JPS60218828A - Formation of deposited film - Google Patents

Formation of deposited film

Info

Publication number
JPS60218828A
JPS60218828A JP7492384A JP7492384A JPS60218828A JP S60218828 A JPS60218828 A JP S60218828A JP 7492384 A JP7492384 A JP 7492384A JP 7492384 A JP7492384 A JP 7492384A JP S60218828 A JPS60218828 A JP S60218828A
Authority
JP
Japan
Prior art keywords
film
substrate
silicon
deposited film
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7492384A
Other languages
Japanese (ja)
Other versions
JPH0750682B2 (en
Inventor
Yutaka Hirai
裕 平井
Takeshi Eguchi
健 江口
Masahiro Haruta
春田 昌宏
Hiroshi Matsuda
宏 松田
Yukio Nishimura
征生 西村
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59074923A priority Critical patent/JPH0750682B2/en
Priority to US06/722,468 priority patent/US4683147A/en
Publication of JPS60218828A publication Critical patent/JPS60218828A/en
Publication of JPH0750682B2 publication Critical patent/JPH0750682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/487Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve a film forming speed while keeping high quality by forming chained halogenide silicon compound and gaseous ambient of hydrogen within a chamber accommodating a substrate and forming a deposited film containing silicon on a substrate. CONSTITUTION:A chained halogenide silicon compound indicated by the general expression: SinXmYl (X and Y are respectively different halogen atoms, n is an integer of 1-6, m and l are respectively integers of 1 or larger and m+l= 2n+2) and gaseous ambient of hydrogen are formed within a chamber accommodating a substrate, a compound and hydrogen are excited and decomposed by utilizing optical energy and a silicon deposited film is formed on a substrate. A deposited film containing silicon may be crystalline or amorphous state and the silicon in the film may be combined even in any form from oligomer to polymer. Moreover, the hydrogen atom and halogen atom in the raw material may be taken within the structure.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はシリコンを含有する堆積膜、とシわけ光導電膜
、半導体膜あるいは絶縁体膜などとして有用なアモルフ
ァスシリコン(以下、a−81という)あるいは多結晶
シリコンの堆積膜を形成するのに好適な方法に関する。
Detailed Description of the Invention [Technical Field] The present invention relates to amorphous silicon (hereinafter referred to as a-81) or polycrystalline silicon, which is useful as a deposited film containing silicon, a photoconductive film, a semiconductor film, an insulating film, etc. The present invention relates to a method suitable for forming a deposited film of crystalline silicon.

〔従来技術〕[Prior art]

従来、例えばa−81の堆積膜を、5l)I4又はSi
2H6を原料として用いたグロー放電堆積法又は熱エネ
ルギー堆積法で形成することが知られている。即ち、5
in4やS i 2H6を電気エネルギーや熱エネルギ
ーを用いて励起・分解して基体上にa−81の堆積膜を
形成し、この膜を種々の目的で利用することが周知であ
る。
Conventionally, for example, a deposited film of a-81 was deposited using 5l) I4 or Si.
It is known to form by a glow discharge deposition method or a thermal energy deposition method using 2H6 as a raw material. That is, 5
It is well known to form a deposited film of a-81 on a substrate by exciting and decomposing in4 or S i 2H6 using electrical energy or thermal energy, and to utilize this film for various purposes.

しかし、これら81H4及びS1□H6を原料として用
いた場合、グロー放電堆積法においては、高出力下で堆
積中の膜への放電エネルギーの影響が大きく、再現性の
ある安定した条件とする制御が難しい。特に、広面積、
厚膜の堆積膜を形成する場合に、これが顕著である。
However, when these 81H4 and S1□H6 are used as raw materials, in the glow discharge deposition method, the discharge energy has a large influence on the film being deposited under high output, and it is difficult to control the conditions to maintain reproducible and stable conditions. difficult. In particular, large areas
This is noticeable when forming a thick deposited film.

また、熱エネルギー堆積法においても、高温が必要とな
ることから、使用される基体が限定されると共に、高温
によJll a−81中の有用な結合水素原子が離脱し
てしまう確率が増え、所望の特性が得にくくなる。
In addition, the thermal energy deposition method also requires high temperatures, which limits the substrates that can be used, and increases the probability that useful bonded hydrogen atoms in Jll a-81 will detach due to high temperatures. It becomes difficult to obtain desired characteristics.

この様に、81H4及びSi2H6を用いて堆積膜を形
成する場合、均一な電気的・光学的特性及び品質の安定
性の確保が難しく、堆積中の膜表面の乱れ及びバルク内
の欠陥が生じ易いなどの解決されるべき問題点が残され
ているのが現状である。
In this way, when forming a deposited film using 81H4 and Si2H6, it is difficult to ensure uniform electrical and optical properties and quality stability, and it is easy to cause disturbances on the film surface and defects in the bulk during deposition. At present, there are still problems that need to be resolved.

そこで、近年、これらの問題点を解消すべく、51f(
4及びSi2H6を原料とするa−8tの光エネルギー
堆積法(光cvn法)が提案され、注目を集めている。
Therefore, in recent years, in order to solve these problems, 51f (
A light energy deposition method (optical CVN method) of A-8T using 4 and Si2H6 as raw materials has been proposed and is attracting attention.

この光エネルギー堆積法によると、a−81堆積膜を低
温で作製できる利点などにょシ、上記問題点を大幅に改
善することができる。しかしながら、光エネルギーとい
った比較的僅少な励起エネルギー下でのSiH4及び5
12H6を原料とした光エネルギー堆積法では、飛躍的
に効率の良い分解を期待することができないため、成膜
速度の向上が期待できず、量産性に難点があるという新
たな問題点が生じている。
According to this optical energy deposition method, the above-mentioned problems can be greatly improved, including the advantage that the A-81 deposited film can be produced at a low temperature. However, SiH4 and 5 under relatively small excitation energy such as light energy
With the optical energy deposition method using 12H6 as a raw material, it is not possible to expect dramatically efficient decomposition, so an improvement in the film formation rate cannot be expected, and a new problem has arisen in that there are difficulties in mass production. There is.

本発明は、現状におけるこれら問題点を解消すべくなさ
れたものである。
The present invention has been made to solve these current problems.

〔発明の目的〕 本発明の目的は、高品質を維持しっつ成膜速度を高くす
ることのできるシリコンを含有する堆積膜の形成方法を
提供することにある。
[Object of the Invention] An object of the present invention is to provide a method for forming a silicon-containing deposited film that can increase the film formation rate while maintaining high quality.

本発明の他の目的は、広面積、厚膜の場合においても、
均一な電気的・光学的特性及び品質の安定性を確保しつ
つ高品質のシリコンを含有する堆積膜を作製することの
できる堆積膜形成方法を提供することにある。
Another object of the present invention is that even in the case of a large area and a thick film,
An object of the present invention is to provide a method for forming a deposited film that can produce a deposited film containing high quality silicon while ensuring uniform electrical and optical characteristics and stability of quality.

上記目的は、基体を収容した室内に、一般式:S’n′
XrnYt(X及びYはそれぞれ別異のハロダン原子、
nは1〜6の整数、m及びtはそれぞれ1以上の整数で
あシ、m+t=2 n+2である。)で表わされる鎖状
ハロダン化ケイ素化合物及び水素の気体状雰囲気を形成
し、光エネルギーを利用することによって前記化合物及
び水素を励起して分解し、前記基体上にシリコンの堆積
膜を形成することを特徴とする堆積膜形成方法によって
達成される。
For the above purpose, the general formula: S'n' is
XrnYt (X and Y are different halodane atoms,
n is an integer of 1 to 6, m and t are each an integer of 1 or more, and m+t=2 n+2. ) forming a gaseous atmosphere of a chain silicon halide compound represented by the formula () and hydrogen, and using light energy to excite and decompose the compound and hydrogen to form a deposited silicon film on the substrate. This is achieved by a deposited film forming method characterized by the following.

〔実施態様〕[Embodiment]

本発明方法によって形成されるシリコンを含有する堆積
膜は、結晶質でも非晶質で4.よく、膜中のシリコンの
結合は、オリゴマー状からIリマー状までの何れの形態
でもよい。また、原料中の水素原子及びハロダン原子な
どを構造中にとシ込んでいてもよい。
4. The silicon-containing deposited film formed by the method of the present invention can be crystalline or amorphous. The bonding of silicon in the film may be in any form from oligomers to I-limers. Further, hydrogen atoms, halodane atoms, etc. in the raw materials may be incorporated into the structure.

以下、主としてa−8i堆積膜の場合について、本発明
の実施態様を説明する。
Hereinafter, embodiments of the present invention will be described mainly in the case of an a-8i deposited film.

前記一般式の鎖状ハロゲン化ケイ素化合物は、直鎖又は
分岐状の鎖状水素化ケイ素化合物(鎖状シラ/化合物)
SinH2n+2のノ・ログン誘導体であって、製造が
容易であシかつ安定性の高い化合物である。一般式中、
Xはフッ素、塩素、臭素及びヨウ素から選ばれるハロゲ
ン原子を表わす。nの値を1〜6に限定したのは、nが
大きくなる程分解が容易となるが気化しにくくなシ合成
も困難である上、分解効率も悪くなるためである。
The chain halogenated silicon compound of the above general formula is a linear or branched chain silicon hydride compound (chain sila/compound)
It is a nologon derivative of SinH2n+2, and is a compound that is easy to produce and has high stability. In the general formula,
X represents a halogen atom selected from fluorine, chlorine, bromine and iodine. The reason why the value of n is limited to 1 to 6 is because as n becomes larger, decomposition becomes easier, but it is also difficult to synthesize a compound that is difficult to vaporize, and the decomposition efficiency also deteriorates.

前記一般式の鎖状ハロダン化ケイ素化合物の好適例とし
は、以下の化合物を挙げることができる。
Suitable examples of the chain halodanized silicon compound of the general formula include the following compounds.

(1) Si、F4. (2) 5t2F6. (3)
 81.F、 、 (4) 814F、o。
(1) Si, F4. (2) 5t2F6. (3)
81. F, , (4) 814F, o.

(5) ”5F12 、(6) 5i6F、4.(7)
 5iCt4+ (8) 5t2cz6゜(9)81.
C60,αO5tar4# (11) 5t2Br6.
%/)215t3Br8゜α3)SiI。。
(5) "5F12, (6) 5i6F, 4. (7)
5iCt4+ (8) 5t2cz6゜(9)81.
C60, αO5tar4# (11) 5t2Br6.
%/)215t3Br8°α3)SiI. .

本発明においてシリコンを含有する堆積膜を形成する前
記室は、減圧下におかれるのが好ましいが、常圧下ない
し加圧下においても本発明方法を実施することができる
In the present invention, the chamber in which the silicon-containing deposited film is formed is preferably placed under reduced pressure, but the method of the present invention can also be carried out under normal pressure or increased pressure.

本発明において使用される励起エネルギーは、光エネル
ギーに限定されるものであるが、前記一般式の鎖状ハロ
ダン化ケイ素化合物は、光エネルギー等比較的低いエネ
ルギーの付与によシ容易に励起・分解し、良質なシリコ
ン堆積膜を形成することができ、またこれに際し、基体
の温度も比較的低い温度とすることができるという特長
を有する。また、励起エネルギーは基体近傍に到達した
原料に一様にあるいは選択的制御的に付与されるが、光
エネルギーを使用すれば、適宜の光学系を用いて基体の
全体に照射して堆積膜を形成することができるし、ある
いは所望部分のみに選択的制御的に照射して部分的に堆
積膜を形成することができ、またレジスト等を使用して
所定の図形部分のみに照射し堆積膜を形成できるなどの
便利さを有しているため、有利に用いられる。
The excitation energy used in the present invention is limited to light energy, but the chain silicon halide compound of the general formula above can be easily excited and decomposed by applying relatively low energy such as light energy. However, it has the advantage that a high-quality silicon deposited film can be formed, and the temperature of the substrate can also be kept relatively low. In addition, excitation energy is applied uniformly or selectively to the raw material that has reached the vicinity of the substrate, but if optical energy is used, the entire substrate is irradiated using an appropriate optical system to form a deposited film. Alternatively, it is possible to selectively control and irradiate only the desired area to form a partially deposited film, or use a resist etc. to irradiate only a predetermined graphic area to form a deposited film. It is advantageously used because it has the convenience of being able to be formed.

本発明においては、前記室内−に前記一般式の鎖状ハロ
ダン化ケイ素化合物及び水素の気体状雰囲気を形成する
ことによシ、励起・分解反応の過程で生成する水素ラジ
カルが反応の効率を高める。
In the present invention, by forming a gaseous atmosphere of a chain silicon halide compound of the general formula and hydrogen in the chamber, hydrogen radicals generated in the process of excitation/decomposition reaction increase the efficiency of the reaction. .

その上、形成される堆積膜中に水素がと夛込まれ、81
結合構造の欠陥を減らす役割を果たす。また、前記一般
式の鎖状ハロゲン化ケイ素化合物は、分解の過程でSI
X 、 5iX2 + SiX、 、 512X2 r
 512X5゜512X4.S1□X5 * 815X
5 r 513X4 r 515X5 。
Moreover, hydrogen is incorporated into the deposited film to be formed, and 81
It plays a role in reducing defects in the bonding structure. In addition, the chain halogenated silicon compound of the general formula above may undergo SI during the decomposition process.
X, 5iX2 + SiX, , 512X2 r
512X5゜512X4. S1□X5 *815X
5 r 513X4 r 515X5.

st、x6.5i3x、などのラジカルを発生させ、ま
た水素によって、St、X及びHが結合したラジカルが
発生するため、これらのラジカルを含む反応プロセスt
−iて、最終的に、Siのダングリング?ンドをH又は
Xで十分にターミネートした局在準位密度の小さい良質
の膜が得られる。
Since radicals such as st, x6.5i3x, etc. are generated, and radicals in which St,
-In the end, Si's dangling? A high-quality film with a low localized level density in which the ends are sufficiently terminated with H or X can be obtained.

また、前記一般式の鎖状ハロゲン化ケイ素化合物は、2
種以上を併用してもよいが、この場合、各化合物によっ
て期待される膜特性を平均化した程度の特性、ないしは
相乗的に改良された特性が得られる。
Further, the chain halogenated silicon compound of the general formula is 2
Although more than one type of these compounds may be used in combination, in this case, properties that are equivalent to the average of the film properties expected by each compound, or properties that are synergistically improved can be obtained.

以下、図面を参照して説明する。This will be explained below with reference to the drawings.

図面は、本発明方法によって光導電膜、半導体膜又は絶
縁体膜等として用いられるa−8i堆積膜を形成するの
に使用する装置の1例を示した模式図である。
The drawing is a schematic diagram showing an example of an apparatus used to form an a-8i deposited film used as a photoconductive film, a semiconductor film, an insulating film, etc. by the method of the present invention.

図中、1は堆積室であシ、内部の基体支持台2上に所望
の基体3が載置される。基体3は、導電性、半導電性あ
るいは電気絶縁性の何れの基体でもよく、例えば、電気
絶縁性の基体としては、ポリエステル、Iリエチレン、
ポリカーボネート、セルローズアセテート、Iリプロピ
レン、ポリ塩化ビニル、4す塩化ビニリデン、ポリスチ
レン、ポリアミド等の合成樹脂のフィルム又はシート、
ガラス、セラミック、紙等が通常使用される。また、基
体3には予め電極層、他のシリコン層等が積層されてい
てもよい。
In the figure, 1 is a deposition chamber, and a desired substrate 3 is placed on a substrate support 2 inside. The base 3 may be a conductive, semiconductive, or electrically insulating base. For example, as an electrically insulating base, polyester, I-lyethylene,
Films or sheets of synthetic resins such as polycarbonate, cellulose acetate, I-lipropylene, polyvinyl chloride, tetravinylidene chloride, polystyrene, polyamide, etc.
Glass, ceramic, paper, etc. are commonly used. Moreover, an electrode layer, another silicon layer, etc. may be laminated on the base 3 in advance.

4は基体加熱用のヒーターであシ、導線5を介して給電
され、発熱する。基体温度は特に制限されないが、本発
明方法を実施するにあたりては、好ましくは50〜15
0℃、よシ好ましくは100〜150℃であることが望
ましい。
Numeral 4 is a heater for heating the substrate, which is supplied with electricity through a conductor 5 and generates heat. Although the substrate temperature is not particularly limited, in carrying out the method of the present invention, it is preferably 50 to 15
The temperature is preferably 0°C, more preferably 100 to 150°C.

6乃至9は、ガス供給源であシ、前記一般式で示される
鎖状ハロゲン化ケイ素化合物のうち液状のものを使用す
る場合には、適宜の気化装置を具備させる。気化装置に
は加熱沸騰を利用するタイプ、液体原料中にキャリアー
ガスを通過させるタイプ等があり、倒れでもよ−い。ま
た、水素ガスは分子状のままで用いても、予めラジカル
化して用いてもよい。ガス供給源の個数は4に限定され
ず、使用する前記一般式の鎖状ハロゲン化ケイ素化合物
の数、キャリヤーガス、希釈ガス、触媒ガス等を使用す
る場合において原料ガスである前記一般式の化合物及び
水素との予備混合の有無等に応じて適宜選択される。図
中、ガス供給源6乃至9の符号に、aを付したのは分岐
管、bを付したのは流量計、Cを付したのは各流量計の
高圧側の圧力を計測する圧力計、d又はeを付したのは
各気体流量を調整するためのパルプである。
Reference numerals 6 to 9 are gas supply sources, and if a liquid one of the chain halogenated silicon compounds represented by the above general formula is used, an appropriate vaporizer is provided. There are two types of vaporizers: one that utilizes heating and boiling, and another that allows carrier gas to pass through the liquid raw material. Furthermore, hydrogen gas may be used in its molecular form or may be radicalized beforehand. The number of gas supply sources is not limited to four, and the number of chain halogenated silicon compounds of the above general formula to be used, the compound of the above general formula that is the raw material gas when using a carrier gas, diluent gas, catalyst gas, etc. and the presence or absence of premixing with hydrogen. In the figure, to the gas supply sources 6 to 9, a is added to the branch pipes, b is the flowmeter, and C is the pressure meter that measures the pressure on the high pressure side of each flowmeter. , d or e indicates the pulp for adjusting the flow rate of each gas.

各ガス供給源から供給される原料ガス等は、ガス導入管
10の途中で混合され、図示しない排気装置に付勢され
て、室l内に導入される。11は室1内に導入されるガ
スの圧力を計測するための圧力計である。また、12は
ガス排気管であり、堆積室1内を減圧したシ、導入ガス
を強制排気するための図示しない排気装置と接続されて
いる。
Raw material gases and the like supplied from each gas supply source are mixed in the middle of the gas introduction pipe 10, energized by an exhaust device (not shown), and introduced into the chamber 1. Reference numeral 11 denotes a pressure gauge for measuring the pressure of gas introduced into the chamber 1. Further, 12 is a gas exhaust pipe, which is connected to an exhaust device (not shown) for forcibly exhausting the introduced gas while reducing the pressure inside the deposition chamber 1.

13はレギスレータ・パルプである。原料ガス等を導入
する前に、室1内を排気し、減圧状態とする場合、室内
の気圧は、5X10 Torr以下、更にはI X 1
0 Torr以下であることが好ましい。
13 is the regulator pulp. When the inside of the chamber 1 is evacuated and brought into a reduced pressure state before introducing raw material gas etc., the atmospheric pressure in the room is 5×10 Torr or less, furthermore, I×1 Torr.
It is preferable that it is 0 Torr or less.

また、原料ガス等を導入した状態において、室l内の圧
力は、好ましくは1×10〜100 Torr。
Moreover, in the state where the raw material gas etc. are introduced, the pressure inside the chamber 1 is preferably 1×10 to 100 Torr.

よシ好ましくは1×10〜I Torrの範囲に維持さ
れることが望ましい。
It is preferable to maintain it preferably in the range of 1×10 to I Torr.

本発明で使用する励起エネルギー供給源の1例としては
、14は光エネルギー発生装置であって、例えば水銀ラ
ング、キセノンランプ、炭酸がスレーサ、アルゴンイオ
ンレーザ、エキシマレーザ−等が用いられる。なお、本
発明で用いる光エネルギーは紫外線エネルギーに限定さ
れず、原料ガスを励起・分解せしめ、分解生成物を堆積
させることができるものであれば、波長域を問うもので
杜ない。また、光エネルギーが原料ガス、又は基板に吸
収されて熱エネルギーに変換し、その熱エネルギーによ
って原料ガスの励起・分解がもたらされて堆積膜が形成
される場合を排除するものでもない。光エネルギー発生
装置14から適宜の光学系を用いて基体全体あるいは基
体の所望部分に向けられた光15は、矢印16の向きに
流れている原料ガス等に照射され、励起・分解を起こし
て基体3上の全体あるいは所望部分にa−81の堆積膜
を形成する。
An example of an excitation energy supply source used in the present invention is a light energy generator 14, such as a mercury rung, a xenon lamp, a carbon dioxide laser, an argon ion laser, an excimer laser, or the like. Note that the light energy used in the present invention is not limited to ultraviolet energy, and any wavelength range may be used as long as it can excite and decompose the source gas and deposit decomposition products. Further, the present invention does not exclude the case where light energy is absorbed by the source gas or the substrate and converted into thermal energy, and the thermal energy causes excitation and decomposition of the source gas to form a deposited film. Light 15 is directed from the optical energy generator 14 to the entire substrate or a desired portion of the substrate using an appropriate optical system, and is irradiated to the raw material gas flowing in the direction of the arrow 16, causing excitation and decomposition, and causing the substrate to be heated. A deposited film of a-81 is formed on the entire surface of 3 or on a desired portion.

本発明方法によれば、所望によシ、薄膜から厚膜までの
任意の膜厚の堆積膜が得られ、また膜面積も所望によシ
任意に選択することができる。膜厚の制御は、原料ガス
の圧力、流量、濃度等の制御、励起エネル、ギー量の制
御等通常の方法で行なうことができる。例えば一般の光
導電膜、半導体膜又は絶縁体膜等を構成するa−81膜
を作製する場合、膜厚は好ましくは500〜5 X 1
0’ X、よシ好ましくは1ooo〜10000^の範
囲で選択されることが望ましい。
According to the method of the present invention, a deposited film having any thickness from a thin film to a thick film can be obtained as desired, and the film area can also be arbitrarily selected as desired. The film thickness can be controlled by conventional methods such as controlling the pressure, flow rate, concentration, etc. of the raw material gas, controlling the excitation energy, and the amount of energy. For example, when producing an a-81 film constituting a general photoconductive film, semiconductor film, insulator film, etc., the film thickness is preferably 500 to 5 × 1
0'

以下に、本発明の具体的実施例を示す。Specific examples of the present invention are shown below.

実施例1 前記一般式の鎖状ハロダン化ケイ素化合物として、前記
例示化合物(1) 、 (2) 、 (3)又は(5)
を用い、図面の装置によF) a−8t堆積膜を形成し
た。
Example 1 As the linear silicon halide compound of the general formula, the exemplary compound (1), (2), (3) or (5)
F) A-8t deposited film was formed using the apparatus shown in the drawing.

先づ、導電性フィルム基板(コーニング社製、≠705
9 )を支持台z上に載置し、排気装置を用いて堆積室
l内を排気し、10−6Torrに減圧した。
First, a conductive film substrate (manufactured by Corning, ≠705
9) was placed on a support z, and the inside of the deposition chamber 1 was evacuated using an exhaust device to reduce the pressure to 10 −6 Torr.

第1表に示した基板温度で、気体状態とされている前記
ハロダン化ケイ素化合物をt t O8CCM。
At the substrate temperature shown in Table 1, the silicon halide compound, which is in a gaseous state, is t t O8CCM.

水素ガスを40 ECCMの流量で堆積室内に導入し、
室内の気圧を0.1 Torrに保ちつつ低圧水銀灯を
光強度100艷〆iで基板に垂直に照射して、膜厚40
00Xの■型a−8l膜を形成した。成膜速度は、36
; L/seeでアッタ。
Hydrogen gas was introduced into the deposition chamber at a flow rate of 40 ECCM,
While maintaining the atmospheric pressure in the room at 0.1 Torr, a low-pressure mercury lamp was irradiated perpendicularly to the substrate at a light intensity of 100 mm to obtain a film thickness of 40 mm.
A 00X type a-8l film was formed. The film formation rate is 36
; Atta with L/see.

比較のため、Si2H6を用いて同様にしてa−81膜
を形成した。成膜速度は6Vsseであった・次いで、
得られた各a−81膜試料を蒸着う槽に入れ、10−’
 Torrまで引いた後真空度10−5Torr、成膜
速度201/seaでAtを1500!蒸着し、クシ型
のAtギヤ、ゾ電極(長さ一250μ、巾5 m )を
形成した後、印加電圧10Vで光電流(AMI、100
シ4 )と暗電流を測定し、光導電率σp、σpと暗導
電率σdとの比σp/σdをめて、a−81膜を評価し
た。結果を第1表に示した。
For comparison, an a-81 film was similarly formed using Si2H6. The film formation rate was 6Vsse. Then,
Each obtained A-81 film sample was placed in a vapor deposition tank and heated for 10-'
After pulling down to Torr, the vacuum level was 10-5 Torr, the deposition rate was 201/sea, and the At was 1500! After forming a comb-shaped At gear and a zoelectrode (length - 250μ, width 5m), a photocurrent (AMI, 100
The a-81 film was evaluated by measuring the photoconductivity σp and the ratio σp/σd of the photoconductivity σp and the dark conductivity σd. The results are shown in Table 1.

第 1 表 第1表から、本発明によるa−8l膜は従来品に比べ、
低い基板温度でもσp及びσp/crdが向上している
Table 1 From Table 1, it can be seen that the a-8L film according to the present invention has a
σp and σp/crd are improved even at low substrate temperatures.

° 実施例2 基板をIリイミド基板、光源及び光強度を高圧水銀灯2
00 mW/m とし、前記一般式の鎖状ハ算rンイに
ケイ豊イl/心給ル1−イー 曲IrI朝1云イに春物
C6)。
° Example 2 The substrate is an Ilimide substrate, the light source and light intensity are high pressure mercury lamps 2
00 mW/m, and the chain of the above general formula is calculated as follows:

(7) 、 (9)を用いた以外は、実施例1と同様に
a−8l膜を形成し、σp及びσp/σdをめた。結果
を第2表に示した。
An a-8l film was formed in the same manner as in Example 1, except that (7) and (9) were used, and σp and σp/σd were determined. The results are shown in Table 2.

第 2 表 〔発明の効果〕 □ 本発明によれば、低い基体温度でしかも高い成膜速度に
よって高品質のシリコン堆積膜を形成することができる
。その上、形成する膜が広面積、厚膜の場合においても
、均一な電気的・光学的特性が得られ、品質の安定性も
確保できるという従来にない格別の効果が奏される。ま
た、ほかにも、基体の高温加熱が不要であるためエネル
ギーの節約になる、耐熱性の乏しい基体上にも成膜でき
る、低温処理によりて工程の短縮化を図れる、原料化合
物が容易に合成でき、安価でしかも安定性に優れ取扱上
の危険も少ない、といった効果が発揮される。
Table 2 [Effects of the Invention] □ According to the present invention, a high quality silicon deposited film can be formed at a low substrate temperature and at a high film formation rate. Moreover, even when the film to be formed has a wide area and is thick, uniform electrical and optical characteristics can be obtained and quality stability can be ensured, which is an unprecedented and exceptional effect. In addition, it saves energy because it does not require high-temperature heating of the substrate, it can form a film even on substrates with poor heat resistance, it shortens the process by low-temperature processing, and it facilitates the synthesis of raw material compounds. It is inexpensive, has excellent stability, and has few handling risks.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明で使用する光エネルギー照射型堆積膜形
成装の1例を示した概略構成図である。 l・・・堆積室、2・・・基体支持台、3・・・基体、
4・・・ヒーター、6〜9・・・ガス供給源、10・・
・ガス導入管、12・・・ガス排気管、14・・・光エ
ネルギー発生装置。
The drawing is a schematic configuration diagram showing an example of a light energy irradiation type deposited film forming apparatus used in the present invention. l...deposition chamber, 2...substrate support, 3...substrate,
4...Heater, 6-9...Gas supply source, 10...
- Gas introduction pipe, 12... Gas exhaust pipe, 14... Light energy generator.

Claims (1)

【特許請求の範囲】 基体を収容した室内に、一般式: 5inX2n+2(
式中、Xはノーログン原子、nは1〜6の整数である。 )で表わされる鎖状ノーロダン化ケイ素化合物及び水素
の気体状雰囲気を形成し、光エネルギーを利用すること
によって前記化合物及び水素を励起して分解し、前記基
体上にシリコンを含有する堆積膜を形成することを特徴
とする堆積膜形成方法0
[Claims] In the chamber containing the substrate, a structure having the general formula: 5inX2n+2(
In the formula, X is a norogon atom, and n is an integer of 1 to 6. ) Forming a gaseous atmosphere of a chain norodanide silicon compound and hydrogen, and using light energy to excite and decompose the compound and hydrogen, forming a deposited film containing silicon on the substrate. Deposited film forming method 0 characterized by
JP59074923A 1984-04-16 1984-04-16 Deposited film formation method Expired - Lifetime JPH0750682B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59074923A JPH0750682B2 (en) 1984-04-16 1984-04-16 Deposited film formation method
US06/722,468 US4683147A (en) 1984-04-16 1985-04-12 Method of forming deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59074923A JPH0750682B2 (en) 1984-04-16 1984-04-16 Deposited film formation method

Publications (2)

Publication Number Publication Date
JPS60218828A true JPS60218828A (en) 1985-11-01
JPH0750682B2 JPH0750682B2 (en) 1995-05-31

Family

ID=13561372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59074923A Expired - Lifetime JPH0750682B2 (en) 1984-04-16 1984-04-16 Deposited film formation method

Country Status (1)

Country Link
JP (1) JPH0750682B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436319B1 (en) * 1999-03-30 2004-06-18 제이에스알 가부시끼가이샤 Method for forming silicon film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727015A (en) * 1980-07-25 1982-02-13 Agency Of Ind Science & Technol Manufacture of silicon thin film
JPS57117233A (en) * 1981-01-14 1982-07-21 Hitachi Ltd Growing method for semiconductor in gaseous phase
JPS58158914A (en) * 1982-03-16 1983-09-21 Semiconductor Res Found Semiconductor manufacturing device
JPS58163951A (en) * 1982-03-25 1983-09-28 Canon Inc Photoconductive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727015A (en) * 1980-07-25 1982-02-13 Agency Of Ind Science & Technol Manufacture of silicon thin film
JPS57117233A (en) * 1981-01-14 1982-07-21 Hitachi Ltd Growing method for semiconductor in gaseous phase
JPS58158914A (en) * 1982-03-16 1983-09-21 Semiconductor Res Found Semiconductor manufacturing device
JPS58163951A (en) * 1982-03-25 1983-09-28 Canon Inc Photoconductive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436319B1 (en) * 1999-03-30 2004-06-18 제이에스알 가부시끼가이샤 Method for forming silicon film

Also Published As

Publication number Publication date
JPH0750682B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
US4683146A (en) Process for producing deposition films
JPS60218828A (en) Formation of deposited film
US4921722A (en) Method for forming deposited film
JPH07221026A (en) Method for forming quality semiconductor thin film
JP3084395B2 (en) Semiconductor thin film deposition method
JPS60218827A (en) Formation of deposited film
JPS60218838A (en) Deposited film forming method
JPS60218830A (en) Deposited film forming method
JPS60218836A (en) Deposited film forming method
JPH0682616B2 (en) Deposited film formation method
JPS60218833A (en) Deposited film forming method
JPS60218840A (en) Deposited film forming method
JPS60218473A (en) Formation of deposited film
JPS6216512A (en) Manufacture of semiconductor thin film
JPS61170573A (en) Photo cvd device
JPS60218839A (en) Deposited film forming method
JPS60218829A (en) Formation of deposited film
JPH05275354A (en) Manufacture of silicon film
JPS60218834A (en) Deposited film forming method
JPS6247945B2 (en)
JPS60218837A (en) Deposited film forming method
JPS6190416A (en) Formation of deposited film
JPS60218841A (en) Formation of deposited film
JPS61170574A (en) Deposited film forming device
JPS60218835A (en) Deposited film forming method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term