JPS6021893A - Apparatus for preparing single crystal - Google Patents

Apparatus for preparing single crystal

Info

Publication number
JPS6021893A
JPS6021893A JP12541383A JP12541383A JPS6021893A JP S6021893 A JPS6021893 A JP S6021893A JP 12541383 A JP12541383 A JP 12541383A JP 12541383 A JP12541383 A JP 12541383A JP S6021893 A JPS6021893 A JP S6021893A
Authority
JP
Japan
Prior art keywords
crucible
diameter
single crystal
program signal
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12541383A
Other languages
Japanese (ja)
Inventor
Shoichi Sagizuka
鷺塚 章一
Masayuki Watanabe
正幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12541383A priority Critical patent/JPS6021893A/en
Publication of JPS6021893A publication Critical patent/JPS6021893A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors

Abstract

PURPOSE:To obtain single crystals having uniform diameter by compensating for the shift of focus due to variation of distance between the surface of melt and a diameter detector in accompany with displacement of crucible in the stage of growth of single crystal by Chokralsky method by the displacement of an objective lens and compensating for the change of the magnification. CONSTITUTION:A vertically movable crucible 3 is provided in a vessel 1 to maintain the melt 4 in the crucible 3. Single crystal is grown by Chokralsky method by changing the position of the surface of the melt by moving the crucible 3, and the diameter of the crystal 6 is detected by a TV camera 15 simultaneously to control the pulling speed to obtain a fixed diameter. In this stage, the displacement of the crucible 3 is calculated by integrating program signal from a program signal generator 13 for the displacement of the crucible 3, and the diameter of the single crystal is detected by controlling the position of an objective lens 17 of the TV camera 15 in accordance with the program signal. The gain is controlled in accordance with the displacement of the crucible 3 to amplify the diameter detection signal. Thus, the detection error of the diameter is compensated.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はチョクラルスキー法(二より単結晶例えばシリ
コン単結晶を引上げる単結晶の製造装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a single crystal production apparatus using the Czochralski method (pulling a single crystal, for example, a silicon single crystal, from two strands).

〔従来技術とその問題点〕[Prior art and its problems]

シリコン単結晶は多くはチョクラルスキー法で育成され
ているが、育成された単結晶は無転位の高品質であると
同時に結晶が所定の形状に制御されていることが必要で
ある。近年、超LSI等の大規模集積回路の発展に伴な
い、LSI製造工程(−適した酸素濃度を持っているこ
と、および引上げ軸方向の酸素濃度の均一性が良いこと
がさらに要求されるようになってきた。そのため、加熱
ヒータの温度分布に対応してルツボを移動させ、融液面
の位置を変化させながら結晶を育成する方法が行なわれ
ている。
Most silicon single crystals are grown by the Czochralski method, but the grown single crystals must be of high quality and free of dislocations, and at the same time, the crystal must be controlled to a predetermined shape. In recent years, with the development of large-scale integrated circuits such as VLSI, it has become increasingly necessary to have an appropriate oxygen concentration and a good uniformity of oxygen concentration in the direction of the pulling axis. Therefore, a method has been used in which the crucible is moved in accordance with the temperature distribution of the heater and the crystal is grown while changing the position of the melt surface.

従来使用されている結晶直径の自動制御様能を有する単
結晶製造装置では、所定の位置(=固定された光センサ
またはTVカメラ等により直径の変゛化を検出して直径
が一定になるように引上げ速度を調節し、これ(一対応
してルツボも上下させ、光センサまたはTVカメラ等に
対して融液面が常に一定に保持されるような制御を行な
っている。すなわち、結晶の引上げ速度をVs、ルツボ
の移動速tyをVcとすると。
Conventionally used single-crystal manufacturing equipment that has automatic crystal diameter control features detect changes in diameter using a fixed optical sensor or TV camera, etc., and keep the diameter constant. The pulling speed is adjusted accordingly, and the crucible is also moved up and down in response to this, and control is performed so that the melt surface is always maintained constant relative to the optical sensor or TV camera. In other words, the pulling speed of the crystal is Let the speed be Vs and the moving speed ty of the crucible be Vc.

vc = (psd2/plD2) ・Vs −=−曲
(1)の関係がある。ここで、ρSおよびρlはシリコ
ン結晶および融液の密度、dおよびDは結晶およびルツ
ボの直径である。
There is a relationship of vc = (psd2/plD2) ・Vs -=-song (1). Here, ρS and ρl are the densities of the silicon crystal and melt, and d and D are the diameters of the crystal and crucible.

従って、加熱ヒータの温度分布に対応して、ルツボを移
動させ融液面の位置を変化させながら結晶を育成すると
、光センサまたはTVカメラ等と融液面の距離を一定に
保つことができず、光学系の焦点ずれ(二より検出され
た直径に誤差を生じる。
Therefore, if crystals are grown while moving the crucible and changing the position of the melt surface in accordance with the temperature distribution of the heater, it will not be possible to maintain a constant distance between the optical sensor, TV camera, etc. and the melt surface. , an error in the detected diameter occurs due to the defocus of the optical system (2).

このため、直径制御精度が低下し、はなはだしい時(−
は制御できなくなるという難点がある。さら(−1結晶
の形状が制御できないことは結晶中のストリエイション
や不純物濃度の変化を助長することから結晶品質が低下
する。さらに外周研削時の材料損失の増大や径不良(二
よる歩留りの低下等の欠点がある。
As a result, the diameter control accuracy decreases, and when the
The problem is that it becomes uncontrollable. In addition, the inability to control the shape of the crystal (-1) promotes striations in the crystal and changes in impurity concentration, leading to a decrease in crystal quality.Furthermore, material loss during peripheral grinding and diameter defects (secondary yield decreases). There are drawbacks such as a decrease in

これに対してルツボの上下移動と同期して光センサと融
液面の相対距離を一定(二保つように光センサを移動さ
せたり、または光センサの固液界面外周部に形成される
メニスカスの見込み角度を変化させる構造を有した単結
晶製造装置が提案されている(特開昭54−82383
参照)。通常、光セ/すは炉体の斜め上部に設けられた
のぞき窓を通してメニスカス部を検出している。光セン
サの移動距離が大きくなるとメニスカス部はのぞき窓の
視野からはずれ’(Lまうことや、光センサ移動機構に
は堅牢なものが必要となり装置コストが増大する、等の
問題がある。
On the other hand, it is possible to move the optical sensor to maintain a constant relative distance between the optical sensor and the melt surface in synchronization with the vertical movement of the crucible, or to move the optical sensor to maintain a constant relative distance between the optical sensor and the melt surface. A single crystal manufacturing device having a structure that changes the viewing angle has been proposed (Japanese Patent Laid-Open No. 54-82383).
reference). Normally, the optical cell detects the meniscus through a viewing window provided diagonally above the furnace body. If the moving distance of the optical sensor increases, there are problems such as the meniscus part moving out of the field of view of the peephole, and the optical sensor moving mechanism needs to be robust, increasing the cost of the device.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点に鑑みなされたもので、加熱ヒータの
温度分布に対応してルツボを移動するに際して、融液面
と直径検出器の距離の変化による直径噴出誤差゛を?i
ti正すること(二より直径の均一な単結晶が得られる
簡便で安価な装置を提供するも。
The present invention was developed in view of the above-mentioned drawbacks, and eliminates diameter ejection errors due to changes in the distance between the melt surface and the diameter detector when moving the crucible in accordance with the temperature distribution of the heater. i
To provide a simple and inexpensive device that can obtain a single crystal with a uniform diameter.

のである。It is.

〔発明の1既要〕 本発明の装置はルツボ移動の情報(二もとづいて、融液
面と直径検出器の耐重の変化(二よる光学系の焦点すれ
と倍率の変化を補正するよう(二構成されている。すな
わち、千ヨクラルスキー法による単結晶製造装置におい
て、ルツボ移動のプログラム信号(二より、前記プログ
ラム信号を潰分してルツボの移@II准を算出し、前記
プログラム信号に従って光学系の位置を制御して単結晶
の直径を検出し、前記ルツボの移動量に従って利得を制
御して前記検出信号を増幅して、直径噴出誤差を補正す
るようにしたことを特徴とするものである。
[1] Summary of the Invention The apparatus of the present invention corrects the out-of-focus of the optical system and the change in magnification based on the information on the movement of the crucible (2), and the change in the weight capacity of the melt surface and the diameter detector (2). In other words, in a single crystal production apparatus using the Chijochralski method, a program signal for crucible movement (from the second step, the program signal is divided to calculate the movement of the crucible @II), and the optical system is controlled according to the program signal. The diameter of the single crystal is detected by controlling the position of the crucible, and the gain is controlled according to the amount of movement of the crucible to amplify the detection signal, thereby correcting the diameter ejection error. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の単結晶製造装置では従来装
置の光センサー自体を移動させるもの(−比べて、駆動
機構および回路が小型で簡単であり。
As explained above, in the single crystal manufacturing apparatus of the present invention, the drive mechanism and circuit are smaller and simpler than the conventional apparatus in which the optical sensor itself is moved.

消費電力が少くてよい。またルツボの移動距離を大きく
してものぞき窓の視野からのはずれが少なくルツボ移動
の範囲が広い。そして通常の単結晶製造装置を改造する
ことなく簡便(二実施でき、装置コストが低下する。こ
れにより加熱ヒータの温度分布に対応してルツボを移動
し、融叡面の位置を変化させる条件において直径の均一
な単結晶を歩留りよく作成できる。そのため、酸素濃度
の均一性の良い単結晶が得られるなど結晶品質の改善が
可能であり、工業的に使用することにより生伍性が向」
ニする。以上のような効果がある。
It requires less power consumption. Furthermore, by increasing the distance the crucible can move, it is less likely to fall out of the field of view of the viewing window, and the range of crucible movement is wide. It can be easily implemented without modifying ordinary single crystal production equipment, and equipment costs are reduced.This allows the crucible to be moved in accordance with the temperature distribution of the heater and the position of the fused surface to be changed. Single crystals with uniform diameters can be produced with high yield. Therefore, it is possible to improve crystal quality, such as by obtaining single crystals with good uniformity in oxygen concentration, and the quality can be improved by industrial use.
d. There are effects as described above.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実hh例を図面(二基づき詳細にt況明
する。
Hereinafter, an example of the present invention will be explained in detail based on the drawings.

第1図は不発明、による機能を具(+i& した単結晶
製造装置の一例である。図(=おいてlは容器、2は加
熱ヒータ、3はルツボ、4は融液、5はのぞき窓、6は
結晶、7は引上(ザ輔、8はルツボ移動・袖。
Figure 1 is an example of a single crystal manufacturing apparatus equipped with the functions (+i&) according to the invention. , 6 is crystal, 7 is pulling up (zasuke), 8 is crucible movement/sleeve.

9は引上げモーター、lOはルツボ移動モータ、11は
一引上げ速度制御器、 12はルツボ移動速度制御器、
13はルツボ移動プログラム信号発生器、14は積分1
、f;、15はTVカメラ、16は結像面、17は対物
レンズ、18は対物レンズ移動モータ、19は対物レン
ズ。
9 is a pulling motor, IO is a crucible moving motor, 11 is a pulling speed controller, 12 is a crucible moving speed controller,
13 is a crucible movement program signal generator, 14 is an integral 1
, f;, 15 is a TV camera, 16 is an imaging plane, 17 is an objective lens, 18 is an objective lens movement motor, and 19 is an objective lens.

移動速度制御器、20は増幅器、21は基準直径設定器
、nは直径制御装置である。
20 is an amplifier, 21 is a reference diameter setting device, and n is a diameter control device.

容器l内にルツボ移動@bst二より上丁に移動できる
ルツボ3があり、その周囲(二加熱ヒータ2が配設され
ている。ルツボ3内に融液4を保持し、引上げ軸7によ
り所定の速反で引上げ結晶6が製造されるよう(二構成
されている。
There is a crucible 3 in the container 1 that can be moved from crucible movement @bst 2 to the top, and a heater 2 is provided around it. The pulled crystal 6 is manufactured in a fast reaction time (two configurations).

容器lに取付けたのぞき窓5の近く(二゛v■カメラ1
5が配設され、結晶6のメニスカスリングの大きさを測
定して結晶11径を検出する。そのため、結晶6とTV
カメラ15の距1渠に応じて、あらかじめ光学系の焦点
合せを行ない対物レンズ17と撮像管(ここでは図示せ
ず)の結像面16の距離を精密に調整しておく必要があ
る。このTVカメラ15の検出信号と基準直径設定器2
】からの基準信号とを比較して誤差信号を得、IP+:
 ’&制御装置22i二よりこの差が零になるように引
上げ速度制御器11を介して引上げモータ9を駆動し、
引上げ速度を変化させる。同時(二、融液面の位置がハ
′に一定に保たれるようにルツボ移動速度制御器12を
介してルツボ移動モータ10を駆動し、(1)式に従が
ってルツボ移動速度が設定される。
Near the peephole 5 attached to the container l (2゛v ■ camera 1
5 is arranged, and the size of the meniscus ring of the crystal 6 is measured to detect the diameter of the crystal 11. Therefore, crystal 6 and TV
Depending on the distance of the camera 15, it is necessary to focus the optical system in advance and precisely adjust the distance between the objective lens 17 and the imaging plane 16 of the image pickup tube (not shown here). The detection signal of this TV camera 15 and the reference diameter setting device 2
] to obtain an error signal, IP+:
& the control device 22i drives the pulling motor 9 via the pulling speed controller 11 so that this difference becomes zero,
Change the pulling speed. Simultaneously (2) The crucible moving motor 10 is driven via the crucible moving speed controller 12 so that the position of the melt surface is kept constant at C', and the crucible moving speed is adjusted according to equation (1). Set.

ルツボ移動プログラム信号発生器13は加熱ヒータ2の
温度分布(二対応して最適な融液面の位置を実現するよ
う(二あらかじめ設定されたプログラム信号を発生する
。このプログラム信号もまたルツボ移動速度制御器12
に加えられる。すなイつち、ルツボ移動速度は(11式
で定まる値とプログラム信号を加−はした値に設定され
る。このときプログラム信号口よるルツボ移動距離分だ
け結晶6とTVカメラ15の距離が変化するため焦点の
ずれが生じる。
The crucible movement program signal generator 13 generates a preset program signal to realize an optimal melt surface position corresponding to the temperature distribution of the heater 2. This program signal also applies to the crucible movement speed. Controller 12
added to. In other words, the crucible movement speed is set to the value determined by equation 11 plus the program signal.At this time, the distance between the crystal 6 and the TV camera 15 is increased by the crucible movement distance due to the program signal port. This causes a shift in focus.

そこで、プログラム4N号を対物レンズ移動速産制 −
1卸器19に入力して対物レンズ移動モータ18を駆動
し、焦点のずれを補正するよう(二、対物レンズ17と
結像面16の距離を自動設定する。同時に積分器14(
−も入力してルツボの移動時を算出し、この値(二より
光学系の倍率の変化を補正するように増幅器側の利得を
設定する。これにより融液面の位置が変化しても正しい
直径信号を検出することかできるため、高精度な直径i
l?IJ御が実現できる。゛ここで、焦点のずれ、およ
び倍率の変化の補正ih次の公矧のレンズの公式よりめ
ればよい。
Therefore, we decided to use program No. 4N for rapid production of objective lens movement.
1. Input to the integrator 19 to drive the objective lens moving motor 18 to correct the focal shift (2. Automatically set the distance between the objective lens 17 and the imaging plane 16. At the same time, the integrator 14 (
- is also input to calculate the time of crucible movement, and from this value (2) the gain on the amplifier side is set to compensate for changes in the magnification of the optical system.This allows the gain to be correct even if the position of the melt surface changes Since the diameter signal can be detected, highly accurate diameter i
l? IJ control can be realized.゛Here, it is sufficient to use the formula for a common lens of order ih to correct the shift of focus and the change in magnification.

但し1.fけ対物レンズ17の焦点距離、aは結晶6の
メニスカス界面と対を吻レンズ17の距離、bは結像面
16と対物レンズJ7の距離、M4;i倍率を示してい
る。aが倣少姫雌Δaだけ変化したとすると、焦点のず
れΔbおよび倍率の変化ΔMの間には次式が成立する。
However, 1. The focal length of the objective lens 17, a is the distance between the meniscus interface of the crystal 6 and the pair of the proboscis lenses 17, b is the distance between the imaging plane 16 and the objective lens J7, and M4; i indicates the magnification. If a changes by an amount Δa, the following equation holds true between the focus shift Δb and the change in magnification ΔM.

次に具体的な例として本発明の単結晶製造装置により、
たとえば結晶中の酸素濃度の均一化を計るためにルツボ
を押上げながらシリコン単結晶を製造する場合について
詳しく説明する。a1図において、直径20園の石英ル
ツボ3内の重−15Kyの融液4から直径8CrfL1
長さ30 (mのシリコン単結晶を育成する。はじめに
、ルツボ3の位14をルツボ3と加熱ヒータ2の高さが
等しい・立1dを原点として−2(!l二設定した。対
物レンズ17は焦点用If% 10礪のものを使用し、
融液との距離を100cmに設定して焦点合ぜを行なっ
たのち引−Eけを開始した。
Next, as a specific example, using the single crystal manufacturing apparatus of the present invention,
For example, a case in which a silicon single crystal is manufactured while pushing up a crucible in order to equalize the oxygen concentration in the crystal will be explained in detail. In figure a1, a diameter of 8CrfL1 is obtained from a -15Ky melt 4 in a quartz crucible 3 with a diameter of 20mm.
A silicon single crystal with a length of 30 (m) is grown. First, the height of the crucible 3 and the heater 2 are equal, and -2 (!l2) is set with the height of the crucible 3 and the heater 2 being equal. uses a focal point with If% of 10 cm,
After setting the distance to the melt at 100 cm and focusing, pulling-E drawing was started.

結晶引上げ速度がl FIIIL / ryh+の場合
(二は、ルツボの上昇速度は(1)式より0.145 
mw / ’+となる。第2図はプログラム信号発生器
13による−げ成結晶艮l(二対するルツボの上昇;”
UitVを示す図でLj)る。第3図はプログラム信号
(二連動する対物レンズ17の移動速度Vt、と増幅器
側の利得G(相対値)の変化を示す図である。ここでは
結晶成長(二よる残留融液量の減少と加熱ヒータの7M
度分布に対応して石英ルツボと融液の反応(二よる酸素
の溶は込み隨を調節するようにルツボ移動速度を〜1.
I X 10−%m/ms2で加速していき、融液面の
位置を引上げ終了までζ二〜50fl移動させた。これ
に対応して、焦点ずれを補正するように(4)式により
対物レンズ17の移動速度を〜1.1 x 10− ’
 **/m 2で加速していき、引上げ終了まで(二〜
0.5朋移動させた。同時に(5)式(−よる倍率の変
化を補正するように利得を引上げ終了までに〜0.94
倍まで変化させた。
When the crystal pulling rate is l FIIIL / ryh+ (second, the rising rate of the crucible is 0.145 from formula (1)
mw/'+. FIG. 2 shows the process of raising the crucible by the program signal generator 13.
In the diagram showing UitV, Lj) is shown. FIG. 3 is a diagram showing the change in the program signal (the moving speed Vt of the objective lens 17 which is interlocked with the two) and the gain G (relative value) on the amplifier side. 7M of heater
The reaction between the quartz crucible and the melt (according to the temperature distribution), the crucible movement speed is adjusted to ~1.
Acceleration was continued at I x 10-% m/ms2, and the position of the melt surface was moved by ζ2 to 50fl until the end of the pulling. Correspondingly, the moving speed of the objective lens 17 is set to ~1.1 x 10-' using equation (4) to correct the focal shift.
**/m2 Accelerate until the end of lifting (2~
Moved by 0.5. At the same time, the gain is raised to compensate for the change in magnification due to equation (5) (-) and the gain is ~0.94 by the end.
changed to twice that.

利得は増幅器側の利得8I変抵抗器をモータで回転させ
たり、バイアス電圧を変えるなどの公知の方法により容
易に調節できる。これ(二より直径の偏差が±0.5n
 以内のシリコン単結晶が得られた。
The gain can be easily adjusted by known methods such as rotating a gain 8I transformer on the amplifier side with a motor or changing the bias voltage. This (the deviation of the diameter from the second is ±0.5n
A silicon single crystal within

一方、従来の装置では、略テーパ状の結晶が得られ直径
の偏差は±3H以上見られた。第4図は育成した結晶の
同化率と酸素濃度の関係を示す図である。図で酸素濃度
の変化は〜0.11 x1018atoms /dであ
り、その分布も、通常の単調減少するものよりも平担な
ものが得られた。
On the other hand, with the conventional apparatus, substantially tapered crystals were obtained with a diameter deviation of ±3H or more. FIG. 4 is a diagram showing the relationship between the assimilation rate and oxygen concentration of the grown crystal. In the figure, the change in oxygen concentration was ~0.11 x 1018 atoms/d, and the distribution was also flatter than the usual monotonically decreasing one.

以上説明したよう(二本発明の単結晶製造装置(=よれ
ば、加熱ヒータの温度分布に対応して融液面の位置が変
化しても、常(1高精度に直径制御された単結晶が得ら
れ、かつ酸素dA度の均一性の良い高品質単結晶を製造
することができる。
As explained above (2) According to the single crystal manufacturing apparatus of the present invention, even if the position of the melt surface changes in response to the temperature distribution of the heater, can be obtained, and a high quality single crystal with good uniformity in oxygen dA degree can be produced.

なお、実施例では直径検出装置としてTVカメラを、制
御系としてアナログ回路を用いているが。
In the embodiment, a TV camera is used as the diameter detection device, and an analog circuit is used as the control system.

本実施例に限定されるものではなく、たとえば、CCD
カメラや、コンピュータのンフトウ千アによるアルゴリ
ズムによっても本発明の単結晶製造装置を実施すること
ができる。
For example, CCD
The single crystal manufacturing apparatus of the present invention can also be implemented using a camera or a computer algorithm.

【図面の簡単な説明】[Brief explanation of drawings]

!1°Sl興は本発明の単結晶製造装置の実施例の構成
を示す図、第2図はルツボ4動のプログラム信号の一例
を示す図、第3図は第2図のプログラム信号(二対化す
る対物レンズの移動速度、および増幅器の利得を示す図
、第4図は製造した単結晶の固化率と酸素(41度の関
係を示す図である。 1・・・容器、 2・・・加熱ヒータ、3・・・ルツボ
、 4・・・融液、 5・・・のぞき窓、 6・・・結晶、 7・・・引上げ(浦、 8・・・ルツボ移動軸、9・・
・引上げモータ、10・・・ルツボ移動モータ、11・
・・引上げ速度制御器、 12・・・ルツボ移動速度制御器、 13・・・ルツボ移動プログラム信号発生器、14・・
・積分器、 15・・・TVカメラ、]6・・・結像面
、 17・・・対4勿レンズ、18・・・対物レンズ移
動モータ。 19・・・対物し/ズ移動速度iff御器、(イ)・・
・増幅器、21・・・基準直径設定器、22・・・直径
制御装置。 代理人 弁理士 則近慝佑 ((よkS1名)第1図 第4図 イ R4イヒ千(=/、ジ
! 1°Sl is a diagram showing the configuration of an embodiment of the single crystal manufacturing apparatus of the present invention, FIG. 2 is a diagram showing an example of the program signal of the crucible 4 movement, and FIG. Figure 4 is a diagram showing the relationship between the solidification rate of the manufactured single crystal and oxygen (41 degrees). 1... Container, 2... Heater, 3... Crucible, 4... Melt, 5... Peephole, 6... Crystal, 7... Pulling (ura), 8... Crucible movement axis, 9...
・Lifting motor, 10... Crucible movement motor, 11・
... Pulling speed controller, 12... Crucible movement speed controller, 13... Crucible movement program signal generator, 14...
・Integrator, 15...TV camera,]6...Imaging surface, 17...pair of 4 lenses, 18...objective lens moving motor. 19...objective movement speed if control, (a)...
- Amplifier, 21... Reference diameter setting device, 22... Diameter control device. Agent Patent attorney Keisuke Norichika ((YokS1 person) Figure 1 Figure 4 I R4 Ihi Sen (=/, Ji

Claims (1)

【特許請求の範囲】 発熱体のτ態度分布(二対応して設定されたルツボ移動
のプログラム信号を発生するプログラム信号発生器と前
記プログラム信号に従って前記ルツボの移動を制御する
ルツボ移動速度1tilJ @器と、前記プログラム信
号を精分してルツボの移動量を算出する積分器と、 前記プログラム信号に従って光学系の位置を制御して単
結晶の直径を検出する検出器と、前記ルツボの移動量に
従って利得を制御して前記検出信号を増幅する増幅器と
、基準直径設定信号と比較された前記増幅器出力信号5
二より単結晶の引上げ速度を制御する引上げ速度制御器
とを有し、前記ルツボの移動による融液面と前記検出器
の距離の変化による前記単結晶の直径の検出誤差を補正
すようにしたことを特徴とする単結晶の製造装置。
[Claims] A program signal generator that generates a program signal for crucible movement set correspondingly to the τ attitude distribution of the heating element, and a crucible movement speed 1tilJ that controls the movement of the crucible according to the program signal. an integrator that refines the program signal to calculate the amount of crucible movement; a detector that controls the position of the optical system according to the program signal to detect the diameter of the single crystal; an amplifier for amplifying the detection signal with controlled gain; and the amplifier output signal 5 compared with a reference diameter setting signal.
and a pulling speed controller for controlling the pulling speed of the single crystal, which corrects a detection error in the diameter of the single crystal due to a change in the distance between the melt surface and the detector due to movement of the crucible. A single crystal manufacturing device characterized by the following.
JP12541383A 1983-07-12 1983-07-12 Apparatus for preparing single crystal Pending JPS6021893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12541383A JPS6021893A (en) 1983-07-12 1983-07-12 Apparatus for preparing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12541383A JPS6021893A (en) 1983-07-12 1983-07-12 Apparatus for preparing single crystal

Publications (1)

Publication Number Publication Date
JPS6021893A true JPS6021893A (en) 1985-02-04

Family

ID=14909487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12541383A Pending JPS6021893A (en) 1983-07-12 1983-07-12 Apparatus for preparing single crystal

Country Status (1)

Country Link
JP (1) JPS6021893A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112493A (en) * 1986-10-29 1988-05-17 Shin Etsu Handotai Co Ltd Device for measuring crystal diameter
JPS6424089A (en) * 1987-07-21 1989-01-26 Shinetsu Handotai Kk Device for adjusting initial position of melt surface
US5042891A (en) * 1990-06-21 1991-08-27 Amp Incorporated Active device mount assembly with interface mount for push-pull coupling type optical fiber connectors
JPH03275586A (en) * 1990-03-26 1991-12-06 Mitsubishi Materials Corp Production of silicon single crystal wafer
US5142597A (en) * 1990-07-27 1992-08-25 Amp Incorporated Interconnect assembly for wall outlet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112493A (en) * 1986-10-29 1988-05-17 Shin Etsu Handotai Co Ltd Device for measuring crystal diameter
JPS6424089A (en) * 1987-07-21 1989-01-26 Shinetsu Handotai Kk Device for adjusting initial position of melt surface
JPH0559876B2 (en) * 1987-07-21 1993-09-01 Shinetsu Handotai Kk
JPH03275586A (en) * 1990-03-26 1991-12-06 Mitsubishi Materials Corp Production of silicon single crystal wafer
US5042891A (en) * 1990-06-21 1991-08-27 Amp Incorporated Active device mount assembly with interface mount for push-pull coupling type optical fiber connectors
US5142597A (en) * 1990-07-27 1992-08-25 Amp Incorporated Interconnect assembly for wall outlet

Similar Documents

Publication Publication Date Title
US6241818B1 (en) Method and system of controlling taper growth in a semiconductor crystal growth process
US8085985B2 (en) Method for determining distance between reference member and melt surface, method for controlling location of melt surface using the same, and apparatus for production silicon single crystal
US5138179A (en) Method of and device for diameter measurement used in automatically controlled crystal growth
US7264674B2 (en) Method for pulling a single crystal
TWI770661B (en) Single crystal manufacturing apparatus and single crystal manufacturing method
KR20100083717A (en) Method for manufacturing silicon single crystal
JP2010100452A (en) Method of detecting diameter of single crystal, and method of manufacturing single crystal using the same and equipment for manufacturing single crystal
TWI651441B (en) Single crystal manufacturing method
JP2010100451A (en) Method for measuring distance between melt level and lower edge part of structure in furnace, method for controlling melt level position using the same, method for producing single crystal and single crystal production device
JP6627739B2 (en) Single crystal manufacturing method
JPS6021893A (en) Apparatus for preparing single crystal
US6030451A (en) Two camera diameter control system with diameter tracking for silicon ingot growth
WO2022075061A1 (en) Method for producing single crystals
US4866230A (en) Method of and apparatus for controlling floating zone of semiconductor rod
JPH07277879A (en) Apparatus for producing single crystal by cz method and melt level control method
CN112857297A (en) Single crystal rod diameter measuring device, single crystal rod growth system and method
TWI762268B (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP3655355B2 (en) Method for detecting optimum melt temperature in semiconductor single crystal manufacturing process
JP2018115102A (en) Method and apparatus for manufacturing single crystal
JPS6287482A (en) Single crystal manufacturing equipment
JPH06316484A (en) Melt level controller in cz process
JPS6027686A (en) Apparatus for manufacturing single crystal
KR101607162B1 (en) Single crystal growing method
JPS6042198B2 (en) Manufacturing method of Gap crystal
JPS63284506A (en) Production of single crystal fiber