンが白く濁って
おシ、よく見ると、微細な単繊維が浮遊しているもので
あった。(1)の繊維から得られた繊維束は、超極細繊
維群が一次の束を形成しておシ。Next, (1), when the stretched fiber of f21 was immersed in trichlorethylene and left to stand, (1)
Fiber bundles consisting of ultrafine fibers were obtained from the fibers of
In the case of fiber (2), the trichlorethylene was cloudy and white, and upon closer inspection, it was found that fine single fibers were floating. The fiber bundle obtained from the fibers in (1) consists of a group of ultra-fine fibers forming a primary bundle.
さら4この一次の束が16コ集合早て二次の束を形成し
ている構造の超極−繊維束であった。Furthermore, it was a superpolar fiber bundle with a structure in which 16 of these primary bundles assembled to form a secondary bundle.
実施例2
実施例1の(1)の紡糸装置と同様であるが、超極細繊
維成分としで超極細繊維群間で異なる2種の成分を吐出
可能な装置を用いて2片方の超極細繊超極細繊維成分と
して熱収縮性のそれほど高くないポリエチレンテレフタ
レート20部1群内結合成分としてポリスチレン40部
1群間結合成分としてポリスチレン20部の割合で、実
施例1の(1)と同様に紡糸し、7つの超極細繊維群を
有する太さむらのほとんどない1本あたり12.3デニ
ールの繊維を引き取った。Example 2 One of the two ultra-fine fibers was produced using a device that was the same as the spinning device in Example 1 (1), but was capable of discharging two types of ultra-fine fiber components that were different between the ultra-fine fiber groups. The fibers were spun in the same manner as in Example 1 (1) using 20 parts of polyethylene terephthalate, which does not have very high heat shrinkability, as an ultrafine fiber component, 40 parts of polystyrene as a bonding component within one group, and 20 parts of polystyrene as a bonding component between groups. , fibers of 12.3 denier each with almost no unevenness in thickness and having seven ultra-fine fiber groups were collected.
開時に採取したガツト状の太い繊維のI 00m離れた
両端の断面を走査型電子顕微鏡で観察したところ、2つ
の地点での超極細繊維の配置、数。When the cross section of both ends of the gut-shaped thick fiber collected at the time of opening was observed with a scanning electron microscope, the arrangement and number of ultra-fine fibers at the two points were determined.
太さがほぼ同一であつ゛た。このことから両地点間は超
極細繊維は実質的に連続していることがわかった。また
9群内の超極細繊維本数は2種の成分いずれも約50本
であシ、結合成分と超極細繊維成分とは海島構造をして
いるものであった。The thickness was almost the same. This revealed that the ultrafine fibers were substantially continuous between the two points. In addition, the number of ultrafine fibers in Group 9 was about 50 for each of the two types of components, and the bonded component and the ultrafine fiber component had a sea-island structure.
つぎに、引き取られfC,12,6デニールの未延伸糸
を3倍にギットプレートで延伸した。得られた延伸糸を
トリクロルエチレンに浸漬し結合成分を溶解除去した後
、張力をかけない状態で120°0の熱風でトリクロル
エチレンの乾燥除去と繊維の収縮処理を行なった。得ら
れた繊維を実体顕微鏡で観察したところ、細かくちぢれ
た超極細繊維群とちぢれのほとんどない超極細繊維J?
が混ざった特異な形態の繊維束であった。この超極細繊
維の繊度は、平均的に約0.005デニールであった。Next, the undrawn yarn with an fC of 12.6 denier was drawn three times using a Git plate. The obtained drawn yarn was immersed in trichlorethylene to dissolve and remove binding components, and then the trichlorethylene was dried and removed with hot air at 120°0 and the fibers were subjected to shrinkage treatment without applying tension. When the obtained fibers were observed under a stereomicroscope, they were found to be ultra-fine fibers with fine curls and ultra-fine fibers with almost no curls.
It was a uniquely shaped fiber bundle with a mixture of. The average fineness of this ultrafine fiber was about 0.005 denier.
第1図は1本発明にかかわる典型的繊維の横断面図であ
る。第2図は1本発明の繊維と該繊維の超極細繊維群の
一部切開斜視図である。第3図は本発明の繊維の結合成
分を除去して得られた超極細繊維からなる繊維束である
。第4図は、一つの超極細繊維群成分流が群間結合成分
で被覆される機構を示す説明図である。第5図は1本発
明の繊維の横断面を走査型電子顕微鏡で撮影した写真で
ある。第6図は第5図の一部を拡大した写真である。
特許出願人 東 し 株 式 会 社
第2(z 仲う(」
ヤ4−I]FIG. 1 is a cross-sectional view of a typical fiber according to the present invention. FIG. 2 is a partially cutaway perspective view of a fiber of the present invention and a group of ultrafine fibers thereof. FIG. 3 shows a fiber bundle made of ultrafine fibers obtained by removing the binding components of the fibers of the present invention. FIG. 4 is an explanatory diagram showing a mechanism in which one ultrafine fiber group component flow is coated with an intergroup bonding component. FIG. 5 is a photograph taken with a scanning electron microscope of a cross section of a fiber of the present invention. FIG. 6 is an enlarged photograph of a part of FIG. 5. Patent Applicant Azuma Co., Ltd. No. 2 (Z Nakau)
Claims (3)
ール以下の超極細繊維が少なくとも50本配列集合し、
他の成分(結合成分1)で結合されて超極細繊維群を形
成し、@更に該超極細繊維群が複数個集合し、他の成分
(結合成分2;結合成分1と同じ場合を含む)で結合さ
れて、全体として1本の繊維を形成していることを特徴
とする超極側繊維発生型繊維。(1) ■ At least 50 ultra-fine fibers of 0.01 denier or less in a substantially continuous filament form are arranged and aggregated,
It is bonded with another component (bonding component 1) to form a group of ultra-fine fibers, and a plurality of the ultra-fine fiber groups are assembled together with another component (bonding component 2; including cases where it is the same as bonding component 1). A super-polar side fiber generation type fiber characterized in that the fibers are bonded together to form one fiber as a whole.
ることを特徴とする特許請求の範囲第(1)項に記載の
超極細繊維発生型繊維。(2) The ultrafine fiber-generating fiber according to claim (1), wherein the polymer component of the ultrafine fibers is different between the groups of ultrafine fibers.
種以上の超極細繊維が存することを特徴とする特許請求
の範囲第(1)項に記載の超極細繊維発生型繊維。(3) - Among the ultra-fine fibers, there are two with different polymer components.
The ultrafine fiber-generating fiber according to claim (1), characterized in that there are more than one type of ultrafine fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12600083A JPS6021904A (en) | 1983-07-13 | 1983-07-13 | Fiber generating extremely fine fibrils |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12600083A JPS6021904A (en) | 1983-07-13 | 1983-07-13 | Fiber generating extremely fine fibrils |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6021904A true JPS6021904A (en) | 1985-02-04 |
JPH0321643B2 JPH0321643B2 (en) | 1991-03-25 |
Family
ID=14924238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12600083A Granted JPS6021904A (en) | 1983-07-13 | 1983-07-13 | Fiber generating extremely fine fibrils |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6021904A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62273162A (en) * | 1986-05-20 | 1987-11-27 | 富士通株式会社 | Carrying control system |
WO2004038073A1 (en) * | 2002-10-23 | 2004-05-06 | Toray Industries, Inc. | Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them |
JP2010159502A (en) * | 2009-01-06 | 2010-07-22 | Teijin Fibers Ltd | Strap |
JP2015193958A (en) * | 2014-03-31 | 2015-11-05 | Esファイバービジョンズ株式会社 | modified cross-section fiber |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4726212B2 (en) * | 2005-09-16 | 2011-07-20 | キヤノン株式会社 | Sensing device |
-
1983
- 1983-07-13 JP JP12600083A patent/JPS6021904A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62273162A (en) * | 1986-05-20 | 1987-11-27 | 富士通株式会社 | Carrying control system |
WO2004038073A1 (en) * | 2002-10-23 | 2004-05-06 | Toray Industries, Inc. | Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them |
US8460790B2 (en) | 2002-10-23 | 2013-06-11 | Toray Industries, Inc. | Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them |
JP2010159502A (en) * | 2009-01-06 | 2010-07-22 | Teijin Fibers Ltd | Strap |
JP2015193958A (en) * | 2014-03-31 | 2015-11-05 | Esファイバービジョンズ株式会社 | modified cross-section fiber |
Also Published As
Publication number | Publication date |
---|---|
JPH0321643B2 (en) | 1991-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2703971B2 (en) | Ultrafine composite fiber and its woven or nonwoven fabric | |
TWI595128B (en) | Sea-island fiber, combined filament yarn and fiber product | |
DE10080786B3 (en) | Cleavable multicomponent fiber and fibrous article comprising it | |
TW201544642A (en) | Sea-island composite fiber, composite ultra-fine fiber, and fiber product | |
CN101641469A (en) | High-strength durable micro and nano fabrics by the production of fibrillation bi-component islands-in-sea type fibre | |
KR20010031584A (en) | Nonwoven fabric, and sheetlike materials and synthetic leathers made by using the same | |
US6716776B2 (en) | Nonwoven fabric made from filaments and artificial leather containing it | |
JPS6021904A (en) | Fiber generating extremely fine fibrils | |
EP1054096B1 (en) | Nonwoven fabric made from filaments and artificial leather containing it | |
JPH0672324B2 (en) | Deformed cross-section fiber | |
JP4267145B2 (en) | Napped fiber sheet and method for producing the same | |
JP3957355B2 (en) | Sea-island fiber and non-woven fabric using the same | |
JPH10331063A (en) | Composite nonwoven fabric and its production | |
JPH04194013A (en) | Fiber capable of producing ultrafine fiber | |
JP2002275748A (en) | Method for producing nonwoven fabric of ultrafine fiber | |
JP4501516B2 (en) | Wiping tool | |
JPH06248519A (en) | Finely splittable conjugate fiber and fiber assembly comprising fibrillated fiber | |
TWI310418B (en) | ||
JP2602315Y2 (en) | Wiping cloth | |
JP3074028B2 (en) | Splittable conjugate fiber and its fiber aggregate for pressure fluid impact treatment | |
JP2703294B2 (en) | Polyester conjugate fiber, nonwoven fabric containing the fiber, and method for producing the nonwoven fabric | |
JPS60139879A (en) | Production of artificial leather sheet | |
JP3137742B2 (en) | Fibrillable composite fiber | |
JPH09268460A (en) | Nonwoven fabric and its production | |
JP4316783B2 (en) | Manufacturing method of long fiber nonwoven fabric |