JP2018115102A - Method and apparatus for manufacturing single crystal - Google Patents

Method and apparatus for manufacturing single crystal Download PDF

Info

Publication number
JP2018115102A
JP2018115102A JP2017008819A JP2017008819A JP2018115102A JP 2018115102 A JP2018115102 A JP 2018115102A JP 2017008819 A JP2017008819 A JP 2017008819A JP 2017008819 A JP2017008819 A JP 2017008819A JP 2018115102 A JP2018115102 A JP 2018115102A
Authority
JP
Japan
Prior art keywords
diameter
camera
value
cone
cone portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017008819A
Other languages
Japanese (ja)
Other versions
JP6665798B2 (en
Inventor
泰己 山田
Taiki Yamada
泰己 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2017008819A priority Critical patent/JP6665798B2/en
Publication of JP2018115102A publication Critical patent/JP2018115102A/en
Application granted granted Critical
Publication of JP6665798B2 publication Critical patent/JP6665798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for manufacturing a single crystal by the Czochralski method, capable of suppressing rapid variation of diameter measurement data generated when switching cameras, preventing unintended diameter control processing from being performed and preventing defective pulling from occurring.SOLUTION: A method for manufacturing a single crystal can control the diameter of a cone part 13 on the basis of a measured value while measuring the diameter value of the cone part 13 during diameter expansion by a camera so as to grow the single crystal. A first camera 9a that can measure the diameter of the cone part 13 until the diameter value of the cone part 13 reaches a predetermined value from when the diameter starts to expand, and a second camera 9b that can measure the diameter of the cone part 13 after the diameter of the cone part 13 reaches the predetermined value are placed so that parts of visual field ranges overlap each other. In the step of forming the cone part 13, switching processing for converging a value measured by the first camera 9a on a value measured by the second camera 9b is performed while the outer peripheral end of the cone part 13 is positioned within the overlapped visual field ranges during the diameter expansion.SELECTED DRAWING: Figure 1

Description

本発明は、単結晶製造方法及び単結晶製造装置に関する。   The present invention relates to a single crystal manufacturing method and a single crystal manufacturing apparatus.

シリコン単結晶の多くはチョクラルスキー法(CZ法)による引き上げにより製造されている。このようなCZ法によるシリコン単結晶製造に用いられる装置の一例を図6に示す。図6に示す単結晶製造装置120はチャンバー101と、内側の石英ルツボ及び外側の黒鉛ルツボの二重構造からなるルツボ102、ルツボ102を保持するルツボ保持軸105、ルツボ102の外周に設けられるヒーター103、ヒーター103の外周に設けられるヒーター断熱材104、ルツボ保持軸105と同軸上に設けられる、種結晶111を保持するためのシードチャック107及びシードチャック107を引き上げるためのワイヤー108などから構成される。ルツボ保持軸105はルツボ102を回転及び昇降させるための機構部を、ワイヤー108はシードチャック107の巻き上げ、巻き下げ、及び回転を行うための機構部をそれぞれ有する。各機構部の動作は、予め設定された制御設定データが外部システムから直径制御部110に送られ、直径制御部110が制御設定データを基にルツボ保持軸105及びワイヤー108のそれぞれの機構部に駆動指令信号を、ヒーター103に加熱指令信号を出力することで制御される。   Many silicon single crystals are manufactured by pulling by the Czochralski method (CZ method). An example of an apparatus used for manufacturing a silicon single crystal by the CZ method is shown in FIG. 6 includes a chamber 101, a crucible 102 having a double structure of an inner quartz crucible and an outer graphite crucible, a crucible holding shaft 105 for holding the crucible 102, and a heater provided on the outer periphery of the crucible 102. 103, a heater heat insulating material 104 provided on the outer periphery of the heater 103, a seed chuck 107 for holding the seed crystal 111 and a wire 108 for pulling up the seed chuck 107 provided on the same axis as the crucible holding shaft 105. The The crucible holding shaft 105 has a mechanism part for rotating and raising and lowering the crucible 102, and the wire 108 has a mechanism part for winding, lowering, and rotating the seed chuck 107. As for the operation of each mechanism unit, preset control setting data is sent from the external system to the diameter control unit 110, and the diameter control unit 110 applies the respective mechanism units of the crucible holding shaft 105 and the wire 108 based on the control setting data. The drive command signal is controlled by outputting a heating command signal to the heater 103.

次に、シリコン単結晶製造装置120を用いたシリコン単結晶の製造方法について説明する。まず、ルツボ102に高純度シリコン多結晶を収容し、これをヒーター103でシリコンの融点である約1420℃まで加熱して溶融し、シリコン融液106とする。次に、ワイヤー108を巻き下げてシードチャック107に保持される種結晶111の先端とシリコン融液106の液面を接触させる。その後、ルツボ保持軸105及びワイヤー108をそれぞれ所定の回転方向及び回転速度にて回転させながらワイヤー108を所定の速度で巻き上げ、種結晶111を引き上げることで、種結晶111の下にシリコン単結晶112が形成される。シリコン単結晶112の育成の際には、シリコン単結晶112の直径を細くして引き上げることで結晶を無転位化する絞り部を形成した後、シリコン単結晶112の直径を徐々に拡大(拡径)させながらコーン部を形成し、所望の直径まで拡大させた後、その直径を保ちながら引き上げることで直胴部を形成する。   Next, a method for manufacturing a silicon single crystal using the silicon single crystal manufacturing apparatus 120 will be described. First, a high-purity silicon polycrystal is accommodated in the crucible 102, and this is heated and melted to about 1420 ° C., which is the melting point of silicon, with a heater 103 to obtain a silicon melt 106. Next, the wire 108 is wound down to bring the tip of the seed crystal 111 held on the seed chuck 107 into contact with the liquid surface of the silicon melt 106. Thereafter, the wire 108 is wound at a predetermined speed while the crucible holding shaft 105 and the wire 108 are rotated at a predetermined rotation direction and rotation speed, respectively, and the seed crystal 111 is pulled up, whereby the silicon single crystal 112 is placed under the seed crystal 111. Is formed. When the silicon single crystal 112 is grown, the diameter of the silicon single crystal 112 is gradually increased by expanding the diameter of the silicon single crystal 112 after forming a constricted portion for making the crystal dislocation-free by reducing the diameter of the silicon single crystal 112 and pulling it up. ), The cone portion is formed and enlarged to a desired diameter, and then the straight barrel portion is formed by pulling up while maintaining the diameter.

上記の単結晶製造方法において、所望の直径のシリコン単結晶を安定して製造することは、生産ロスを防止して製品歩留まりを高めるためには重要である。そのため、単結晶引き上げ中は通常、図6のように、チャンバー覗き窓に固定されたCCDカメラ(Charge Coupled Device Camera)などのカメラ109で形成中のシリコン単結晶112の直径を測定し、直径測定値に応じて、ワイヤー108の巻き上げ速度、ルツボ102の上昇速度、及びヒーター103による加熱温度を変化させることにより、所望の結晶直径となるような制御(以下、直径制御)を行っている。   In the single crystal manufacturing method described above, it is important to stably manufacture a silicon single crystal having a desired diameter in order to prevent production loss and increase product yield. Therefore, during the pulling of the single crystal, as shown in FIG. 6, the diameter of the silicon single crystal 112 being formed is usually measured by a camera 109 such as a CCD camera (Charge Coupled Device Camera) fixed to the chamber viewing window. By controlling the winding speed of the wire 108, the rising speed of the crucible 102, and the heating temperature by the heater 103 in accordance with the values, control to achieve a desired crystal diameter (hereinafter, diameter control) is performed.

直径制御において行われている、CCDカメラを用いた単結晶直径の測定方法について説明する。CCDカメラは炉内のシリコン単結晶とシリコン融液の界面に見られる高輝度の環状部分(以下、メニスカスリング)を撮影している。撮影した画像から画像処理装置でメニスカスリングの位置を測定し、カメラの取り付けられている角度、シリコン単結晶とカメラとの距離等の情報を基に、シリコン単結晶の直径の測定値を算出する。また、シリコン単結晶は種結晶を中心とした円筒状に形成されるため、シリコン単結晶中心からメニスカスリングまでの距離、つまり半径長さを測定できるようカメラ視野を調整し、得られた半径長さを2倍することでも、直径値を測定することができる。   A single crystal diameter measurement method using a CCD camera, which is performed in diameter control, will be described. The CCD camera takes a picture of a high-luminance annular portion (hereinafter referred to as meniscus ring) seen at the interface between the silicon single crystal and the silicon melt in the furnace. The position of the meniscus ring is measured from the photographed image with an image processing device, and the measured value of the diameter of the silicon single crystal is calculated based on information such as the angle at which the camera is attached and the distance between the silicon single crystal and the camera. . In addition, since the silicon single crystal is formed in a cylindrical shape centered on the seed crystal, the distance from the center of the silicon single crystal to the meniscus ring, that is, the radial length can be measured, and the camera field of view is adjusted to obtain the obtained radial length. The diameter value can also be measured by doubling the thickness.

直径制御を精度良く行うためには、カメラを用いた直径測定により得られる直径データが高精度である必要がある。   In order to perform the diameter control with high accuracy, the diameter data obtained by the diameter measurement using the camera needs to be highly accurate.

近年の結晶直径の大直径化に伴い、シリコン単結晶を撮像するカメラに求められる視野範囲は結晶直径に合わせて広く取る必要があるが、視野範囲を広く取ることで分解能が低下し、カメラにより撮影した画像から結晶直径の変化を読み取りにくくなるため、結果的に結晶直径データの精度が低下し、高精度な直径制御ができなくなる。   As the crystal diameter increases in recent years, the field of view required for a camera that images a silicon single crystal needs to be widened according to the crystal diameter. Since it becomes difficult to read the change of the crystal diameter from the photographed image, the accuracy of the crystal diameter data is lowered as a result, and the diameter control with high accuracy cannot be performed.

これに対して、特許文献1には、直胴部の直径測定を目的としたカメラと、コーン部の直径測定を目的としたカメラを各々設置する方法や、コーン部の直径検出用に撮像範囲を2つに分けて2台のカメラを設置し、コーン部形成途中にカメラを切り替えて使用する方法が開示されている。このように視野範囲を狭く設定したカメラ2台を大直径のシリコン単結晶の直径測定に用いることで、精度良く直径測定が行えるとしている。   On the other hand, Patent Document 1 discloses a method of installing a camera for measuring the diameter of the straight body part and a camera for measuring the diameter of the cone part, and an imaging range for detecting the diameter of the cone part. A method is disclosed in which two cameras are installed in two, and the cameras are switched during the formation of the cone portion. It is said that the diameter can be measured with high accuracy by using two cameras having a narrow field-of-view range for measuring the diameter of a large-diameter silicon single crystal.

2台のカメラを用いて行う一般的なコーン部の直径測定方法について、その詳細を図7に示す。図7では、結晶直径測定用のカメラとして、2台のカメラA、Bを設置している。この際、2台のカメラ視野はそれぞれ異なり重なっておらず、かつ、2台のカメラ視野を合わせることでコーン部半径全体(図7のX〜X”)を撮像できる視野範囲となるように、カメラ位置及び角度を各々調整する。図7では一例として、カメラAはコーン部形成前半に撮像及び直径測定ができる視野(図7のX〜X’)、カメラBはコーン部形成後半に撮像及び直径測定ができる視野(図7のX’〜X”)とした。コーン部形成前半は、その時点で結晶を撮像することのできるカメラAを用いて測定を行う。コーン部がカメラAの視野範囲以上に成長し、カメラBの視野範囲で撮像が可能となった際に、測定に使用するカメラをカメラAからBに切り替える。カメラA、B各々が撮像できる視野範囲の測定データを組み合わせることで、コーン部全体の直径値(半径×2)を得ることができる。   FIG. 7 shows details of a general cone diameter measuring method performed using two cameras. In FIG. 7, two cameras A and B are installed as cameras for crystal diameter measurement. At this time, the two camera fields of view do not overlap each other, and by combining the two camera fields of view, the entire cone radius (X to X ″ in FIG. 7) can be captured. In Fig. 7, as an example, the camera A has a field of view (X to X 'in Fig. 7) in which imaging and diameter measurement can be performed in the first half of cone formation, and the camera B is in the second half of cone formation. It was set as the visual field (X'-X "of FIG. 7) which can measure a diameter. In the first half of the cone portion formation, measurement is performed using a camera A that can image the crystal at that time. When the cone portion grows beyond the visual field range of camera A and imaging becomes possible within the visual field range of camera B, the camera used for measurement is switched from camera A to B. The diameter value (radius × 2) of the entire cone portion can be obtained by combining the measurement data of the visual field range that can be captured by each of the cameras A and B.

特開2010−100452号公報JP 2010-100452 A

しかしながら、カメラを用いた直径測定方法は、カメラが所定の位置及び角度で固定されていて、融液面位置が所定の位置となっているという前提の下で直径値が算出されているもので有るため、カメラの位置及び角度の違いがある場合や、結晶引き上げ中の融液面位置が所定の位置と異なる場合は、それぞれ異なる測定結果を示す。   However, the diameter measurement method using the camera is a method in which the diameter value is calculated on the assumption that the camera is fixed at a predetermined position and angle and the melt surface position is a predetermined position. Therefore, when there is a difference in the position and angle of the camera, or when the melt surface position during crystal pulling is different from the predetermined position, different measurement results are shown.

よって、特に、2台のカメラを用いたコーン部の直径測定方法においては、カメラ切り替え処理時点(図7のX’)でのカメラAとBにおける測定値の差(以降、測定偏差とも表記)が有るため、切り替え前後で測定値に急激な変化が発生した直径データとなってしまう。切り替え処理時点でのカメラAとBとの間の測定偏差が無い状態が理想的ではあるが、この測定方法は、カメラをそれぞれ異なった位置及び角度で設置した上で行うため、各々のカメラ視野範囲でのシリコン単結晶の見え方及びその測定結果が異なってしまい、測定偏差が必ず発生してしまう。特に、結晶製造中に発生する融液面位置の変化を起因とした測定偏差に対しては、その発生予測が難しいため対応が困難である。   Therefore, in particular, in the cone diameter measuring method using two cameras, the difference between the measured values of the cameras A and B at the time of the camera switching process (X ′ in FIG. 7) (hereinafter also referred to as measurement deviation). Therefore, the diameter data has a sudden change in the measured value before and after switching. Ideally, there is no measurement deviation between the cameras A and B at the time of the switching process, but this measurement method is performed after the cameras are installed at different positions and angles. The appearance of the silicon single crystal in the range and the measurement result thereof are different, and a measurement deviation always occurs. In particular, it is difficult to cope with a measurement deviation caused by a change in the melt surface position that occurs during crystal production because it is difficult to predict the occurrence.

よって、従来では、2台のカメラを用いたコーン部の直径測定方法において、解消の困難な測定偏差を起因とした、カメラ切り替え時に発生する直径の測定データの急激な変化が発生するという問題があり、このデータを直径制御に適用すると、意図しない直径制御処理が実施され、単結晶の有転位化などの引き上げ不良が発生してしまうという問題があった。   Therefore, conventionally, in the cone diameter measurement method using two cameras, there is a problem that a sudden change in the diameter measurement data generated at the time of camera switching occurs due to a measurement deviation that is difficult to resolve. When this data is applied to diameter control, there is a problem that unintended diameter control processing is performed and pulling defects such as dislocation of single crystals occur.

本発明は前述のような問題に鑑みてなされたもので、カメラ切り替え時に発生する直径の測定データの急激な変化を抑制することで、意図しない直径制御処理の実施を防止し、引き上げ不良の発生を防止することができる単結晶製造方法及び単結晶製造装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and suppresses a sudden change in diameter measurement data that occurs at the time of camera switching, thereby preventing unintended diameter control processing from being performed and causing a pulling failure. An object of the present invention is to provide a single crystal manufacturing method and a single crystal manufacturing apparatus capable of preventing the above.

上記目的を達成するために、本発明は、ルツボ内に収容したシリコン融液から単結晶を引き上げるチョクラルスキー法による単結晶製造方法における、前記シリコン融液に着液させた種結晶を引き上げながら、前記単結晶を拡径してコーン部を形成するコーン部形成工程で、拡径中の前記コーン部の直径値をカメラで測定しつつ、該直径値の測定値に基づいて前記コーン部の直径を制御して育成する単結晶製造方法であって、予め、拡径開始時から前記コーン部の直径値が所定の値に達するまでの前記コーン部の直径値を測定可能な第一のカメラと、前記コーン部の直径値が前記所定の値に達した後の前記コーン部の直径値を測定可能な第二のカメラとを、前記シリコン融液面上の視野範囲の一部が互いに重なるように設置しておき、前記コーン部形成工程において、拡径中の前記コーン部の外周端が前記重なった視野範囲内に位置している間に、前記第一のカメラから得られる前記コーン部の直径の測定値を、前記第二のカメラから得られる前記コーン部の直径の測定値に収束させる切り替え処理をすることによって、前記コーン部の直径の制御に用いる測定値を、前記第一のカメラから得られる前記測定値から、前記第二のカメラから得られる前記測定値に切り替えることを特徴とする単結晶製造方法を提供する。   In order to achieve the above object, the present invention provides a method for pulling a seed crystal that has been deposited on the silicon melt in a Czochralski method for pulling a single crystal from a silicon melt accommodated in a crucible. In the cone portion forming step of expanding the single crystal to form a cone portion, while measuring the diameter value of the cone portion during diameter expansion with a camera, the cone portion is measured based on the measured value of the diameter value. A single crystal manufacturing method for controlling and growing a diameter, wherein the first camera is capable of measuring the diameter value of the cone portion from the start of diameter expansion until the diameter value of the cone portion reaches a predetermined value in advance. And a second camera capable of measuring the diameter value of the cone portion after the diameter value of the cone portion reaches the predetermined value, a part of the visual field range on the silicon melt surface overlaps each other Install the In the step of forming the cone portion, the measured value of the diameter of the cone portion obtained from the first camera while the outer peripheral end of the cone portion being expanded is located within the overlapping visual field range, By performing a switching process for converging on the measured value of the cone part diameter obtained from the second camera, the measured value used for controlling the diameter of the cone part is obtained from the measured value obtained from the first camera. The method for producing a single crystal is characterized by switching to the measured value obtained from the second camera.

本発明の単結晶製造方法であれば、2台のカメラにより高精度な直径値の測定ができるとともに、カメラの切り替え時に上記のような切り替え処理をすることによって、カメラによる単結晶の直径の測定値が急激に変動することが無いため、意図しない直径制御処理の実施を防止し、引き上げ不良の発生を防止することができる。   With the single crystal manufacturing method of the present invention, it is possible to measure the diameter value with high accuracy by two cameras, and to measure the diameter of the single crystal by the camera by performing the switching process as described above when switching the cameras. Since the value does not fluctuate abruptly, it is possible to prevent unintended diameter control processing from being performed and to prevent a pulling failure.

このとき、前記コーン部形成工程において、前記第一のカメラから得られる前記測定値を、拡径開始時から、拡径中の前記コーン部の外周端が前記重なった視野範囲内の所定位置に達するまでの前記コーン部の直径値として前記コーン部の直径を制御し、前記所定位置に前記コーン部の外周端が達した後は、前記切り替え処理によって、前記第一のカメラから得られる前記測定値を、前記第二のカメラから得られる前記測定値に徐々に近づけるように逐次算出された切り替え中測定値を、前記コーン部の直径値として前記コーン部の直径を制御し、前記切り替え中測定値が前記第二のカメラから得られる前記測定値と同値となった後は、前記第二のカメラから得られる前記測定値を前記コーン部の直径値として前記コーン部の直径を制御することが好ましい。   At this time, in the cone portion forming step, the measured value obtained from the first camera is set at a predetermined position within the visual field range where the outer peripheral end of the cone portion during the diameter expansion overlaps from the start of the diameter expansion. The diameter of the cone part is controlled as the diameter value of the cone part until it reaches, and after the outer peripheral end of the cone part reaches the predetermined position, the measurement obtained from the first camera by the switching process The diameter of the cone part is controlled as the diameter value of the cone part, and the measurement value during the switching is sequentially calculated so that the value is gradually approximated to the measurement value obtained from the second camera. After the value becomes equal to the measured value obtained from the second camera, the diameter of the cone part is controlled using the measured value obtained from the second camera as the diameter value of the cone part. Door is preferable.

このように、直径制御に用いるカメラの切り替え処理を、上記切り替え中間値を用いることで、制御に用いられる直径の測定値の変動を確実に緩やかにすることができるため、意図しない直径制御処理の実施を防止し、引き上げ不良の発生を確実に防止することができる。   As described above, since the change process of the diameter used for the control can be surely moderated by using the switching intermediate value in the switching process of the camera used for the diameter control, the unintended diameter control process can be performed. Implementation can be prevented and occurrence of pulling defects can be reliably prevented.

またこのとき、前記切り替え中測定値は、該切り替え中測定値をd、前記第一のカメラから得られる前記測定値をdt1、前記第二のカメラから得られる前記測定値をdt2、前記所定位置に前記コーン部の外周端が達した時からの経過時間をt、前記所定位置に前記コーン部の外周端が達した時から前記切り替え中測定値が前記第二のカメラから得られる前記測定値と同値となるまでの時間をtとした場合の下記式1により逐次算出することができる。
=dt1+{(dt2−dt1)×(t/t)} ・・・ 式1
(但し、tは0≦t≦tを満たす。)
At this time, the switching-in-progress value measurement, the switch in the measurement d m, the first the measurement values obtained from the camera d t1, the second the measurement values obtained from the camera d t2, The elapsed time from when the outer peripheral end of the cone portion reaches the predetermined position is t, and the measured value during switching is obtained from the second camera from when the outer peripheral end of the cone portion reaches the predetermined position. It can be sequentially calculated by the following formula 1 when the time until the same value as the measured value is t c .
d m = d t1 + {(d t2 −d t1 ) × (t / t c )} Equation 1
(However, t satisfies 0 ≦ t ≦ t c .)

上記式1を満たすように切り替え中測定値を逐次算出し、カメラの切り替え中に直径制御用の測定値として用いることで、制御に用いられる直径の測定値の変動を確実に緩やかにすることができる。   By sequentially calculating the measurement value during switching so as to satisfy the above-mentioned formula 1 and using it as the measurement value for diameter control during camera switching, it is possible to reliably moderate the variation in the measurement value of the diameter used for control. it can.

また、前記コーン部を最大直径が200mm以上となるよう拡径することが好ましい。   Moreover, it is preferable to expand the cone portion so that the maximum diameter becomes 200 mm or more.

本発明は、このような2台のカメラが必要となることが多い大直径の単結晶の引き上げにおいて、引き上げ不良の発生を確実に防止することができる。   The present invention can reliably prevent the occurrence of pulling failure in pulling a large-diameter single crystal that often requires two such cameras.

また、上記目的を達成するために、本発明は、シリコン融液を収容するルツボと、前記シリコン融液に着液させた種結晶を引き上げながら拡径される単結晶のコーン部の直径値を測定するカメラを具備し、該カメラで前記コーン部の直径値を測定しつつ、該直径値の測定値に基づいて前記コーン部の直径を制御可能な機能を有するチョクラルスキー法による単結晶製造装置であって、拡径開始時から前記コーン部の直径値が所定の値に達するまでの前記コーン部の直径値を測定可能な第一のカメラと、前記コーン部の直径値が前記所定の値に達した後の前記コーン部の直径値を測定可能な第二のカメラとが、前記シリコン融液面上の視野範囲の一部が互いに重なるように設置され、拡径中の前記コーン部の外周端が前記重なった視野範囲内に位置している間に、前記第一のカメラから得られる前記コーン部の直径の測定値を、前記第二のカメラから得られる前記コーン部の直径の測定値に収束させる切り替え処理機能を有し、該切り替え処理機能によって、前記コーン部の直径の制御に用いる測定値を、前記第一のカメラから得られる前記測定値から、前記第二のカメラから得られる前記測定値に切り替えるものであることを特徴とする単結晶製造装置を提供する。   In order to achieve the above object, the present invention provides a crucible for storing a silicon melt and a diameter value of a cone portion of a single crystal that is expanded while pulling up a seed crystal that has been applied to the silicon melt. A single crystal manufacturing by the Czochralski method having a function of measuring a diameter value of the cone part with the camera and having a function capable of controlling the diameter of the cone part based on the measured value of the diameter value A first camera capable of measuring a diameter value of the cone part from the start of diameter expansion until the diameter value of the cone part reaches a predetermined value; and the diameter value of the cone part is the predetermined value A second camera capable of measuring the diameter value of the cone part after reaching the value, and the cone part being expanded in diameter, installed so that part of the visual field range on the silicon melt surface overlaps each other The outer peripheral edge of the A switching processing function for converging the measured value of the diameter of the cone obtained from the first camera to the measured value of the diameter of the cone obtained from the second camera. The measurement value used for controlling the diameter of the cone portion is switched from the measurement value obtained from the first camera to the measurement value obtained from the second camera by the switching processing function. A single crystal production apparatus characterized by the above is provided.

本発明の単結晶製造装置は、2台のカメラにより高精度な直径値の測定ができるとともに、カメラの切り替え時に上記のような切り替え処理をすることによって、カメラによる単結晶の直径の測定値が急激に変動することが無いため、意図しない直径制御処理の実施を防止し、引き上げ不良の発生を防止することができるものとなる。   The single crystal manufacturing apparatus of the present invention can measure the diameter value with high accuracy by two cameras, and by performing the switching process as described above when switching the camera, the measured value of the diameter of the single crystal by the camera can be obtained. Since it does not fluctuate rapidly, it is possible to prevent unintended diameter control processing from being performed and to prevent the occurrence of pulling failure.

このとき、本発明の単結晶製造装置は、前記第一のカメラから得られる前記コーン部の直径の測定値及び前記第二のカメラから得られる前記コーン部の直径の測定値のいずれか一方又は両方から、前記コーン部の直径を制御する直径制御部を具備し、該直径制御部が、前記切り替え処理機能を有し、前記第一のカメラから得られる前記コーン部の直径の測定値を、拡径開始時から、拡径中の前記コーン部の外周端が前記重なった視野範囲内の所定位置に達するまでの前記コーン部の直径値として前記コーン部の直径を制御し、前記所定位置に前記コーン部の外周端が達した後は、前記切り替え処理機能によって、前記第一のカメラから得られる前記測定値を、前記第二のカメラから得られる前記コーン部の直径の測定値に徐々に近づけるように逐次算出された切り替え中測定値を、前記コーン部の直径値として前記コーン部の直径を制御し、前記切り替え中測定値が前記第二のカメラから得られる前記測定値と同値となった後は、前記第二のカメラから得られる前記測定値を前記コーン部の直径値として前記コーン部の直径を制御するものであることが好ましい。   At this time, the single crystal manufacturing apparatus of the present invention is either one of the measurement value of the diameter of the cone portion obtained from the first camera and the measurement value of the diameter of the cone portion obtained from the second camera, or From both, it comprises a diameter control unit for controlling the diameter of the cone part, the diameter control part has the switching processing function, the measured value of the diameter of the cone part obtained from the first camera, The diameter of the cone portion is controlled as the diameter value of the cone portion from the start of the diameter expansion until the outer peripheral end of the cone portion being expanded reaches the predetermined position within the overlapping visual field range, After the outer peripheral edge of the cone portion reaches, the measured value obtained from the first camera is gradually changed to the measured value of the diameter of the cone portion obtained from the second camera by the switching processing function. Get closer After the sequentially calculated measurement value during switching, the diameter of the cone part is controlled as the diameter value of the cone part, and after the measurement value during switching becomes the same value as the measurement value obtained from the second camera, The diameter of the cone portion is preferably controlled using the measured value obtained from the second camera as the diameter value of the cone portion.

このような直径制御部を具備する単結晶製造装置であれば、直径制御に用いるカメラの切り替え処理を、上記切り替え中間値を用いることで、制御に用いられる直径の測定値の変動を確実に緩やかにすることができるため、意図しない直径制御処理の実施を防止し、引き上げ不良の発生を確実に防止することができるものとなる。   In the case of a single crystal manufacturing apparatus having such a diameter control unit, the switching process of the camera used for diameter control uses the above-mentioned switching intermediate value, so that the fluctuation of the measured value of the diameter used for the control is surely moderated. Therefore, it is possible to prevent unintentional diameter control processing from being performed, and to reliably prevent the occurrence of pulling failure.

また、前記直径制御部が、前記切り替え中測定値を、前記切り替え中測定値をd、前記第一のカメラから得られる前記測定値をdt1、前記第二のカメラから得られる前記測定値をdt2、前記所定位置に前記コーン部の外周端が達した時からの経過時間をt、前記所定位置に前記コーン部の外周端が達した時から前記切り替え中測定値が前記第二のカメラから得られる前記測定値と同値となるまでの時間をtとした場合の下記式1により逐次算出するものであることが好ましい。
=dt1+{(dt2−dt1)×(t/t)} ・・・ 式1
(但し、tは0≦t≦tを満たす。)
Further, the diameter control unit, the switching during measurement, the switch in the measurement d m, the measurements obtained from the first camera d t1, the measurement values obtained from said second camera D t2 , t is an elapsed time from when the outer peripheral end of the cone portion reaches the predetermined position, and the measured value during switching from the time when the outer peripheral end of the cone portion reaches the predetermined position is the second value. It is preferable that the time until the measurement value obtained from the camera is equal to the measured value is sequentially calculated by the following formula 1 where t c is used.
d m = d t1 + {(d t2 −d t1 ) × (t / t c )} Equation 1
(However, t satisfies 0 ≦ t ≦ t c .)

直径制御部が上記式1を満たすように切り替え中測定値を逐次算出し、カメラの切り替え中に直径制御用の測定値として用いることで、本発明の単結晶製造装置は、制御に用いられる直径の測定値の変動を確実に緩やかにし、引き上げ不良の発生を防止することができる。   The single crystal manufacturing apparatus of the present invention uses the diameter used for control by sequentially calculating the measurement value during switching so that the diameter control unit satisfies the above-mentioned formula 1, and using it as the measurement value for diameter control during camera switching. The fluctuation of the measured value can be surely moderated to prevent the occurrence of a pulling failure.

本発明の単結晶製造方法及び単結晶製造装置であれば、2台のカメラにより高精度な直径値の測定及び制御ができるうえに、カメラ切り替え時に発生する直径の測定データの急激な変化を抑制することで、意図しない直径制御処理の実施を防止し、引き上げ不良の発生を防止することができる。   With the single crystal manufacturing method and single crystal manufacturing apparatus of the present invention, it is possible to measure and control the diameter value with high accuracy by using two cameras, and to suppress the rapid change in the diameter measurement data that occurs when the cameras are switched. By doing so, it is possible to prevent unintended diameter control processing from being performed and to prevent the occurrence of pulling failure.

本発明の単結晶製造装置の一例を示した概略図である。It is the schematic which showed an example of the single crystal manufacturing apparatus of this invention. 本発明の単結晶製造装置における、2台のカメラによるコーン部の直径測定方法を示す概略図である。It is the schematic which shows the diameter measuring method of the cone part by two cameras in the single crystal manufacturing apparatus of this invention. 本発明における切り替え処理の一例のフローチャートである。It is a flowchart of an example of the switching process in this invention. (a)実施例において、第一、第二のカメラにより得られたコーン部の直径の測定値を示すグラフである。(b)実施例において、コーン部の直径制御に用いられた測定値を示すグラフである。(A) In an Example, it is a graph which shows the measured value of the diameter of the cone part obtained by the 1st, 2nd camera. (B) In an Example, it is a graph which shows the measured value used for diameter control of a cone part. (a)比較例において、第一、第二のカメラにより得られたコーン部の直径の測定値を示すグラフである。(b)比較例において、コーン部の直径制御に用いられた測定値を示すグラフである。(A) In a comparative example, it is a graph which shows the measured value of the diameter of the cone part obtained by the 1st, 2nd camera. (B) In a comparative example, it is a graph which shows the measured value used for diameter control of a cone part. 一般的な単結晶製造装置の一例を示した概略図である。It is the schematic which showed an example of the general single crystal manufacturing apparatus. 従来の単結晶製造装置における、2台のカメラによるコーン部の直径測定方法を示す概略図である。It is the schematic which shows the diameter measuring method of the cone part by the two cameras in the conventional single crystal manufacturing apparatus.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.

上記のように、従来の2台のカメラを用いた、拡径中のコーン部の直径測定では、カメラの切り替え時に測定値が急激に変動して、この測定値を直径制御に用いると有転位化などの単結晶の引き上げ不良を引き起こしてしまうという問題があった。   As described above, when measuring the diameter of a cone part during diameter expansion using two conventional cameras, the measured value fluctuates abruptly when the camera is switched. There has been a problem that it causes a pulling failure of the single crystal such as crystallization.

そこで、本発明者はこのような問題を解決すべく鋭意検討を重ねた。その結果、2台のカメラを視野範囲が重なるように設置し、コーン部の外周端が重なった視野範囲内に位置している間に、第一のカメラから得られるコーン部の直径の測定値を、第二のカメラから得られるコーン部の直径の測定値に収束させる切り替え処理をすることで、測定値の急激な変動を防止できることに想到し、本発明を完成させた。   Therefore, the present inventor has intensively studied to solve such problems. As a result, two cameras are installed so that the field of view overlaps, and while the outer peripheral edge of the cone part is located within the overlapping field of view, the measured diameter of the cone part obtained from the first camera The present invention has been completed by conceiving that rapid fluctuation of the measured value can be prevented by performing a switching process for converging the measured value to the measured value of the diameter of the cone portion obtained from the second camera.

図1に示すように、本発明の単結晶製造装置20は、チョクラルスキー法によりシリコン単結晶を引き上げる装置であり、少なくとも、シリコン融液6を収容するルツボ2を格納するチャンバー1と、ルツボ2を保持するルツボ保持軸5、ルツボ2の外周に設けられるヒーター3、ヒーター3の外周に設けられるヒーター断熱材4などを具備していてもよい。また、単結晶製造装置20は、ルツボ保持軸5と同軸上に設けられる、種結晶11を保持するためのシードチャック7、及びシードチャック7を引き上げるためのワイヤー8などを具備していてもよい。なお、ルツボ2は、内側の石英ルツボ及び外側の黒鉛ルツボから成る二重構造としてもよい。   As shown in FIG. 1, the single crystal manufacturing apparatus 20 of the present invention is an apparatus for pulling up a silicon single crystal by the Czochralski method, and includes at least a chamber 1 for storing a crucible 2 containing a silicon melt 6, and a crucible. 2, a crucible holding shaft 5, a heater 3 provided on the outer periphery of the crucible 2, a heater heat insulating material 4 provided on the outer periphery of the heater 3, and the like. The single crystal manufacturing apparatus 20 may include a seed chuck 7 for holding the seed crystal 11 and a wire 8 for pulling up the seed chuck 7 provided coaxially with the crucible holding shaft 5. . The crucible 2 may have a double structure including an inner quartz crucible and an outer graphite crucible.

さらに、本発明の単結晶製造装置20は、シリコン融液6に着液させた種結晶11を引き上げながら拡径される単結晶のコーン部13の直径値を測定するための第一のカメラ9a及び第二のカメラ9bとを具備する。なお、第一のカメラ9a及び第二のカメラ9bとしては、CCDカメラを用いることができる。   Furthermore, the single crystal manufacturing apparatus 20 of the present invention is a first camera 9a for measuring the diameter value of the cone portion 13 of the single crystal that is expanded while pulling up the seed crystal 11 that has been applied to the silicon melt 6. And a second camera 9b. A CCD camera can be used as the first camera 9a and the second camera 9b.

これら2台のカメラは、第一のカメラ9aが拡径開始時からコーン部13の直径値が所定の値に達するまでのコーン部13の前半の直径値を測定可能なものであり、第二のカメラ9bがコーン部13の直径値が所定の値に達した後のコーン部13の後半の直径値を測定可能なものである。即ち、第一のカメラ9aが小径時のコーン部13の直径を、第二のカメラ9bが大径時のコーン部13の直径を主に測定することができるよう設置されている。これにより、大径の単結晶の直径を解像度を上げて測定可能となる。さらに、本発明の単結晶製造装置20では、図1のように、第一のカメラ9a及び第二のカメラ9bが、シリコン融液6の液面上で、各々の視野範囲の一部が互いに重なるように設置されている。この重なった視野範囲内においては、第一のカメラ9a及び第二のカメラ9bの両方からコーン部の直径の測定値が得られる。   These two cameras can measure the diameter value of the first half of the cone portion 13 from when the first camera 9a starts to expand the diameter until the diameter value of the cone portion 13 reaches a predetermined value. The camera 9b can measure the diameter value of the latter half of the cone part 13 after the diameter value of the cone part 13 reaches a predetermined value. That is, the first camera 9a is installed so as to mainly measure the diameter of the cone part 13 when the diameter is small, and the second camera 9b is installed so as to mainly measure the diameter of the cone part 13 when the diameter is large. This makes it possible to measure the diameter of a large single crystal with increased resolution. Furthermore, in the single crystal manufacturing apparatus 20 of the present invention, as shown in FIG. 1, the first camera 9 a and the second camera 9 b are arranged on the liquid surface of the silicon melt 6, and a part of each visual field range is mutually. It is installed so that it may overlap. Within this overlapping field of view, a measurement of the cone diameter is obtained from both the first camera 9a and the second camera 9b.

本発明の単結晶製造装置20は、カメラとして第一のカメラ9a及び第二のカメラ9bとを用いて単結晶のコーン部13(トップ側)の直径値を測定しつつ、該直径値の測定値に基づいてコーン部13の直径を制御可能な機能を有するものである。直径の制御は、第一のカメラ9a及び第二のカメラ9bのいずれか一方又は両方で得られた測定値に基づいて、コーン部13の直径を制御する直径制御部10により行うことができる。より具体的には、直径制御部10から、ルツボ保持軸5及びワイヤー8のそれぞれの機構部に駆動指令信号を、ヒーター3に加熱指令信号を出力して、ルツボ保持軸5及びワイヤー8の上昇速度とヒーター3の加熱温度を適切に制御することで、コーン部13の直径を制御できる。この直径制御部10には、予め設定された制御設定データを外部システムから入力しておき、入力された制御設定データを基に、第一のカメラ9aや第二のカメラ9bで得られた測定値に応じて、ルツボ保持軸5の上昇速度、ワイヤー8の巻き上げ速度、及び加熱温度を調整すればよい。   The single crystal manufacturing apparatus 20 of the present invention measures the diameter value while measuring the diameter value of the cone portion 13 (top side) of the single crystal using the first camera 9a and the second camera 9b as cameras. It has a function capable of controlling the diameter of the cone portion 13 based on the value. The diameter control can be performed by the diameter controller 10 that controls the diameter of the cone portion 13 based on the measurement value obtained by one or both of the first camera 9a and the second camera 9b. More specifically, the diameter control unit 10 outputs a drive command signal to the respective mechanism units of the crucible holding shaft 5 and the wire 8 and outputs a heating command signal to the heater 3 to raise the crucible holding shaft 5 and the wire 8. The diameter of the cone portion 13 can be controlled by appropriately controlling the speed and the heating temperature of the heater 3. Preliminary control setting data is input to the diameter control unit 10 from an external system, and measurement obtained by the first camera 9a and the second camera 9b based on the input control setting data. What is necessary is just to adjust the raising speed of the crucible holding shaft 5, the winding speed of the wire 8, and the heating temperature according to the values.

本発明の単結晶製造装置20は、拡径中のコーン部13の外周端が重なった視野範囲内に位置している間に、第一のカメラ9aから得られるコーン部13の直径の測定値を、第二のカメラ9bから得られるコーン部13の直径の測定値に収束させる切り替え処理機能を有しており、この切り替え処理機能によって、コーン部13の直径の制御に用いる測定値を、第一のカメラ9aから得られる測定値から、第二のカメラ9bから得られる測定値に切り替えるものである。即ち、単結晶製造装置20では、カメラの切り替え処理前には第一のカメラ9aから得られた測定値を、カメラの切り替え処理中には切り替え処理機能により算出された測定値を、切り替え処理完了後には第二のカメラ9bから得られた測定値をコーン部13の直径制御に用いる。この切り替え処理機能は、例えば、直径制御部10が備えていることが好ましい。   The single crystal manufacturing apparatus 20 of the present invention measures the diameter of the cone 13 obtained from the first camera 9a while the outer peripheral end of the cone 13 being expanded is located within the overlapping visual field range. Is switched to the measured value of the diameter of the cone portion 13 obtained from the second camera 9b, and the measured value used for the control of the diameter of the cone portion 13 is obtained by this switching processing function. The measurement value obtained from one camera 9a is switched to the measurement value obtained from the second camera 9b. That is, the single crystal manufacturing apparatus 20 completes the switching process by using the measurement value obtained from the first camera 9a before the camera switching process and the measurement value calculated by the switching process function during the camera switching process. Later, the measurement value obtained from the second camera 9b is used for controlling the diameter of the cone portion 13. For example, the diameter control unit 10 preferably includes this switching processing function.

ここで、切り替え処理機能について、図2、3を参照してより具体的に説明する。まず、図2の例では、第一のカメラ9a及び第二のカメラ9bを設置する際、第一のカメラ9aはコーン部形成前半に撮像及び測定ができる視野範囲(図2のX〜X’’)、第二のカメラ9bはコーン部形成後半にコーン部撮像及び測定ができる視野範囲(図2のX’〜X’’’)とし、各々の視野範囲の一部がもう一方のカメラの視野範囲の一部と重なるように設置している。このカメラ設置方法により重なったカメラ視野範囲(図2のX’〜X’’)においては、第一のカメラ9a及び第二のカメラ9bの両方の各直径測定値が同時に得られる。   Here, the switching processing function will be described more specifically with reference to FIGS. First, in the example of FIG. 2, when the first camera 9a and the second camera 9b are installed, the first camera 9a can capture and measure the field of view (X to X ′ in FIG. 2) in the first half of the cone portion formation. 2) The second camera 9b has a field-of-view range (X ′ to X ″ ′ in FIG. 2) in which the cone part can be imaged and measured in the latter half of the cone part formation, and a part of each field-of-view range is that of the other camera. It is installed so as to overlap part of the field of view. In the camera visual field range (X ′ to X ″ in FIG. 2) overlapped by this camera installation method, the diameter measurement values of both the first camera 9a and the second camera 9b are obtained simultaneously.

ここで、第一のカメラ9a及び第二のカメラ9bの重なった視野範囲(図2のX’〜X’’)がどの程度の範囲となるようにするかは、各カメラが撮像でき得る視野範囲及びその視野範囲により得られる直径測定分解能や、製造する結晶直径より判断される。重なる視野範囲としては、例えば、単結晶の直径方向の幅で50mm程度が望ましいが、可能な限り広く取る方が、後述のカメラ切り替え処理の結果において、より変動の少ない直径データが得られる。   Here, to what extent the overlapping visual field range (X ′ to X ″ in FIG. 2) of the first camera 9a and the second camera 9b is set is a visual field that can be captured by each camera. It is judged from the diameter measurement resolution obtained by the range and the visual field range and the crystal diameter to be manufactured. As the overlapping visual field range, for example, the width in the diameter direction of the single crystal is preferably about 50 mm. However, if it is as wide as possible, diameter data with less variation can be obtained as a result of the camera switching process described later.

コーン部を形成する工程では、まず、第一のカメラ9aから得られる測定値を、拡径開始時から、拡径中のコーン部の外周端が上記重なった視野範囲内(図2のX’〜X’’)の所定位置に達するまでのコーン部の直径値として直径制御部10で直径を制御する。   In the step of forming the cone portion, first, the measurement value obtained from the first camera 9a is measured within the visual field range where the outer peripheral end of the cone portion during the diameter expansion overlaps from the start of the diameter expansion (X ′ in FIG. 2). The diameter control unit 10 controls the diameter as a diameter value of the cone part until reaching a predetermined position of ˜X ″).

次に、重なったカメラ視野範囲内(図2のX’〜X’’)にて第一のカメラ9a及び第二のカメラ9bの両方がコーン部13の直径検出を行っている間に、カメラの切り替え処理を行う。即ち、拡径中のコーン部13の外周端が重なった視野範囲内に位置している間にカメラの切り替え処理を行う。切り替え処理は、拡径中のコーン部13の外周端が上記重なった視野範囲内に位置している間に、第一のカメラ9aから得られるコーン部の直径の測定値を、第二のカメラ9bから得られるコーン部13の直径の測定値に収束させるものであり、この切り替え処理をすることによって、コーン部13の直径の制御に用いる測定値を、第一のカメラ9aから得られる測定値から、第二のカメラ9bから得られる測定値に切り替える。より具体的には、例えば、第一のカメラ9aから得られる測定値を、第二のカメラ9bから得られる測定値に徐々に近づけるように逐次算出された切り替え中測定値を、コーン部の直径値として直径制御部10でコーン部13の直径を制御する。   Next, while both the first camera 9a and the second camera 9b detect the diameter of the cone portion 13 within the overlapping camera visual field range (X ′ to X ″ in FIG. 2), the camera The switching process is performed. That is, the camera switching process is performed while the outer peripheral end of the cone portion 13 whose diameter is being expanded is located within the overlapping visual field range. In the switching process, the measured value of the diameter of the cone portion obtained from the first camera 9a is converted to the second camera while the outer peripheral end of the cone portion 13 whose diameter is being expanded is located within the overlapping visual field range. It is made to converge on the measured value of the diameter of the cone part 13 obtained from 9b, and the measurement value used for controlling the diameter of the cone part 13 by this switching process is obtained from the first camera 9a. To the measured value obtained from the second camera 9b. More specifically, for example, the measured value during switching, which is sequentially calculated so that the measured value obtained from the first camera 9a gradually approaches the measured value obtained from the second camera 9b, is represented by the diameter of the cone portion. The diameter control unit 10 controls the diameter of the cone part 13 as a value.

このような切り替え処理について、図3を参照して説明する。図3は切り替え処理のフローチャートの一例を示したものである。切り替え処理を実施するにあたり、予め、切り替え処理開始から切り替え処理完了迄に要する時間t、即ち、上記コーン部の外周端が重なった視野範囲内の所定位置に達した時から、切り替え中測定値が第二のカメラから得られる測定値と同値となるまでの経過時間t(以降、切り替え設定時間tとも表記する)を設定しておく。この時の切り替え設定時間tに関しては、各カメラの重なる視野範囲、コーン部の形成レシピ(ワイヤー巻き上げ速度、ルツボ上昇速度、ヒーター加熱温度等)、コーン部形成時のコーン拡径速度等を考慮し、おおよそ30分〜60分程度に設定することが望ましい。そして、図3のように、切り替え処理にて、まず、第二のカメラの測定値dt2から第一のカメラの測定値dt1を減算した結果(以降、差分とも表記する)、切り替え処理開始からの経過時間t(以降、切り替え経過時間tとも表記する)と切り替え設定時間との除算結果(以降、切り替え割合とも表記する)を算出した後、算出した差分と切り替え割合を乗算する(以降、この乗算結果を切り替え中間値とも表記する)。次に、第一のカメラの測定値と切り替え中間値との加算結果を、切り替え中測定値d、つまり直径測定結果として逐次算出する。即ち、下記式1によって、逐次、切り替え中測定値dを算出し、切り替え中測定値dが第二のカメラの測定値dt2と同値になるまで、逐次算出された切り替え中測定値dを直径制御に用いる直径値とする。
=dt1+{(dt2−dt1)×(t/t)} ・・・ 式1
(但し、tは0≦t≦tを満たす。)
Such switching processing will be described with reference to FIG. FIG. 3 shows an example of a flowchart of the switching process. In performing the switching process, the time t c required from the start of the switching process to the completion of the switching process, that is, the measured value during switching from when the outer peripheral end of the cone portion reaches a predetermined position within the overlapping visual field range. Is set to an elapsed time t c (hereinafter also referred to as a switching setting time t c ) until the value becomes equal to the measured value obtained from the second camera. For the switching setting time t c at this viewing range overlapping of each camera, forming recipe (wire hoisting speed, the crucible lifting speed, the heater heating temperature, etc.) of the cone portion, considering cone diameter speed of at cone portion formed However, it is desirable to set it to about 30 to 60 minutes. As shown in FIG. 3, in the switching process, first, the result of subtracting the measurement value d t1 of the first camera from the measurement value d t2 of the second camera (hereinafter also referred to as a difference), the switching process starts. After calculating a division result (hereinafter also referred to as a switching ratio) between the elapsed time t from (hereinafter also referred to as switching elapsed time t) and the switching set time, the calculated difference is multiplied by the switching ratio (hereinafter referred to as “switching ratio”). This multiplication result is also expressed as a switching intermediate value). Next, the addition result of the measurement value of the first camera and the switching intermediate value is sequentially calculated as the switching measurement value d m , that is, the diameter measurement result. That is, according to the following formula 1, sequentially calculates the measured value d m in changeover, until the measured value d m in changeover becomes equivalent and measured value d t2 of the second camera, sequentially calculated switched during the measurement value d Let m be the diameter value used for diameter control.
d m = d t1 + {(d t2 −d t1 ) × (t / t c )} Equation 1
(However, t satisfies 0 ≦ t ≦ t c .)

切り替え処理開始直後では、切り替え経過時間tが0で有るため、その後の切り替え割合及び切り替え中間値の計算結果は0を示し、切り替え中測定値dの結果は第一のカメラの測定値dt1と同値となる。また、切り替え処理完了時には、切り替え経過時間tと切り替え設定時間tが同値となり、その後の切り替え中間値の算出結果は差分と同値を示すため、切り替え中測定値dの結果は、第二のカメラの測定値dt2と同値となる。このため、切り替え中測定値dは切り替え処理中の時間経過に伴い、第一のカメラの測定値dt1が滑らかに第二のカメラの測定値dt2へ収束するように変化する。この切り替え処理は、上記の式1の演算を行う切り替え処理機能を有する直径制御部10により行うことができる。 Immediately after the switching process is started, since the switching elapsed time t is 0, then the calculation result of the switching rate and switching the intermediate value is 0, the measured value of the result of switching in the measured value d m first camera d t1 Is equivalent to Further, at the time of switching process is completed, will switch the elapsed time t and the switching setting time t c is the same value, the calculation result of the subsequent switching intermediate values to indicate the difference and equality, the result of switching in the measured value d m, the second It becomes the same value as the measured value d t2 of the camera. Therefore, the measured value d m in switching with time during the switching process changes as measured d t1 of the first camera is smoothly converged to a second camera measurements d t2. This switching process can be performed by the diameter control unit 10 having a switching process function for performing the calculation of the above formula 1.

また、切り替え中測定値dが第二のカメラから得られる測定値と同値となった後、即ち、切り替え処理の完了後は、図2の直径制御部10にて、第二のカメラから得られる測定値をコーン部の直径値として直径制御する。 Moreover, after the measured value d m in changeover was a measured value and the same value obtained from the second camera, that is, after the completion of the switching process at the diameter control unit 10 of FIG. 2, obtained from the second camera The measured value is controlled as the diameter value of the cone part.

上記のような本発明の単結晶製造装置20であれば、2台のカメラにより高精度な直径値の測定により高精度な直径制御ができるとともに、カメラの切り替え時に、第一のカメラ9aから得られる測定値を、第二のカメラ9bから得られる測定値に収束させる切り替え処理をすることによって、カメラの切り替えによる単結晶の直径の測定値が急激に変動することが無いため、意図しない直径制御処理の実施を防止し、引き上げ不良の発生を防止することができる。   With the single crystal manufacturing apparatus 20 of the present invention as described above, it is possible to control the diameter with high accuracy by measuring the diameter value with high accuracy by two cameras, and obtain from the first camera 9a when switching the cameras. Since the measured value of the single crystal due to the switching of the camera does not change abruptly by performing a switching process for converging the measured value to the measured value obtained from the second camera 9b, unintended diameter control It is possible to prevent the processing from being performed and to prevent the occurrence of a pulling failure.

次に、単結晶製造装置20を用いた場合の本発明の単結晶製造方法を説明する。   Next, the single crystal manufacturing method of the present invention when the single crystal manufacturing apparatus 20 is used will be described.

本発明の単結晶製造方法は、ルツボ2内に収容したシリコン融液6から単結晶を引き上げるチョクラルスキー法によるものであり、ルツボ2にシリコン多結晶原料を収容した後に、これをヒーター3により溶融してシリコン融液6とする原料溶融工程、シリコン融液6に着液させた種結晶11を引き上げながら、単結晶を拡径してコーン部13を形成するコーン部形成工程、コーン部形成後、直径を維持しながら単結晶を引き上げて直胴部を形成する直胴部形成工程、直胴部形成後、単結晶を縮径してからシリコン融液6から切り離すことでテール部を形成するテール部形成工程を有する。これらは通常のチョクラルスキー法において行われることである。   The single crystal manufacturing method of the present invention is based on the Czochralski method of pulling up a single crystal from the silicon melt 6 accommodated in the crucible 2, and after the polycrystalline silicon raw material is accommodated in the crucible 2, this is heated by the heater 3. A raw material melting step for melting into a silicon melt 6, a cone portion forming step for expanding a single crystal to form a cone portion 13 while pulling up a seed crystal 11 deposited on the silicon melt 6, forming a cone portion After that, the straight body forming step of forming the straight body by pulling up the single crystal while maintaining the diameter, after forming the straight body, the tail is formed by reducing the diameter of the single crystal and then separating it from the silicon melt 6 A tail portion forming step. These are what is done in the normal Czochralski method.

本発明の単結晶製造方法は、コーン部形成工程において、拡径中のコーン部13の直径値をカメラで測定しつつ、該直径値の測定値に基づいてコーン部13の直径を制御して育成する。なお、直胴部形成工程においてもカメラを用いた直径制御を行ってもよい。   The single crystal manufacturing method of the present invention controls the diameter of the cone portion 13 based on the measured value of the diameter value while measuring the diameter value of the cone portion 13 during diameter expansion with a camera in the cone portion forming step. Cultivate. Note that diameter control using a camera may also be performed in the straight body forming step.

コーン部形成工程では、視野範囲が重なるよう予め設置されている図1のような第一のカメラ9a及び第二のカメラ9bを用いて直径を制御する。この直径制御方法については、図2、3を参照した上記説明と同様である。即ち、第一のカメラ9aから得られるコーン部13の直径の測定値を、第二のカメラ9bから得られるコーン部13の直径の測定値に収束させる切り替え処理をすることによって、上記重なった視野範囲内においてカメラの切り替え処理を行う。また、切り替え処理についても、上記式1を用いて逐次算出した切り替え中測定値を用いればよい。   In the cone portion forming process, the diameter is controlled using the first camera 9a and the second camera 9b as shown in FIG. This diameter control method is the same as described above with reference to FIGS. That is, the overlapping field of view is obtained by performing a switching process for converging the measured value of the diameter of the cone 13 obtained from the first camera 9a to the measured value of the diameter of the cone 13 obtained from the second camera 9b. Camera switching processing is performed within the range. In addition, for the switching process, the measured value during switching that is sequentially calculated using Equation 1 may be used.

このような本発明の単結晶製造方法であれば、2台のカメラにより高精度な直径値の測定により高精度な直径制御ができるとともに、カメラの切り替え時に上記のような切り替え処理をすることによって、カメラの切り替えによる単結晶の直径の測定値が急激に変動することが無いため、意図しない直径制御処理の実施を防止し、引き上げ不良の発生を防止することができる。   With such a single crystal manufacturing method of the present invention, it is possible to control the diameter with high accuracy by measuring the diameter value with high accuracy by two cameras, and to perform the switching process as described above when switching the cameras. Since the measured value of the diameter of the single crystal due to the camera switching does not fluctuate abruptly, unintended diameter control processing can be prevented and the occurrence of pulling failure can be prevented.

また、本発明の単結晶製造方法は、コーン部を最大直径が200mm以上となるよう拡径する場合に特に好適に用いられる。最大直径が200mm以上、特には300mm以上の大直径の単結晶を引き上げる場合、2台のカメラによる高精度な直径値の測定が必要となることが多いが、これに本発明の単結晶製造方法を用いることで、引き上げ不良の発生を防止することができる。   The method for producing a single crystal of the present invention is particularly preferably used when the diameter of the cone portion is expanded so that the maximum diameter is 200 mm or more. When pulling up a single crystal having a maximum diameter of 200 mm or more, particularly 300 mm or more, it is often necessary to measure the diameter value with two cameras with high accuracy. By using, it is possible to prevent the occurrence of pulling failure.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to the examples.

(実施例)
図1に示すような本発明の単結晶製造装置で、本発明の単結晶製造方法に従って、コーン部の最大直径が200mmのシリコン単結晶を引き上げた。このとき、原料溶融後のシリコン融液上の第一のカメラの視野範囲は結晶中心から150mm以内の範囲を、第二のカメラの視野範囲は直径中心から100mmの位置から、直径中心から200mmの位置までの範囲を撮像及び直径測定できるようにし、2台のカメラの視野範囲が一部重なるように調整した。また、第二のカメラに対し、結晶直径−5mm程度の測定誤差が発生するよう、つまり、第一のカメラと第二のカメラの測定値間に5mm程度の測定偏差が発生するよう、意図的な調整を加えた。この状態でコーン部形成中に、図3のようなフローで切り替え処理を適用し、その際のコーン部の直径の測定値の推移を観察した。
(Example)
In the single crystal manufacturing apparatus of the present invention as shown in FIG. 1, a silicon single crystal having a maximum cone diameter of 200 mm was pulled according to the single crystal manufacturing method of the present invention. At this time, the visual field range of the first camera on the silicon melt after melting the raw material is a range within 150 mm from the crystal center, and the visual field range of the second camera is 100 mm from the diameter center and 200 mm from the diameter center. The range up to the position was imaged and the diameter could be measured, and the viewing range of the two cameras was adjusted to partially overlap. In addition, a measurement error of about −5 mm in crystal diameter is generated for the second camera, that is, a measurement deviation of about 5 mm is generated between the measurement values of the first camera and the second camera. Minor adjustments were made. In this state, during the formation of the cone part, the switching process was applied according to the flow as shown in FIG. 3, and the transition of the measured value of the diameter of the cone part at that time was observed.

第一のカメラから得られたコーン部の直径の測定値及び第二のカメラから得られたコーン部の直径の測定値を図4の(a)に、コーン部の直径制御に用いられた直径の測定値を図4の(b)に示す。本発明のカメラの切り替え処理は、図4の(a)、(b)におけるコーン部形成経過時間の190分から250分の60分間(切り替え設定時間)で行う設定とし、第一のカメラと第二のカメラのコーン部の直径の測定値の取得及び、取得した測定値を使った切り替え中測定値の算出の実施周期を1分とした。   The measured diameter of the cone obtained from the first camera and the measured diameter of the cone obtained from the second camera are shown in FIG. The measured values are shown in FIG. The camera switching process of the present invention is set to be performed from 190 minutes to 60 minutes of 250 minutes (switching setting time) of the cone formation elapsed time in FIGS. 4A and 4B. The execution period of acquisition of the measured value of the diameter of the cone portion of the camera and calculation of the measured value during switching using the acquired measured value was set to 1 minute.

その結果、図4の(a)に示すような測定偏差が2台のカメラ間に発生していても、図4の(b)のように、直径制御に用いられるコーン直径測定値の急激な変動が無く、滑らかにカメラ切り替えが行われていた。また、実施例で製造されたシリコン単結晶のコーン部には、カメラ切り替えに起因する単結晶の有転位化などの引き上げ不良は発生していなかった。   As a result, even if a measurement deviation as shown in FIG. 4 (a) occurs between the two cameras, the cone diameter measurement value used for diameter control is abrupt as shown in FIG. 4 (b). There was no fluctuation and the camera was switched smoothly. Further, in the cone part of the silicon single crystal manufactured in the example, no pulling failure such as dislocation of the single crystal due to camera switching occurred.

(比較例)
従来のように、本発明のような切り替え処理を用いずにカメラ切り替えを行ったこと以外、実施例と同様な条件でシリコン単結晶を引き上げた。このとき、第一のカメラの視野範囲は結晶中心から100mm以内の範囲を、第二のカメラの視野範囲は直径中心から100mmの位置から、直径中心から200mmの位置までの範囲を撮像及び直径測定できるようにし、2台のカメラの視野範囲が重ならないように調整した。また、第二のカメラに対し、結晶直径−5mm程度の測定誤差が発生するよう、つまり、第一のカメラと第二のカメラの測定値間に5mm程度の測定偏差が発生するよう、意図的な調整を加えた。この状態でコーン部形成経過時間が190分の時に従来の瞬時的な第一のカメラから第二のカメラへの切り替えを行い、その際のコーン部の直径の測定値の推移を観察した。
(Comparative example)
The silicon single crystal was pulled up under the same conditions as in the example except that the camera was switched without using the switching process as in the present invention as in the prior art. At this time, the field of view of the first camera is within 100 mm from the crystal center, and the field of view of the second camera is from 100 mm from the diameter center to the range from the diameter center to 200 mm. It was adjusted so that the field of view of the two cameras would not overlap. In addition, a measurement error of about −5 mm in crystal diameter is generated for the second camera, that is, a measurement deviation of about 5 mm is generated between the measurement values of the first camera and the second camera. Minor adjustments were made. In this state, when the cone portion formation elapsed time was 190 minutes, the conventional instantaneous switching from the first camera to the second camera was performed, and the transition of the measured value of the diameter of the cone portion at that time was observed.

第一のカメラから得られたコーン部の直径の測定値及び第二のカメラから得られたコーン部の直径の測定値を図5の(a)に、コーン部の直径制御に用いられた直径の測定値を図5の(b)に示す。図5の(b)の通り、カメラ切り替え時(190分)にコーン部直径測定値に、局所的な大きな変動が発生してしまった。この時、局所的な変動により直径制御処理にて意図しない加熱制御が行われた結果、コーン部形成中にシリコン単結晶が有転位化してしまった。   The measured value of the cone part diameter obtained from the first camera and the measured value of the cone part diameter obtained from the second camera are shown in FIG. The measured values are shown in FIG. As shown in FIG. 5B, a large local variation occurred in the cone diameter measurement value when the camera was switched (190 minutes). At this time, as a result of unintended heating control in the diameter control process due to local fluctuations, the silicon single crystal was dislocated during the formation of the cone portion.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

1…チャンバー、 2…ルツボ、 3…ヒーター、 4…ヒーター断熱材、
5…ルツボ保持軸、 6…シリコン融液、 7…シードチャック、 8…ワイヤー、
9a…第一のカメラ、 9b…第二のカメラ、 10…直径制御部、 11…種結晶、
13…コーン部、 20…単結晶製造装置。
1 ... chamber, 2 ... crucible, 3 ... heater, 4 ... heater insulation,
5 ... crucible holding shaft, 6 ... silicon melt, 7 ... seed chuck, 8 ... wire,
9a ... 1st camera, 9b ... 2nd camera, 10 ... Diameter control part, 11 ... Seed crystal,
13 ... cone part, 20 ... single crystal manufacturing apparatus.

Claims (7)

ルツボ内に収容したシリコン融液から単結晶を引き上げるチョクラルスキー法による単結晶製造方法における、前記シリコン融液に着液させた種結晶を引き上げながら、前記単結晶を拡径してコーン部を形成するコーン部形成工程で、拡径中の前記コーン部の直径値をカメラで測定しつつ、該直径値の測定値に基づいて前記コーン部の直径を制御して育成する単結晶製造方法であって、
予め、拡径開始時から前記コーン部の直径値が所定の値に達するまでの前記コーン部の直径値を測定可能な第一のカメラと、前記コーン部の直径値が前記所定の値に達した後の前記コーン部の直径値を測定可能な第二のカメラとを、前記シリコン融液面上の視野範囲の一部が互いに重なるように設置しておき、
前記コーン部形成工程において、
拡径中の前記コーン部の外周端が前記重なった視野範囲内に位置している間に、前記第一のカメラから得られる前記コーン部の直径の測定値を、前記第二のカメラから得られる前記コーン部の直径の測定値に収束させる切り替え処理をすることによって、前記コーン部の直径の制御に用いる測定値を、前記第一のカメラから得られる前記測定値から、前記第二のカメラから得られる前記測定値に切り替えることを特徴とする単結晶製造方法。
In the method for producing a single crystal by the Czochralski method for pulling up the single crystal from the silicon melt contained in the crucible, the diameter of the single crystal is expanded while pulling up the seed crystal soaked in the silicon melt to form a cone portion. In the cone part forming step to form, while measuring the diameter value of the cone part during diameter expansion with a camera, the diameter of the cone part is controlled and grown based on the measured value of the diameter value. There,
A first camera that can measure the diameter value of the cone portion from the start of diameter expansion until the diameter value of the cone portion reaches a predetermined value, and the diameter value of the cone portion reaches the predetermined value in advance. And a second camera capable of measuring the diameter value of the cone portion after being set so that parts of the visual field range on the silicon melt surface overlap each other,
In the cone part forming step,
While the outer peripheral end of the cone portion during diameter expansion is located within the overlapping field of view, a measurement value of the diameter of the cone portion obtained from the first camera is obtained from the second camera. The measurement value used for controlling the diameter of the cone portion is converted from the measurement value obtained from the first camera by performing a switching process for converging to the measurement value of the cone portion diameter. A method for producing a single crystal, which is switched to the measured value obtained from
前記コーン部形成工程において、
前記第一のカメラから得られる前記測定値を、拡径開始時から、拡径中の前記コーン部の外周端が前記重なった視野範囲内の所定位置に達するまでの前記コーン部の直径値として前記コーン部の直径を制御し、
前記所定位置に前記コーン部の外周端が達した後は、前記切り替え処理によって、前記第一のカメラから得られる前記測定値を、前記第二のカメラから得られる前記測定値に徐々に近づけるように逐次算出された切り替え中測定値を、前記コーン部の直径値として前記コーン部の直径を制御し、
前記切り替え中測定値が前記第二のカメラから得られる前記測定値と同値となった後は、前記第二のカメラから得られる前記測定値を前記コーン部の直径値として前記コーン部の直径を制御することを特徴とする請求項1に記載の単結晶製造方法。
In the cone part forming step,
The measured value obtained from the first camera is the diameter value of the cone part from the start of diameter expansion until the outer peripheral end of the cone part during diameter expansion reaches a predetermined position within the overlapping visual field range. Control the diameter of the cone,
After the outer peripheral end of the cone portion reaches the predetermined position, the measurement value obtained from the first camera is gradually brought closer to the measurement value obtained from the second camera by the switching process. The diameter of the cone part is controlled as the diameter value of the cone part, with the measured value during switching sequentially calculated in
After the measurement value during switching becomes the same value as the measurement value obtained from the second camera, the diameter of the cone portion is set to the measurement value obtained from the second camera as the diameter value of the cone portion. The method for producing a single crystal according to claim 1, wherein the method is controlled.
前記切り替え中測定値は、該切り替え中測定値をd、前記第一のカメラから得られる前記測定値をdt1、前記第二のカメラから得られる前記測定値をdt2、前記所定位置に前記コーン部の外周端が達した時からの経過時間をt、前記所定位置に前記コーン部の外周端が達した時から前記切り替え中測定値が前記第二のカメラから得られる前記測定値と同値となるまでの時間をtとした場合の下記式1により逐次算出することを特徴とする請求項2に記載の単結晶製造方法。
=dt1+{(dt2−dt1)×(t/t)} ・・・ 式1
(但し、tは0≦t≦tを満たす。)
The switching-in-progress value measurement, the switch in the measurement d m, the measurements obtained from the first camera d t1, the measurement values obtained from the second camera d t2, the predetermined position The elapsed time from the time when the outer peripheral end of the cone portion has reached is t, and the measured value during the switching from the time when the outer peripheral end of the cone portion reaches the predetermined position is obtained from the second camera. 3. The method for producing a single crystal according to claim 2, wherein the time until the same value is obtained is calculated sequentially according to the following formula 1, where t c is used.
d m = d t1 + {(d t2 −d t1 ) × (t / t c )} Equation 1
(However, t satisfies 0 ≦ t ≦ t c .)
前記コーン部を最大直径が200mm以上となるよう拡径することを特徴とする請求項1から請求項3のいずれか1項に記載の単結晶製造方法。   The method for producing a single crystal according to any one of claims 1 to 3, wherein the cone portion is expanded so that a maximum diameter is 200 mm or more. シリコン融液を収容するルツボと、前記シリコン融液に着液させた種結晶を引き上げながら拡径される単結晶のコーン部の直径値を測定するカメラを具備し、該カメラで前記コーン部の直径値を測定しつつ、該直径値の測定値に基づいて前記コーン部の直径を制御可能な機能を有するチョクラルスキー法による単結晶製造装置であって、
拡径開始時から前記コーン部の直径値が所定の値に達するまでの前記コーン部の直径値を測定可能な第一のカメラと、前記コーン部の直径値が前記所定の値に達した後の前記コーン部の直径値を測定可能な第二のカメラとが、前記シリコン融液面上の視野範囲の一部が互いに重なるように設置され、
拡径中の前記コーン部の外周端が前記重なった視野範囲内に位置している間に、前記第一のカメラから得られる前記コーン部の直径の測定値を、前記第二のカメラから得られる前記コーン部の直径の測定値に収束させる切り替え処理機能を有し、該切り替え処理機能によって、前記コーン部の直径の制御に用いる測定値を、前記第一のカメラから得られる前記測定値から、前記第二のカメラから得られる前記測定値に切り替えるものであることを特徴とする単結晶製造装置。
A crucible for containing a silicon melt; and a camera for measuring a diameter value of a cone portion of a single crystal that is expanded while pulling up a seed crystal that has been deposited in the silicon melt. While measuring the diameter value, it is a single crystal production apparatus by the Czochralski method having a function capable of controlling the diameter of the cone portion based on the measured value of the diameter value,
A first camera capable of measuring the diameter value of the cone portion from the start of diameter expansion until the diameter value of the cone portion reaches a predetermined value; and after the diameter value of the cone portion reaches the predetermined value And a second camera capable of measuring the diameter value of the cone part, is installed so that a part of the visual field range on the silicon melt surface overlap each other,
While the outer peripheral end of the cone portion during diameter expansion is located within the overlapping field of view, a measurement value of the diameter of the cone portion obtained from the first camera is obtained from the second camera. And a switching processing function for converging to the measured value of the diameter of the cone portion, and by the switching processing function, the measured value used for controlling the diameter of the cone portion is obtained from the measured value obtained from the first camera. The single crystal manufacturing apparatus is characterized in that it switches to the measurement value obtained from the second camera.
前記第一のカメラから得られる前記コーン部の直径の測定値及び前記第二のカメラから得られる前記コーン部の直径の測定値のいずれか一方又は両方から、前記コーン部の直径を制御する直径制御部を具備し、
該直径制御部が、前記切り替え処理機能を有し、
前記第一のカメラから得られる前記コーン部の直径の測定値を、拡径開始時から、拡径中の前記コーン部の外周端が前記重なった視野範囲内の所定位置に達するまでの前記コーン部の直径値として前記コーン部の直径を制御し、
前記所定位置に前記コーン部の外周端が達した後は、前記切り替え処理機能によって、前記第一のカメラから得られる前記測定値を、前記第二のカメラから得られる前記コーン部の直径の測定値に徐々に近づけるように逐次算出された切り替え中測定値を、前記コーン部の直径値として前記コーン部の直径を制御し、
前記切り替え中測定値が前記第二のカメラから得られる前記測定値と同値となった後は、前記第二のカメラから得られる前記測定値を前記コーン部の直径値として前記コーン部の直径を制御するものであることを特徴とする請求項5に記載の単結晶製造装置。
The diameter for controlling the diameter of the cone portion from one or both of the measured value of the diameter of the cone portion obtained from the first camera and the measured value of the diameter of the cone portion obtained from the second camera. A control unit,
The diameter control unit has the switching processing function,
The measured cone diameter obtained from the first camera is measured from the start of expansion until the outer peripheral end of the expanded cone reaches a predetermined position within the overlapping field of view. Control the diameter of the cone as the diameter of the part,
After the outer peripheral end of the cone portion reaches the predetermined position, the measurement value obtained from the first camera is measured by the switching processing function, and the diameter of the cone portion obtained from the second camera is measured. Controlling the diameter of the cone part as the diameter value of the cone part, the measured value during switching calculated so as to gradually approach the value,
After the measurement value during switching becomes the same value as the measurement value obtained from the second camera, the diameter of the cone portion is set to the measurement value obtained from the second camera as the diameter value of the cone portion. The single crystal manufacturing apparatus according to claim 5, wherein the single crystal manufacturing apparatus is controlled.
前記直径制御部が、前記切り替え中測定値を、前記切り替え中測定値をd、前記第一のカメラから得られる前記測定値をdt1、前記第二のカメラから得られる前記測定値をdt2、前記所定位置に前記コーン部の外周端が達した時からの経過時間をt、前記所定位置に前記コーン部の外周端が達した時から前記切り替え中測定値が前記第二のカメラから得られる前記測定値と同値となるまでの時間をtとした場合の下記式1により逐次算出するものであることを特徴とする請求項6に記載の単結晶製造装置。
=dt1+{(dt2−dt1)×(t/t)} ・・・ 式1
(但し、tは0≦t≦tを満たす。)
Said diameter control unit, the switching during measurement, the switch during the measurement value d m, the first the measurement values obtained from the camera d t1, the measurement values obtained from the second camera d t2 is an elapsed time from when the outer peripheral end of the cone portion reaches the predetermined position t, and the measured value during switching from the second camera when the outer peripheral end of the cone portion reaches the predetermined position. The single crystal manufacturing apparatus according to claim 6, wherein the single crystal manufacturing apparatus is sequentially calculated according to the following formula 1, where t c is a time until the measured value is equal to the measured value.
d m = d t1 + {(d t2 −d t1 ) × (t / t c )} Equation 1
(However, t satisfies 0 ≦ t ≦ t c .)
JP2017008819A 2017-01-20 2017-01-20 Single crystal manufacturing method and single crystal manufacturing apparatus Active JP6665798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017008819A JP6665798B2 (en) 2017-01-20 2017-01-20 Single crystal manufacturing method and single crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008819A JP6665798B2 (en) 2017-01-20 2017-01-20 Single crystal manufacturing method and single crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2018115102A true JP2018115102A (en) 2018-07-26
JP6665798B2 JP6665798B2 (en) 2020-03-13

Family

ID=62983852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008819A Active JP6665798B2 (en) 2017-01-20 2017-01-20 Single crystal manufacturing method and single crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6665798B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113355741A (en) * 2020-03-06 2021-09-07 内蒙古中环光伏材料有限公司 Czochralski single crystal seeding process and single crystal furnace for seeding process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113355741A (en) * 2020-03-06 2021-09-07 内蒙古中环光伏材料有限公司 Czochralski single crystal seeding process and single crystal furnace for seeding process

Also Published As

Publication number Publication date
JP6665798B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
JP5639719B2 (en) Single crystal ingot diameter control system and single crystal ingot growth apparatus including the same
JP5664573B2 (en) Method for calculating height position of silicon melt surface, method for pulling silicon single crystal, and silicon single crystal pulling apparatus
CN108138355B (en) Single crystal manufacturing apparatus and method for controlling melt surface position
JP5109928B2 (en) Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus
KR101623644B1 (en) Temperature control module of the ingot growth apparatus and a control method for it
JP5562776B2 (en) Single crystal pulling apparatus and single crystal pulling method
JP6036709B2 (en) Method for adjusting camera position of camera for detecting diameter of silicon single crystal and camera position adjusting jig
JP2018115102A (en) Method and apparatus for manufacturing single crystal
JP2015229612A (en) Manufacturing method of single crystal
KR101443492B1 (en) Ingot growing controller and ingot growing apparatus with it
JP6642234B2 (en) Method and apparatus for producing single crystal
US7470326B2 (en) Apparatus for manufacturing silicon single crystal, method for manufacturing silicon single crystal, and silicon single crystal
JP4930488B2 (en) Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus
JPH11189486A (en) Production of semiconductor single crystal by fz method
JP2017190261A (en) Method and apparatus for producing monocrystal
JP5505359B2 (en) Heater output control method and single crystal manufacturing apparatus
JP2014240338A (en) Method of producing semiconductor single crystal rod
JP3655355B2 (en) Method for detecting optimum melt temperature in semiconductor single crystal manufacturing process
JP5929825B2 (en) Method for producing silicon single crystal
JP2022132995A (en) Method for detecting state of surface of raw material melt, method for producing monocrystal, and cz monocrystal production device
JPS6287482A (en) Single crystal manufacturing equipment
JP2016050157A (en) Manufacturing method of single crystal
JPH05310496A (en) Drawing of silicone single crystal
JP2001220284A (en) Oxide single crystal production unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250