JPS60218836A - Deposited film forming method - Google Patents

Deposited film forming method

Info

Publication number
JPS60218836A
JPS60218836A JP7493284A JP7493284A JPS60218836A JP S60218836 A JPS60218836 A JP S60218836A JP 7493284 A JP7493284 A JP 7493284A JP 7493284 A JP7493284 A JP 7493284A JP S60218836 A JPS60218836 A JP S60218836A
Authority
JP
Japan
Prior art keywords
film
deposited film
silicon
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7493284A
Other languages
Japanese (ja)
Inventor
Yutaka Hirai
裕 平井
Hiroshi Matsuda
宏 松田
Takeshi Eguchi
健 江口
Masahiro Haruta
春田 昌宏
Yukio Nishimura
征生 西村
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7493284A priority Critical patent/JPS60218836A/en
Priority to US06/722,467 priority patent/US4683146A/en
Publication of JPS60218836A publication Critical patent/JPS60218836A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To increase a film-forming rate while keeping high quality, by producing gas atmosphere of straight chain silicon hydride compound in a chamber including substrates and by forming each deposition film containing silicon over the respective substrates. CONSTITUTION:Gas atmosphere of straight chain silicon hydride compound expressed by a general expression: SinH2n+2 (n represents an integer of 4 or more) is produced in the chamber including substrates, and the compound is excited and decomposed by utilizing optical energy, forming each deposition film containing silicon over the respective substrates. The resulted deposition film may be crystalline or amorphous and the combination of silicon in the film may be from oligomer to polymer state. Moreover hydrogen atoms and halogen atoms, etc. in the raw material may be taken in the structure.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はシリコンを含有する堆積膜、とシわけ光導電膜
、半導体膜あるいは絶縁体膜などとして有用なアモルフ
ァスシリコン(以下、a−8iという)あるいは多結晶
シリコンの堆積膜を形成するのに好適な方法に関する。
Detailed Description of the Invention [Technical Field] The present invention relates to amorphous silicon (hereinafter referred to as a-8i) or polycrystalline silicon, which is useful as a deposited film containing silicon, a photoconductive film, a semiconductor film, an insulating film, etc. The present invention relates to a method suitable for forming a deposited film of crystalline silicon.

〔従来技術〕[Prior art]

従来、同えばa−81の堆積膜を、SiH4又はSi2
H6を原料として用いたグロー放電堆積法又は熱エネル
ギー堆積法で形成することが知られている。即ち、5I
H4や812H6を電気エネルギーや熱エネルギーを用
いて励起・分解して基体上にa−81の堆積膜を形成し
、この膜を種々の目的で利用することが周知である。
Conventionally, the deposited film of A-81 was replaced with SiH4 or Si2.
It is known to form by a glow discharge deposition method or a thermal energy deposition method using H6 as a raw material. That is, 5I
It is well known to form a deposited film of A-81 on a substrate by exciting and decomposing H4 or 812H6 using electrical energy or thermal energy, and to utilize this film for various purposes.

しかし、これら81H4及びS1□H6を原料として用
いた場合、グロー放電堆積法においては、高出力下で堆
積中の膜への放電エネルギーの影響が大きく、再現性の
ある安定した条件とする制御が離しい0特に、広面積、
厚膜の堆積膜を形成する場合に、これが顕著である。
However, when these 81H4 and S1□H6 are used as raw materials, in the glow discharge deposition method, the discharge energy has a large influence on the film being deposited under high output, and it is difficult to control the conditions to maintain reproducible and stable conditions. Especially for large areas,
This is noticeable when forming a thick deposited film.

また、熱エネルギー堆積法においても、高温が必要とな
ることから、使用される基体が限定され゛ると共に、高
温によ1)a−8i中の有用な結合水素原子が離脱して
しまう確率が増え、所望の特性が得にくくなる。
In addition, the thermal energy deposition method also requires high temperatures, which limits the substrates that can be used, and also increases the probability that useful bonded hydrogen atoms in a-8i will detach due to high temperatures. This makes it difficult to obtain desired characteristics.

この様に、5IHa及び812H6を用いて堆積膜を゛
形成する場合、均一な電気的・光学的特性及び品質の安
定性の確保が難しく、堆積中の膜表面の乱れ及びバルク
内の欠陥が生じ易いなどの解決されるべき問題点が残さ
れているのが現状である。
As described above, when forming a deposited film using 5IHa and 812H6, it is difficult to ensure uniform electrical and optical properties and quality stability, resulting in disturbances on the film surface and defects in the bulk during deposition. At present, there are still problems that need to be resolved, such as the ease of use.

そこで、近年、これらの問題点を解消すべく、5in4
及びSi2H6を原料とするa−81の光エネルギー堆
積法が提案され、注目を集めている。この光°エネルギ
ー堆積法(光CVD法)によると、a−81堆積膜を低
温で作製できる利点などによシ、上記問題点を大幅に改
善することができる。しかしながら、光エネルギーとい
った比較的僅少な励起エネルギー下でのSiH4及びS
 i 2Hbを原料とした光エネルギー堆積法では、飛
躍的に効率の良い分解を期待することができないため、
成膜速度の向上が期待できず、量産性に難点があるとい
−う新たな問題点が生じている。
Therefore, in recent years, in order to solve these problems, 5in4
A light energy deposition method of a-81 using Si2H6 as a raw material has been proposed and is attracting attention. According to this optical energy deposition method (photo-CVD method), the above-mentioned problems can be significantly improved due to the advantage that the A-81 deposited film can be produced at a low temperature. However, SiH4 and S under relatively small excitation energy such as light energy
With the optical energy deposition method using i2Hb as a raw material, dramatically efficient decomposition cannot be expected;
A new problem has arisen in that no improvement in film formation speed can be expected and there are difficulties in mass production.

本発明は、現状におけるこれら問題点を解消すべくなさ
れたものである。
The present invention has been made to solve these current problems.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高品質を維持しっつ成膜速度を高くす
ることのできるシリコンを含有する堆積膜の形成方法を
提供することにある・ 本発明の他の目的は、広面積、厚膜の場合においても、
均一な電気的・光学的特性及び品質の安定性を確保しつ
つ高品質のシリコンを含有する堆積膜を作製することの
できる堆積膜形成方法を提供することにある。
An object of the present invention is to provide a method for forming a silicon-containing deposited film that can maintain high quality and increase the film formation rate. Even in the case of membranes,
An object of the present invention is to provide a method for forming a deposited film that can produce a deposited film containing high quality silicon while ensuring uniform electrical and optical characteristics and stability of quality.

上記目的は、基体を収容した室内に、一般式:5lnH
2n+2(式中、nは4以上の整数を表わす。)で表わ
される直鎖状水素化ケイ素化合物の気体状雰囲気を形成
し、光エネルギーを利用することによって前記化合物を
励起して分解することによシ、前記基体上にシリコンを
含有する堆積膜を形成することを特徴とする堆積膜形成
方法によって達成される。
For the above purpose, the general formula: 5lnH is
Forming a gaseous atmosphere of a linear silicon hydride compound represented by 2n+2 (in the formula, n represents an integer of 4 or more), and exciting and decomposing the compound by using light energy. This is achieved by a deposited film forming method characterized by forming a deposited film containing silicon on the substrate.

〔実施態様〕[Embodiment]

本発明方法によって形成されるシリコンを含有する堆積
膜は、結晶質でも非晶質でもよく、膜中のシリコンの結
合は、オリコ9マー状からポリマー状までの倒れの形態
でもよい。また、原料中の水素原子及びハロゲン原子な
どを構造中にとシ込んでいてもよい。
The silicon-containing deposited film formed by the method of the present invention may be crystalline or amorphous, and the silicon bonds in the film may be in the form of a tilted form ranging from an orico-9mer form to a polymer form. Further, hydrogen atoms, halogen atoms, etc. in the raw materials may be incorporated into the structure.

以下、主としてa−8i堆積膜の場合について、本発明
の実施態様を説明する。
Hereinafter, embodiments of the present invention will be described mainly in the case of an a-8i deposited film.

本発明で使用する前記一般式の環状水素化ケイ素化食物
のケイ素数nの上限に特に制限はないが、/を以下、更
にはIQ以下であることが好ましい。
Although there is no particular restriction on the upper limit of the silicon number n of the cyclic hydrosilicated food of the general formula used in the present invention, it is preferable that / is less than or equal to IQ, and more preferably less than or equal to IQ.

本発明において、気体状態とされた前記一般式の直鎖状
水素化ケイ素化合物を励起・分解するにあたシ、前記室
内に気体状態とされたハロゲン化合物(例えば、F2ガ
ス、C60,fス、ガス化したBr2、I2等)を導入
することによシ、ハロゲン原子と81及びHとの間でラ
ジカル生成反応が起ζシ、ケイ素化合物の励起・分解、
従って堆積膜の形成が促進されるので好ましい。また、
形成される堆積膜中にハロゲンがとシ込まれて、構造の
欠陥を減らし、またSlのダングリングがンドと結合し
てターミネータ−として働き、良質なシリコン膜となる
ことが期待される。導入されるハロゲンは予めラジカル
化してもよい。
In the present invention, in order to excite and decompose the linear silicon hydride compound of the general formula that is in a gaseous state, a halogen compound (for example, F2 gas, C60, , gasified Br2, I2, etc.), radical generation reactions occur between halogen atoms and 81 and H, excitation and decomposition of silicon compounds,
Therefore, the formation of a deposited film is promoted, which is preferable. Also,
It is expected that halogen will be injected into the deposited film to reduce structural defects, and that dangling Sl will combine with bonds to act as a terminator, resulting in a high-quality silicon film. The halogen to be introduced may be radicalized in advance.

本発明においてシリコンを含有する堆積−を形成する前
記基は、減圧下におかれるのが好ましいが、常圧下ない
し加圧下においても本発明方法を実施することができる
・ 本発明において前記一般式の直鎖状水素化ケイ素化合物
を励起・分解するのに用いる励起エネルギーは、光エネ
ルギーに限定されるものであるが、前記一般式の環状水
素化ケイ素化合物は、光エネルギー等比較的低いエネル
ギーの付与により容易に励起・分解し、良質なシリコン
堆積膜を形成することができ、またこれに際し、基体の
温度も比較的低い温度とすることができるという特長を
有する・また、励起エネルギーは基体近傍に到達した原
料に一様にあるいは選択的制御的に付与されるが、光エ
ネルギーを使用すれば、適宜の光学系を用いて基体の全
体に照射して堆積膜を形成することができるし、あるい
は所望部分のみに選択的制御的に照射して部分的に堆積
膜を形成することもでき、またレジスト等を使用して所
定の図形部分のみに照射し堆積膜を形成できるなどの便
利さを有しているため、有利に用いられる。
In the present invention, the group forming the silicon-containing deposit is preferably placed under reduced pressure, but the method of the present invention can also be carried out under normal pressure or under pressure. The excitation energy used to excite and decompose a linear silicon hydride compound is limited to light energy, but the cyclic silicon hydride compound of the above general formula can be used to impart relatively low energy such as light energy. It can be easily excited and decomposed to form a high-quality silicon deposited film, and the temperature of the substrate can be kept relatively low. It is applied uniformly or selectively to the raw material that has arrived, but if optical energy is used, it is possible to irradiate the entire substrate using an appropriate optical system to form a deposited film, or It also has the convenience of being able to selectively and controlly irradiate only a desired area to form a deposited film, or to form a deposited film by irradiating only a predetermined graphical area using a resist or the like. Because of this, it can be used advantageously.

また、前記一般式の直鎖状水素化ケイ素化合物は、2種
以上を併用してもよいが、この場合、各化合物によって
期待される膜特性を平均化した程度の特性、ないしは相
乗的に改良された特性が得られる。
In addition, two or more of the linear silicon hydride compounds having the above general formula may be used in combination, but in this case, the film properties expected to be improved by each compound are averaged or synergistically improved. properties obtained.

以下、図面を参照して説明する。This will be explained below with reference to the drawings.

図面は、本発明方法によって光導電膜、半導体膜又は絶
縁体膜等として用いられるa−8i堆積膜を形成するの
に使用する装置の1例を示した模式図である。
The drawing is a schematic diagram showing an example of an apparatus used to form an a-8i deposited film used as a photoconductive film, a semiconductor film, an insulating film, etc. by the method of the present invention.

図中、1は堆積室であシ、内部の基体支持台2上に所望
の基体3が載置される。基体3は、導電性、半導電性あ
るいは電気絶縁性の何れの基体でもよく、列えば、電気
絶縁性の基体としては、ポリエステル、ポリエチレン、
ポリカーブネート、セルローズアセテート、ポリプロピ
レン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチ
レン、ポリアミド等の合成樹脂のフィルム又はシート、
ガラス、セラミック、紙等が通常使用される。また、基
体3には予め電極層、他のシリコン層等カ積層されてい
てもよい。
In the figure, 1 is a deposition chamber, and a desired substrate 3 is placed on a substrate support 2 inside. The base 3 may be conductive, semiconductive, or electrically insulating. Examples of electrically insulating bases include polyester, polyethylene,
Films or sheets of synthetic resins such as polycarnate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, etc.
Glass, ceramic, paper, etc. are commonly used. Moreover, an electrode layer, another silicon layer, etc. may be laminated on the base 3 in advance.

4は基体加熱用のヒーターであシ、導線5を介して給電
され、発熱する。基体温度は特に制限されないが、本発
明方法を実施するにあたっては、好ましくは50〜15
0℃、よシ好ましくは100〜150℃であることが望
ましい。
Numeral 4 is a heater for heating the substrate, which is supplied with electricity through a conductor 5 and generates heat. The substrate temperature is not particularly limited, but in carrying out the method of the present invention, it is preferably 50 to 15
The temperature is preferably 0°C, more preferably 100 to 150°C.

6乃至9は、ガス供給源であυ、前記一般式で示される
直鎖状水素化ケイ素化合物のうち液状のものを使用する
場合には、適宜の気化装置を具備させる。気化装置には
加熱沸騰を利用するタイプ、液体原料中にキャリアーガ
スを通過させるタイプ等があシ、何れでもよい。ガス供
給源の個数は4に限定されず、使用する前記一般式の直
鎖状水素化ケイ素化合物の数。ハロゲンガス、キャリア
ーガス、希釈ガス、触媒ガス等を使用する場合において
、原料ガスである前記一般式の化合物との予備混合の有
無等に応じて適宜選択される。図中、ガス供給源6乃至
9の符号に、aを付したのは分岐管、bを付したのは流
量計、Cを付したのは各流量計の高圧側の圧力管計測す
る圧力計、d又はeを付したのは各気体流の開閉及び流
量の調整するためのパルプである・ 各ガス供給源から供給される原料ガス等は)ガス導入管
10の途中で混合され、図示しない排気装置に付勢され
て、室1内に導入される。11は宣1内に導入されるガ
スの圧力を計測するための圧力計である。また、12は
ガス排気管であシ、堆積室1内を減圧したシ、導入ガス
を強制排気するための図示しない排気装置と接続されて
いる。
Reference numerals 6 to 9 are gas supply sources, and if a liquid one of the linear silicon hydride compounds represented by the above general formula is used, an appropriate vaporizer is provided. The vaporizer may be of any type, such as a type that utilizes heating and boiling, or a type that allows a carrier gas to pass through the liquid raw material. The number of gas supply sources is not limited to four, and the number of linear silicon hydride compounds of the general formula used. When using halogen gas, carrier gas, diluent gas, catalyst gas, etc., they are appropriately selected depending on whether or not they are premixed with the compound of the general formula as the raw material gas. In the figure, to the gas supply sources 6 to 9, a is added to the branch pipe, a b to the flowmeter, and a C to the pressure pipe on the high pressure side of each flowmeter. , d or e are pulps for opening/closing each gas flow and adjusting the flow rate. Raw material gases etc. supplied from each gas supply source are mixed in the middle of the gas introduction pipe 10 and are not shown. It is energized by the exhaust device and introduced into the chamber 1. Reference numeral 11 denotes a pressure gauge for measuring the pressure of gas introduced into the chamber 1. Further, reference numeral 12 is a gas exhaust pipe, which is connected to an exhaust device (not shown) for forcibly exhausting the pressure inside the deposition chamber 1 and the introduced gas.

13はレギ具レータ・パルプである。原料ガス等を導入
する前に、室1内を排気し、減圧状態とする場合、室内
の気圧は、好ましくは5X10−5Torr以下、よシ
好ましくはI X 10−’Torr以下であることが
望ましい。また、原料ガス等を導入した状態において、
室l内の圧力は、好ましくは1×10 〜100 To
rr、よシ好ましくはlXl0 〜ITorrの範囲に
維持されることが望ましい。
13 is legator pulp. When the inside of the chamber 1 is evacuated and brought into a reduced pressure state before introducing the raw material gas etc., it is desirable that the atmospheric pressure in the chamber is preferably 5 X 10-5 Torr or less, more preferably I X 10-'Torr or less. . In addition, when raw material gas etc. are introduced,
The pressure inside the chamber 1 is preferably between 1×10 and 100 To
rr, preferably maintained in the range of lXl0 to ITorr.

本発明で使用する励起エネルギー供給源の1例として、
14は光エネルギー発生装置でありて、飼えば水銀ラン
プ、キセノンランプ、炭酸ガスレーデ、アルゴンイオン
レーデ、エキシマレーザ−等が用いられる。なお、本発
明で用いる光エネルギーは紫外線エネルギーに限定され
ず、原料ガスを励起・分解せしめ、分解生成物を堆積さ
せることができるものであれば、波長域を問うものでは
ない。また、光エネルギーが原料ガス、又は基板に吸収
されて熱エネルギーに変換し、その熱エネルギーによっ
て原料ガスの励起・分解がもたらされて堆積膜が形成さ
れる場合を排除するものでもない・光エネルギー発生装
置14から適宜の光学系を用いて基体全体あるいは基体
の所望部分に向けられた光15は、矢印16の向きに流
れている原料ガス等に照射され、励起・分解を起こして
基体3上の全体あるいは所望部分にa−8tの堆積膜を
形成する。
As an example of an excitation energy supply source used in the present invention,
Reference numeral 14 denotes a light energy generating device, which may be a mercury lamp, a xenon lamp, a carbon dioxide gas lede, an argon ion lede, an excimer laser, or the like. Note that the light energy used in the present invention is not limited to ultraviolet energy, and any wavelength range may be used as long as it can excite and decompose the source gas and deposit decomposition products. Furthermore, this does not exclude the case where light energy is absorbed by the raw material gas or the substrate and converted into thermal energy, and the thermal energy causes excitation and decomposition of the raw material gas to form a deposited film. The light 15 directed from the energy generating device 14 to the entire substrate or a desired part of the substrate using an appropriate optical system is irradiated to the raw material gas etc. flowing in the direction of the arrow 16, causing excitation and decomposition to cause the substrate 3 A deposited film of A-8T is formed on the entire top or a desired portion.

本発明方法によれば、所望によシ、薄膜から厚膜までの
任意の膜厚の堆積膜が得られ、また膜面積も所望によシ
任意に選択することかで′きる。膜厚の制御は、原料ガ
スの圧力、流量、濃度等の制御1励起エネルギー量の制
御等通常の方法で行なうことができる。例えば、一般の
光導電膜、半導体膜又は絶縁体膜等を構成するa−81
膜を作製する場合、膜厚は好ましくは500〜5X10
’X% よシ好ましくは1000〜1oooo−Xの範
囲で選択されることが望ましい。
According to the method of the present invention, a deposited film having any thickness from thin to thick can be obtained as desired, and the area of the film can also be selected as desired. The film thickness can be controlled by conventional methods such as controlling the pressure, flow rate, concentration, etc. of the source gas, and controlling the amount of excitation energy. For example, a-81 that constitutes a general photoconductive film, semiconductor film, or insulator film, etc.
When producing a film, the film thickness is preferably 500 to 5×10
'X% is preferably selected in the range of 1000 to 1ooo-X.

以下に、本発明の具体的実施例を示す。Specific examples of the present invention are shown below.

実施例1 前記一般式の直鎖状水素化ケイ素化合物として、5i4
H1oを用い、図面の装置によJll a−8t堆積膜
を形成した。
Example 1 As the linear silicon hydride compound of the general formula, 5i4
A Jlla-8t deposited film was formed using H1o and the apparatus shown in the drawing.

先ツ、ポリエチレンテレフタレートフィルム基板を支持
台2上に載置し、排気装置を用いて堆積室1内を排気し
、10−’Torrに減圧した。第1表に示した基板温
度で、気体状態とされている前記ハロゲン化ケイ素化合
物を1508CCM、ハロゲンガスを20 SCCMの
流量で堆積室内に導入し、室内の気圧を0.1 Tor
rに保ちりつ100 kW X・ランプで基板に垂直に
照射して、膜厚5000XのI 屋a−8i膜を形成し
た。成膜速度は1.3ぶX/IIecであった。
First, the polyethylene terephthalate film substrate was placed on the support stand 2, and the inside of the deposition chamber 1 was evacuated using an exhaust device to reduce the pressure to 10-' Torr. At the substrate temperature shown in Table 1, the silicon halide compound in the gaseous state was introduced into the deposition chamber at a flow rate of 1508 CCM, and the halogen gas was introduced at a flow rate of 20 SCCM, and the atmospheric pressure in the chamber was adjusted to 0.1 Torr.
The substrate was irradiated perpendicularly to the substrate with a 100 kW X-lamp while maintaining the temperature at 100 kW to form an I-8I film with a thickness of 5,000×. The film formation rate was 1.3X/IIec.

比較のため、S1□H6を用いて同様にしてa−81膜
を形成した。成膜速度は/りX/aecであった。
For comparison, an a-81 film was formed in the same manner using S1□H6. The film formation rate was /X/aec.

次いで、得られた各a−81膜試料を蒸着槽に入れ、1
0−’ Torrまで引いた後真空度10−5Torr
 、成膜速度20L/seeでAtを1500X蒸着し
、クシ型のUギャップ電極(長さ250μ、中5■)を
形成した後、印加電圧10Vで光電流(AM 1.10
0mW7G++s’)と暗電流を測定し、光導電率σp
、σpと暗導電率σdとの比σp/σdをめて、a−8
1膜を評価した。結果を表に示した。
Next, each obtained a-81 film sample was placed in a vapor deposition tank, and 1
After pulling down to 0-' Torr, the vacuum level is 10-5 Torr.
After evaporating At at 1500X at a deposition rate of 20L/see to form a comb-shaped U gap electrode (length 250μ, medium 5μ), photocurrent (AM 1.10) was applied at an applied voltage of 10V.
0mW7G++s') and dark current, photoconductivity σp
, taking the ratio σp/σd of σp and dark conductivity σd, a-8
One film was evaluated. The results are shown in the table.

実施例2 前記一般式の環状水素化ケイ素化合物として、814H
,。(0代りに8i5H42,816H,4又は8i、
H16を用いた以外は、実施例1と同様にa−81膜を
形成し、σp及びσp/adをめた。結果を我に示した
0表 表から、本発明によるa−8t膜は低い基板温度でも良
好なσp及びσp/cF dが得られる。
Example 2 As the cyclic silicon hydride compound of the general formula, 814H
,. (8i5H42, 816H, 4 or 8i instead of 0,
An a-81 film was formed in the same manner as in Example 1 except that H16 was used, and σp and σp/ad were determined. From the results shown in Table 0, the a-8t film according to the present invention can obtain good σp and σp/cF d even at low substrate temperatures.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低い基体温度でしかも高い成膜速度に
よって高品質のシリコン堆積膜を形成することができる
。その上、形成する膜が広面積、厚膜の場合においても
、均一な電気的・光学的特性が得られ、品質の安定性も
確保できるという従来にない格別の効果が奏される。ま
た、ほかにも、基体の高温加熱が不要であるためエネル
イーの節約になる、耐熱性の乏しい基体上にも成膜でき
る、低温熟理によって工程の短縮化を図れる、原料化合
物が容易に合成でき、安価でしかも安定性に優れ取扱上
の危険も少ない、といった効果が発揮される。
According to the present invention, a high quality silicon deposited film can be formed at a low substrate temperature and at a high film formation rate. Moreover, even when the film to be formed has a wide area and is thick, uniform electrical and optical characteristics can be obtained and quality stability can be ensured, which is an unprecedented and exceptional effect. In addition, there is no need to heat the substrate at high temperatures, which saves energy; it is possible to form a film even on substrates with poor heat resistance; the process can be shortened by low-temperature ripening; and the raw material compounds can be easily synthesized. It is inexpensive, has excellent stability, and has few handling risks.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明で使用する光エネルギー照射型堆積膜連
成装置のJ1飼を示した概略構成図である。 1・・・堆積室、2・・・基体支持台、3・・・基体、
4・・・ヒーター、6〜9・・・ガス供給源、1o・・
・ガス導入管、12・・・ガス排気管、14・・・光エ
ネルギー発生装置。
The drawing is a schematic diagram showing the J1 structure of the optical energy irradiation type deposited film interaction apparatus used in the present invention. DESCRIPTION OF SYMBOLS 1... Deposition chamber, 2... Substrate support stand, 3... Substrate,
4...Heater, 6-9...Gas supply source, 1o...
- Gas introduction pipe, 12... Gas exhaust pipe, 14... Light energy generator.

Claims (1)

【特許請求の範囲】[Claims] 基体を収容した室内に、一般式” ”nH2n+2(式
中、nは4以上の整数を表わす。)で表わされる直鎖状
水素化ケイ素化合物の気体状雰囲気を形成し、光エネル
ギーを利用することによって前記化合物を励起して分解
し、前記基体上にシリコンを含有する堆積膜を形成する
ことを特徴とする堆積膜形成方法。
A gaseous atmosphere of a linear silicon hydride compound represented by the general formula "nH2n+2 (in the formula, n represents an integer of 4 or more) is formed in a chamber containing a substrate, and light energy is utilized. A method for forming a deposited film, comprising: exciting and decomposing the compound to form a deposited film containing silicon on the substrate.
JP7493284A 1984-04-16 1984-04-16 Deposited film forming method Pending JPS60218836A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7493284A JPS60218836A (en) 1984-04-16 1984-04-16 Deposited film forming method
US06/722,467 US4683146A (en) 1984-04-16 1985-04-12 Process for producing deposition films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7493284A JPS60218836A (en) 1984-04-16 1984-04-16 Deposited film forming method

Publications (1)

Publication Number Publication Date
JPS60218836A true JPS60218836A (en) 1985-11-01

Family

ID=13561617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7493284A Pending JPS60218836A (en) 1984-04-16 1984-04-16 Deposited film forming method

Country Status (1)

Country Link
JP (1) JPS60218836A (en)

Similar Documents

Publication Publication Date Title
US4683146A (en) Process for producing deposition films
JPS62151573A (en) Deposited film forming device
JPS60218836A (en) Deposited film forming method
US4921722A (en) Method for forming deposited film
JP2758247B2 (en) Organic metal gas thin film forming equipment
JPH0682616B2 (en) Deposited film formation method
JPH07221026A (en) Method for forming quality semiconductor thin film
JPS60218838A (en) Deposited film forming method
JPH03139824A (en) Depositing method for semiconductor device
JPS60218828A (en) Formation of deposited film
JPS60218840A (en) Deposited film forming method
JPS60218473A (en) Formation of deposited film
JPS60218830A (en) Deposited film forming method
JPS60218827A (en) Formation of deposited film
JPS60218841A (en) Formation of deposited film
JP3040247B2 (en) Manufacturing method of silicon thin film
JPS60218839A (en) Deposited film forming method
JPS60218837A (en) Deposited film forming method
JPS60218833A (en) Deposited film forming method
JPS60218829A (en) Formation of deposited film
JPS60218834A (en) Deposited film forming method
JPS6247945B2 (en)
JPS60218831A (en) Deposited film forming method
JPS60218835A (en) Deposited film forming method
JPS60218832A (en) Deposited film forming method