JPS60218507A - Fluidized bed furnace - Google Patents

Fluidized bed furnace

Info

Publication number
JPS60218507A
JPS60218507A JP59129429A JP12942984A JPS60218507A JP S60218507 A JPS60218507 A JP S60218507A JP 59129429 A JP59129429 A JP 59129429A JP 12942984 A JP12942984 A JP 12942984A JP S60218507 A JPS60218507 A JP S60218507A
Authority
JP
Japan
Prior art keywords
fluidized bed
combustion chamber
bed furnace
secondary air
static mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59129429A
Other languages
Japanese (ja)
Inventor
ハンス‐ルドルフ シエンク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4219269&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS60218507(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer AG
Publication of JPS60218507A publication Critical patent/JPS60218507A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/002Fluidised bed combustion apparatus for pulverulent solid fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Ceramic Products (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Incineration Of Waste (AREA)

Abstract

1. A fluidised bed furnace comprising a combustion chamber having walls and a floor made up of wall tube which are welded to one another in gas-tight manner and convey a heat transfer medium, and the floor has air openings, means for supplying fuel, additives and air being provided and a post-combustion chamber being formed in the combustion chamber above the fluidised bed, characterised in that at least one static mixer (30) is disposed in the post-combustion chamber (19) and comprises vertical panels (31, 32; 37, 38) distributed over the entire cross-section of the post-combustion chamber (19) and leaving intersecting ducts between them, the flue gas flow rising from the fluidised bed (18) being divided into a number of repeatedly intersecting sub-flows in the ducts.

Description

【発明の詳細な説明】 イ、産業上の利用分野 この発明は燃焼室の壁および基部が気密でかつ熱交換媒
体を運ぶようにともに溶接された壁管よりなる燃焼室を
有し、前記基部が空気通路孔と、燃料、添加剤および空
気とを供給するために設けられた装置とを有し、流動層
上の燃焼室内に形成された後−燃焼室を有する流動層炉
に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention has a combustion chamber in which the walls and base of the combustion chamber are made of wall tubes that are airtight and welded together to carry a heat exchange medium, and the base The present invention relates to a fluidized bed furnace having an after-combustion chamber formed within the combustion chamber above the fluidized bed, having air passage holes and devices provided for supplying fuel, additives and air.

口、従来の技術 流動層内に用いられた燃料の種類および注入された空気
量によって、微細な未燃焼燃料粒子は炉の操業中、効率
を減じる結果として生じた損失をもって流動層から吐出
される。
Depending on the type of fuel used in the fluidized bed and the amount of air injected, fine unburned fuel particles may be discharged from the fluidized bed during operation of the furnace with consequent losses reducing efficiency. .

従来の1つの流動層炉において、これら未燃焼燃料粒子
はサイクロン内および/または煙ガスの冷間帯内に配置
されたフィルター内の煙ガスから分離され、そして流動
層内へ再循環された。しかしながら、この目的のために
必要とされた装置は高価であり、前記吐出しを止めるの
は全く不可能である。約0.5腸までの直径の燃料粒子
は最も頻繁に再循環され、これら粒子は特に再循環装置
内および熱交換面で非常にすり減らされ、侵食を生じる
In one conventional fluidized bed furnace, these unburned fuel particles were separated from the smoke gas in a filter located in a cyclone and/or in a cold zone of the smoke gas and recycled into the fluidized bed. However, the equipment required for this purpose is expensive and it is completely impossible to stop the discharge. Fuel particles with a diameter of up to about 0.5 mm are most frequently recycled, and these particles become highly abrasive, especially in the recirculator and at heat exchange surfaces, resulting in erosion.

他の流動層炉は流動層から吐出される未燃焼燃料粒子が
液体および/またはガス状の点火し易い燃料のための少
なくとも1つのアフタバーナにより燃焼されるので、未
燃焼燃料粒子の再循環を必要としないことで知られてい
る。しかしながら、この解決法は比較的高価なアフタバ
ーナを必要とし、追加燃料の対応する量の使用を必要と
する。
Other fluidized bed furnaces require recirculation of unburned fuel particles as they are discharged from the fluidized bed and are combusted by at least one afterburner for liquid and/or gaseous ignitable fuels. He is known for not doing so. However, this solution requires a relatively expensive afterburner and requires the use of a corresponding amount of additional fuel.

ハ1発明が解決しようとする問題点 それ故再循環燃料粒子が不必要になり、また流動層炉の
効率が増加されるような範囲まで、追加のエネルギ供給
なしで簡単かつ安価な方法で煙ガス内の未燃焼燃料粒子
の含有量を減少することが本発明の目的である。
C.1 The problem that the invention seeks to solve: Therefore, to the extent that recirculating fuel particles are no longer necessary and the efficiency of the fluidized bed reactor is increased, it is possible to easily and cheaply produce smoke without any additional energy supply. It is an object of the invention to reduce the content of unburned fuel particles in the gas.

二1問題点を解決するための手段 本発明によるこの目的のために、少なくとも1個の静止
ミキサが後−燃焼室に設げられる。静止ミキサ装置はガ
スの流れを細分−流に分割するので、繰返し互いに交差
しかつこのようにして密接に混合するので知られている
。これらミキサ装置は低い圧力損失を有してこれら装置
を通りガス流の良好な均質を保証する。これら性質はた
とえがス流が固体粒子を有したとしても、操業中ミキサ
装置をじゃますることなく維持されることが知られてい
る。ミキサ装置はセラミック材料および/または耐熱鋼
から造られ、かつ流動層炉の燃焼室内に生じる約900
℃までの温度に対して困難なく設計できる。ミキサ装置
により生じる煙ガスの混合と均質は煙がス流に対して何
か認められるような妨害がなく、冷間帯を消滅しおよび
均一な酸素を分配することにより、後−燃焼室内の未燃
焼燃料粒子の燃焼を促進させる。それ故追加の燃焼し易
い燃料供給の必要がない。静止ミキサ装置は動く部品を
有せず、それ故実際にめんどうを生じない。
21 Means for Solving Problems According to the invention, for this purpose at least one static mixer is provided in the after-combustion chamber. Static mixer devices are known for dividing the gas flow into sub-streams which repeatedly intersect with each other and are thus intimately mixed. These mixer devices have low pressure losses to ensure good homogeneity of the gas flow through these devices. It is known that these properties are maintained even if the soot stream contains solid particles without interfering with the mixer device during operation. The mixer device is made of ceramic materials and/or heat-resistant steel and is made of approximately 900
It can be designed without difficulty for temperatures up to ℃. The mixing and homogeneity of the smoke gases produced by the mixer device ensures that the smoke does not have any appreciable disturbance to the smoke stream, eliminates the cold zone and distributes the oxygen evenly, leaving no residue in the after-combustion chamber. Promotes combustion of combustion fuel particles. There is therefore no need for an additional combustible fuel supply. A static mixer device has no moving parts and is therefore virtually hassle-free.

また煙ガスが比較的遅く移動し、未燃焼燃料粒子密度が
非常に低い大きな断面をもつ後−燃焼室内の静止ミキサ
装置の準備は些細な腐食を生じることが知られている。
It is also known that the provision of static mixer devices in post-combustion chambers with large cross-sections in which the smoke gases move relatively slowly and the density of unburned fuel particles is very low can result in minor corrosion.

これはたとえ後−燃焼室が流動層に対していくらか制限
されたとしても生じる。もし静止ミキサ装置が腐食およ
び/または浸食により摩耗しても、容易に、早く取り換
えることができる。
This occurs even if the after-combustion chamber is somewhat restricted relative to the fluidized bed. If the static mixer device wears out due to corrosion and/or erosion, it can be easily and quickly replaced.

本発明の他の効果は流動層炉の簡潔な構造にある。特許
請求の範囲第2項の静止ミキサ要素の設計は非常に良好
な効率を与え、その効率は特許請求の範囲第6項の装置
によりさらに改良される。
Another advantage of the invention is the simple construction of the fluidized bed reactor. The design of the static mixer element according to claim 2 gives a very good efficiency, which efficiency is further improved by the device according to claim 6.

特許請求の範囲第4項は本発明の好ましい態様に関する
Claim 4 relates to a preferred embodiment of the invention.

静止ミキサ装置の領域内の燃焼に対する重要な改良は特
許請求の範囲第5項乃至第9項の装置により達成され、
どの段階が最も適当であるかを決めるには各個々の場合
で決定される。
Significant improvements to the combustion in the area of static mixer devices are achieved by the device according to claims 5 to 9,
It is up to each individual case to decide which stage is most appropriate.

本発明を一実施例とその図面を参照して説明する。The invention will be described with reference to an embodiment and its drawings.

ホ、実施例及び作用 第1図に示す流動層炉1は矩形断面の燃焼室2を有する
。燃焼室2は4個の垂直壁3’、3’により囲まれ、基
部4により底で境界にされている。燃焼室壁3′、3″
および燃焼室基部4は気密になるようにウニゾロにとも
に溶接された壁管5と、壁3′。
E. Examples and operations The fluidized bed furnace 1 shown in FIG. 1 has a combustion chamber 2 with a rectangular cross section. The combustion chamber 2 is surrounded by four vertical walls 3', 3' and is bounded at the bottom by a base 4. Combustion chamber wall 3′, 3″
The combustion chamber base 4 has a wall tube 5 and a wall 3' which are welded together to make the combustion chamber airtight.

3′の領域内で垂直に延び、基部4の領域内で水平に延
びる管とよりなる。2個の対向する壁3′の壁管5は、
各冷却水供給管12により供給される水平冷却水分配器
13から底に延びている。2個の壁3′の管5は頂部で
、各が吐出管15を連結した水平へラダ14内に導く。
It consists of a tube extending vertically in the area of 3' and horizontally in the area of the base 4. The wall tubes 5 of the two opposing walls 3' are
Each cooling water supply pipe 12 extends from a horizontal cooling water distributor 13 to the bottom. At the top, the tubes 5 of the two walls 3' each lead into a horizontal ladder 14 to which a discharge tube 15 is connected.

他の2個の燃焼室壁3#は底端で互いに90°に曲げら
れ、密封耐密になるように相互連結されるので1個の壁
3′の各管5は他の壁3″の管5に連結される。1個の
燃焼室壁3“の管5の頂部端は水平冷却水分配器13′
および水平ヘッダ14に交互に連結される。同様なこと
が他の燃焼室壁3″の管5の頂部端に行なわれるので、
2個の壁3′の隣接する管は反対方向に管を通って流れ
る冷却水を有し、冷却水は供給管12′を経て関連した
分配器に通じる。燃焼室2は頂部端で吐出ダクト10を
分岐する頂部中央端からピラミッド型燃焼室屋根11に
より境界にされる。燃焼室壁3′、3″、燃焼室基部4
および燃焼室屋根11は気密になるよう釦ともに溶接さ
れる。
The other two combustion chamber walls 3# are bent at 90° to each other at their bottom ends and are interconnected in a hermetically sealed manner so that each tube 5 of one wall 3' is connected to the other wall 3''. The top end of the tube 5 in one combustion chamber wall 3'' is connected to a horizontal cooling water distributor 13'.
and the horizontal header 14 alternately. The same thing is done at the top end of the tube 5 in the other combustion chamber wall 3'', so that
Adjacent tubes of the two walls 3' have cooling water flowing through them in opposite directions, which leads to the associated distributor via the supply tube 12'. The combustion chamber 2 is bounded by a pyramidal combustion chamber roof 11 from the top central end which branches off the discharge duct 10 at the top end. Combustion chamber walls 3', 3'', combustion chamber base 4
The combustion chamber roof 11 is welded together with the button so as to be airtight.

空気溜め90は燃焼室基部4と逆ピラミッド型のホッパ
9との間に配置され、溜め90に連結されている空気流
を調整するために弁8′を有する一次空気供給管8が配
置される。ホッパ9の庇先端には弁17を有する空管1
6が連結される。溜め90は燃焼床4のウニゾロ内の通
路孔91を経て燃焼室2に連結される。各通路孔91上
に設けられたカバー板92は2個の隣接する管5%に溶
接され、孔91にまたがる。
An air reservoir 90 is arranged between the combustion chamber base 4 and the inverted pyramid-shaped hopper 9, and a primary air supply pipe 8 with a valve 8' is arranged to regulate the air flow connected to the reservoir 90. . An empty pipe 1 having a valve 17 at the tip of the eave of the hopper 9
6 are connected. The reservoir 90 is connected to the combustion chamber 2 through a passage hole 91 in the interior of the combustion bed 4. A cover plate 92 provided over each passage hole 91 is welded to two adjacent tube 5% and spans the hole 91.

燃焼室2は、すなわち流動層18に占められた底区域と
後−燃焼室19を形成するその上の区域との、2区域に
分割される。
The combustion chamber 2 is divided into two sections, namely a bottom section occupied by a fluidized bed 18 and an upper section forming an after-combustion chamber 19 .

2個の傾斜した吐出管7が後−燃焼室内の2個の燃焼室
壁3′の各を通って延び、流動層18の丁度上で終る。
Two inclined discharge pipes 7 extend through each of the two combustion chamber walls 3' in the after-combustion chamber and terminate just above the fluidized bed 18.

三角旗状加熱面管25は流動層18の区域内に配置され
、2個の燃焼室壁3′を通して延び、水平加熱面分配器
26およびその上の水平加熱面へラダ27から放射する
。加熱面管25は燃焼室壁3″に平行に延びる。加熱面
分配器26およびヘッダ27は燃焼室2の外側に位置し
、水供給管28および吐出管29に連結される。複数個
の水平二次空気供給管20が同じ高さに位置し、その幾
分下に、また複数個の傾斜した二次空気供給管21が後
−燃焼室19内へ延びている。管20および21は燃焼
室壁3′を通して延び、燃焼室壁3′に平行に延びてい
る水平二次空気分配器22に連結され、二次空気噴射管
23が各分配器22に導かれる。全ての管7.20.2
1および25は気密になるように溶接されたウェブ6の
区域内の関連した燃焼室壁3′または3′を通り延びて
いる。
Flag-shaped heating surface tubes 25 are arranged in the area of the fluidized bed 18 and extend through the two combustion chamber walls 3' and radiate from the rudder 27 to the horizontal heating surface distributor 26 and the horizontal heating surface above it. The heating surface pipe 25 extends parallel to the combustion chamber wall 3''. The heating surface distributor 26 and the header 27 are located outside the combustion chamber 2 and are connected to the water supply pipe 28 and the discharge pipe 29. A secondary air supply pipe 20 is located at the same level, and somewhat below it, a plurality of slanted secondary air supply pipes 21 extend into the after-combustion chamber 19. The pipes 20 and 21 Connected to horizontal secondary air distributors 22 extending through the chamber wall 3' and extending parallel to the combustion chamber wall 3', a secondary air injection pipe 23 is led to each distributor 22. All pipes 7.20 .2
1 and 25 extend through the associated combustion chamber wall 3' or 3' in the area of the welded web 6 in a gas-tight manner.

6個の静止ミキサ装置30が水平二次空気供給管20に
配置され、後−燃焼室19の全断面にわたり、燃焼室壁
3’、3’まで延びている。ミキサ装置は自重により固
定される。各ミキサ装置3oの構造例は第2図に示され
る。静止ミキサ装置は相互に平行関係な角度で延びてお
り、面要素31に直角に溶接された案内要素32を有す
る複数個の垂直面要素31よりなる。面要素は案内要素
32が互いに交差するような方法で交互に並んで配置さ
れる。流動層18から上る煙ガスの流れは約90°の角
度で相互に交差する多数の細分流にミキサ装置内で分割
される。3個のミキサ装置は第1図のように相互に積み
重ねられるので、1個のミキサ装置の垂直面要素31は
隣接するミキサ装置の垂直面要素の有する零以外の角度
を有する。第1′図ではこの角度は45°である。これ
はあらゆる方向の煙がスの有効な混合を保証する。
Six static mixer devices 30 are arranged in the horizontal secondary air supply pipe 20 and extend over the entire cross section of the after-combustion chamber 19 up to the combustion chamber walls 3', 3'. The mixer device is fixed by its own weight. An example of the structure of each mixer device 3o is shown in FIG. The stationary mixer device consists of a plurality of vertical surface elements 31 which extend at angles parallel to each other and have guide elements 32 welded at right angles to the surface elements 31. The surface elements are arranged one after the other in such a way that the guide elements 32 intersect each other. The flow of smoke gases rising from the fluidized bed 18 is divided in the mixer device into a number of sub-streams that intersect each other at angles of approximately 90°. Since the three mixer devices are stacked on top of each other as shown in FIG. 1, the vertical surface elements 31 of one mixer device have a non-zero angle with the vertical surface elements of the adjacent mixer device. In Figure 1' this angle is 45°. This ensures effective mixing of smoke in all directions.

第1図に示す流動層炉は次のように作動する。The fluidized bed furnace shown in FIG. 1 operates as follows.

ファン(図示せず)が−次空気供給管8を通り溜め90
内に空気を吹込み、空気量は弁8′の位置により決めら
れる。弁1Tは気密に閉じられるので大気圧を超える圧
力が溜め内に造られる。空気は通路孔91を通り燃焼室
2内に流れ、カバー板92は流動層18内に良好な一次
空気分配を与える。流動層は吐出管7を経て導入された
粒状石炭および粒状添加剤よりなる。−次空気の作用の
下で石炭および添加剤は燃焼室2内で回転し、空気圧お
よび空気の流れの正しい選択を与えられ、流動層が既知
の方法で形成され、実際に流体として作用する。次いで
流動層18は点火され、石炭は燃焼し、添加剤は環境を
汚染する硫黄化合物および他の燃焼生成物を凝固する。
A fan (not shown) passes through the secondary air supply pipe 8 to a reservoir 90.
Air is blown into the chamber, and the amount of air is determined by the position of the valve 8'. Valve 1T is closed hermetically so that a pressure in excess of atmospheric pressure is created in the reservoir. Air flows into the combustion chamber 2 through the passage holes 91 and the cover plate 92 provides good primary air distribution within the fluidized bed 18. The fluidized bed consists of granular coal and granular additives introduced via discharge pipe 7. - Under the action of next air, the coal and additives rotate in the combustion chamber 2 and, given the correct selection of air pressure and air flow, a fluidized bed is formed in a known manner and actually acts as a fluid. The fluidized bed 18 is then ignited, the coal burns, and the additives solidify sulfur compounds and other combustion products that pollute the environment.

生じた煙ガスは上方へ逃げる。後−燃焼室19に関して
流動層18の僅かな正圧の結果、最大直径0.5鴫を有
する部分的に未燃焼石炭粒子は煙ガスに乗せられる。こ
れら移動する石炭粒子の後−燃焼は次の静止ミキサ装置
30の実際の後−燃焼室19内で開始され、煙ガス内に
含まれる石炭粒子および空気は均一に分配され、互いに
十分混合され、煙ガス温度の均質が石炭粒子の燃焼を生
じない過度な冷間区域を取り除く。この点火した石炭粒
子の完全燃焼は注入管23、分配器22、傾斜した二次
空気供給管21および静止ミキサ30の上流の後−燃焼
室19内の水平二次空気供給管20を経て空気源(図示
せず)から導入された燃焼のための二次空気により行な
われる。静止ミキサ装置30はこのようにして煙ガス内
に含まれる未燃焼石炭粒子の完全燃焼を実際に生じ、こ
れは追加の装置および/\または追加のエネルヤ消費に
ついて何ら必要とすることなく、現実の燃焼室2の内部
に生じている。静止ミキサ装置30上に延びている後−
燃焼室19のその部分は静止ミキサ装置30内で点火さ
れた石炭粒子が燃焼室2の出口に到達する前に完全に燃
焼する間の適当な時間間隔を保証する。
The resulting smoke gas escapes upwards. As a result of the slight positive pressure of the fluidized bed 18 with respect to the after-combustion chamber 19, partially unburned coal particles with a maximum diameter of 0.5 mm are entrained in the smoke gases. After these moving coal particles, the combustion is started in the actual post-combustion chamber 19 of the next static mixer device 30, the coal particles and the air contained in the smoke gas are evenly distributed and well mixed with each other, Homogeneity of smoke gas temperature eliminates excessively cold zones where combustion of coal particles does not occur. The complete combustion of the ignited coal particles occurs after the injection pipe 23, the distributor 22, the inclined secondary air supply pipe 21 and the static mixer 30 - the air source via the horizontal secondary air supply pipe 20 in the combustion chamber 19. This is accomplished by secondary air for combustion introduced from (not shown). The static mixer device 30 thus actually produces a complete combustion of the unburned coal particles contained in the smoke gas, which is a practical solution without any need for additional equipment and/or additional energy consumption. This occurs inside the combustion chamber 2. After extending over the static mixer device 30 -
That part of the combustion chamber 19 ensures a suitable time interval during which the coal particles ignited in the static mixer device 30 are completely combusted before reaching the outlet of the combustion chamber 2.

不完全燃焼石炭粒子を今宵していない煙ガスは燃焼室屋
根11から吐出ダクト10内へ流れる。
The smoke gases, which do not contain incompletely burned coal particles, flow from the combustion chamber roof 11 into the discharge duct 10.

燃焼の結果流動層内に生じた熱は壁管5および加熱面管
25に流入する水により既知の方法で引続き吐出され、
水はできる限り蒸発する。水または蒸気は燃焼室2を形
成する壁管5の隣接管内で反対方向へ流れるので、均一
な温度分布が保証され、熱応力が避けられる。他の壁管
5では通常の流れの方向は、すなわち冷却水供給管12
から冷却水分配器13を経てヘッダおよび吐出管15ま
で常に上方である。また水または蒸気は、すなわち冷却
水供給管28から加熱面分配器26を経て、加熱面管2
5から加熱面ヘッダ27を経て吐出管29まで、加熱面
管25内を実質的に上方に流れる。
The heat generated in the fluidized bed as a result of the combustion is subsequently discharged in a known manner by water flowing into the wall tubes 5 and the heated surface tubes 25;
Water evaporates as much as possible. Since the water or steam flows in opposite directions in the adjacent wall tubes 5 forming the combustion chamber 2, a uniform temperature distribution is ensured and thermal stresses are avoided. In the other wall pipes 5 the normal flow direction is i.e. the cooling water supply pipe 12
It is always upward from the header and discharge pipe 15 via the cooling water distributor 13. Also, the water or steam is passed from the cooling water supply pipe 28 through the heating surface distributor 26 to the heating surface pipe 2
5 through the heating surface header 27 to the discharge tube 29 substantially upwardly in the heating surface tube 25 .

空気供給に対して中止する場合には、カバー板92が流
動層材料を空気溜め9o内に流れるのを防止する。清掃
のために空気溜め9oに接近し、何か残留物を空にする
ことは弁17を開いたまま空間16を経て行なわれる。
When the air supply is turned off, cover plate 92 prevents fluidized bed material from flowing into air reservoir 9o. Accessing the air reservoir 9o for cleaning and emptying it of any residue takes place via the space 16 with the valve 17 open.

二次空気供給管2oおよび21は燃焼室2内部に孔明け
でき、これはある状況において二次空気分配を改良でき
る。また流動層18は部分負荷で操業を改良するため既
知の方法で仕切りによって異なる部分に分割できる。こ
の場合燃焼室2の外部に配置された弁によって、流動層
のそれぞれの作動部分に対応する部分内に二次空気を注
入することは効果があり、静止ミキサ装置を考慮する必
要がなく、これは本発明の他の効果である。
The secondary air supply pipes 2o and 21 can be drilled inside the combustion chamber 2, which can improve the secondary air distribution in certain situations. The fluidized bed 18 can also be divided into different parts by partitions in a known manner to improve operation at partial loads. In this case, it is advantageous to inject secondary air into the parts of the fluidized bed corresponding to the respective working parts by means of valves placed outside the combustion chamber 2, without having to take into account static mixer devices, and this This is another effect of the present invention.

第2図に示すミキサ装置の代りに、第3図に示す型のミ
キサ装置が燃焼室2内に用いられる。第6図より、傾斜
したミキサ管35から形成された垂直パネル3Tおよび
38はミキサ装置内に設けられ、管はパネル37内で右
から左に、パネル38内で左から右に上昇する。パネル
37および38は相互に平行で、交互に配列される。管
35 ′内の溝36はパネル37と38との間の空間を
ミキサ管35の内部に連結する。パネル内のたいていの
ミキサ管35は底端で分配器39に導かれる。
Instead of the mixer arrangement shown in FIG. 2, a mixer arrangement of the type shown in FIG. 3 is used in the combustion chamber 2. From FIG. 6, vertical panels 3T and 38 formed from inclined mixer tubes 35 are provided in the mixer apparatus, with the tubes rising from right to left in panel 37 and from left to right in panel 38. Panels 37 and 38 are parallel to each other and arranged alternately. A groove 36 in tube 35' connects the space between panels 37 and 38 to the interior of mixer tube 35. Most of the mixer tubes 35 in the panel are led to a distributor 39 at the bottom end.

分配器は第1図に示す水平二次空気供給管2oの延長に
配列される。この変形において二次、空気は静止ミキサ
装置内に直接注入され、煙ガスと混合され、第1図に示
す傾斜二次空気供給管21を経る二次空気導入はこの場
合にはなしですますことができる。この様に構成された
複数個のミキサ装置が相互に積重ねられると、1個の装
置内のバネ/’37.38は先行する装置のパネル37
.38の有する一90°が好ましい一零以上の角度を有
し、それはあらゆる方向で二次空気および煙ガスの最適
な混合を与える。底きキサ装置の場合には分配器39の
みを経て導入されるのは二次空気に対して通常十分であ
り、分配器39はその上のミキサ装置内で省略されるの
で、これらミキサ装置は燃焼室2内に導かれる両端で開
かれるミキサ管35のみからなるパネルにより形成され
る。
The distributor is arranged in an extension of the horizontal secondary air supply pipe 2o shown in FIG. In this variant, the secondary air is injected directly into the static mixer arrangement and mixed with the smoke gas, and the secondary air introduction via the inclined secondary air supply pipe 21 shown in FIG. 1 can be dispensed with in this case. can. When a plurality of mixer apparatuses configured in this manner are stacked on top of each other, the spring in one apparatus is connected to the panel 37 of the preceding apparatus.
.. 38 has an angle greater than or equal to 90°, which is preferred, which provides optimal mixing of secondary air and smoke gases in all directions. In the case of bottom mixer arrangements, it is usually sufficient for the secondary air to be introduced only via the distributor 39, and since the distributor 39 is omitted in the mixer arrangement above, these mixer arrangements It is formed by a panel consisting only of mixer tubes 35 that are open at both ends and lead into the combustion chamber 2.

記載した流動層炉は、すなわち層内部で層材料のどのよ
うな再循環もなく、静止型のものである。
The fluidized bed furnace described is of the static type, ie without any recirculation of the bed material inside the bed.

静止ミキサ装置のように図示された以外の形状を有する
ことができる。例えば、大気圧および圧力を加えられた
流動層炉は可能である。また高さが変化する断面を有す
る燃焼室を用いることも可能である。燃焼室基部は燃焼
室壁について独立して構成することができ、または燃焼
室壁は垂直の代りに螺旋形にして孔明けすることができ
る。燃焼室基部は垂直に置換できまたは層材料がホッパ
9および空管16を経て吐出される閉鎖可能な孔を有す
ることもできる。
It can have shapes other than those shown, such as static mixer devices. For example, atmospheric pressure and pressurized fluidized bed furnaces are possible. It is also possible to use a combustion chamber with a cross section of varying height. The combustion chamber base can be constructed independently of the combustion chamber wall, or the combustion chamber wall can be perforated in a spiral instead of vertically. The combustion chamber base can be displaced vertically or can also have a closable hole through which the layer material is discharged via the hopper 9 and the empty tube 16.

層材料は微細な粉末の形であり、燃料は粒状の代りに液
体であり、例えば、二次空気として同時に作用する空気
によって上方の流動層内に注入されることもできる。
The layer material is in the form of a fine powder, and the fuel is liquid instead of granular, and can also be injected into the upper fluidized bed, for example, by air acting at the same time as secondary air.

静止ミキサ装置は燃焼室の頂部端まで延ばすことができ
る。装置は冷却された管または冷却されない棒によって
燃焼室屋根から吊すこともできる。
The static mixer device can extend to the top end of the combustion chamber. The device can also be suspended from the combustion chamber roof by cooled tubes or uncooled rods.

追加の加熱面も静止ミキサ装置の上に設けられる。An additional heating surface is also provided on the static mixer device.

複数個の静止ミキサ装置が間隔を有しまたは有すること
なく相互に隣接して後−燃焼室内に配置することができ
る。静止ミキサ装置は二次空気供給管および/またはそ
の自重による代りに積極的でなく燃焼室壁に連結するこ
とができる。
A plurality of static mixer devices can be arranged adjacent to each other in the after-combustion chamber with or without spacing. The static mixer device can be connected to the combustion chamber wall instead of actively by means of the secondary air supply pipe and/or its own weight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の流動層炉の縦断面図、第2図は静止ミ
キサ装置の透視詳細図、第3図は他の静止ミキサ装置の
透視詳細図である。 1:流動層炉、 2:燃焼室、 3’、3’:燃焼室壁、4:基部 5:壁管、 T:傾斜した吐出管、 18:流動層、 19:後−燃焼室、 20.21 :二次空気供給管、 30:静止ミキサ装置、91:通路孔。 代理人 浅 村 皓
FIG. 1 is a longitudinal sectional view of the fluidized bed furnace of the present invention, FIG. 2 is a perspective detail view of a static mixer device, and FIG. 3 is a perspective detail view of another static mixer device. 1: fluidized bed furnace, 2: combustion chamber, 3', 3': combustion chamber wall, 4: base 5: wall tube, T: inclined discharge tube, 18: fluidized bed, 19: after-combustion chamber, 20. 21: Secondary air supply pipe, 30: Stationary mixer device, 91: Passage hole. Agent Akira Asamura

Claims (1)

【特許請求の範囲】 (リ 燃焼室の壁および基部が気密でかつ熱交換媒体を
運ぶようにとも・に溶接された壁管よりなる燃焼室を有
し、前記基部が空気通路孔と、燃料、添加剤および空気
を供給するために設けられた装置とを有し、流動層上の
前記燃焼室内に形成された後−燃焼室を有する流動層炉
において、少なくとも1つの静止ミキサを前記後−燃焼
室内に有することを特徴とする流動層炉。 (2、特許請求の範囲第1項記載の流動層炉において、
前記静止ミキサ装置が前記後−燃焼室の全断り 面をおお牟ことを特徴とする流動層炉。 (3)特許請求の範囲第1項または第2項記載の流動層
炉において、前記流動層の高さが少なくとも半メートル
でかつ多くて3倍の距離を流動状態の前記層の表面と前
記ミキサ装置との間に有することを特徴とする流動層炉
。 (4) 特許請求の範囲第1項から第6項までのいづれ
かの項に記載の流動層炉において、前記流動層が静止盤
層であることを特徴とする流動層炉。 (5)特許請求の範囲第1項から第4項までのいづれか
の項に記載の流動層炉において、前記燃焼室は燃焼のた
めに二次空気の供給を有することを特徴とする流動層炉
。 (6) 特許請求の範囲第5項記載の流動層炉において
、前記二次空気供給は前記流動層の区域に有することを
特徴とする流動層炉。 (7)特許請求の範囲第5項記載の流動層炉において、
前記二次空気供給は前記流動層と前記静止ミキサ装置と
の間に有することを特徴とする流動層炉。 (8)特許請求の範囲第7項記載の流動層炉において、
前記二次空気供給の少なくとも一部は前記流動層に、4
5°の角度で向けられることを特徴とする流動層炉。 (9) 特許請求の範囲第5項記載の流動層炉において
、前記静止ミキサ装置が二次空気供給として建造される
ことを特徴とする流動層炉。 αQ 特許請求の範囲第7項から第9項までのいづれか
の項に記載の流動層炉において、前記静止ミキサ装置が
前記二次空気供給の少なくとも1つの管により導かれる
ことを特徴とする流動層炉。
[Scope of Claims] (i) A combustion chamber in which the walls and base of the combustion chamber are airtight and are welded together to carry a heat exchange medium, the base having air passage holes and a fuel In a fluidized bed furnace with a combustion chamber formed in the combustion chamber above the fluidized bed, with a device provided for supplying additives and air, at least one static mixer is formed in the combustion chamber above the fluidized bed. A fluidized bed furnace characterized by having the furnace in a combustion chamber. (2. In the fluidized bed furnace according to claim 1,
A fluidized bed furnace, characterized in that the static mixer device covers the entire cross section of the after-combustion chamber. (3) In the fluidized bed furnace according to claim 1 or 2, the height of the fluidized bed is at least half a meter, and the distance between the surface of the bed in a fluidized state and the mixer is at most three times the height. A fluidized bed furnace, characterized in that it has a fluidized bed furnace between the furnace and the apparatus. (4) A fluidized bed furnace according to any one of claims 1 to 6, wherein the fluidized bed is a stationary plate bed. (5) A fluidized bed furnace according to any one of claims 1 to 4, characterized in that the combustion chamber has a supply of secondary air for combustion. . (6) A fluidized bed furnace according to claim 5, characterized in that the secondary air supply is provided in the area of the fluidized bed. (7) In the fluidized bed furnace according to claim 5,
A fluidized bed furnace characterized in that the secondary air supply is provided between the fluidized bed and the static mixer device. (8) In the fluidized bed furnace according to claim 7,
At least a portion of the secondary air supply is directed to the fluidized bed,
A fluidized bed furnace characterized in that it is oriented at an angle of 5°. (9) A fluidized bed furnace according to claim 5, characterized in that the static mixer device is constructed as a secondary air supply. αQ A fluidized bed furnace according to any one of claims 7 to 9, characterized in that the static mixer device is guided by at least one pipe of the secondary air supply. Furnace.
JP59129429A 1984-04-11 1984-06-25 Fluidized bed furnace Pending JPS60218507A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1816/84-8 1984-04-11
CH1816/84A CH662405A5 (en) 1984-04-11 1984-04-11 Fluid bed firing.

Publications (1)

Publication Number Publication Date
JPS60218507A true JPS60218507A (en) 1985-11-01

Family

ID=4219269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59129429A Pending JPS60218507A (en) 1984-04-11 1984-06-25 Fluidized bed furnace

Country Status (5)

Country Link
EP (1) EP0157901B1 (en)
JP (1) JPS60218507A (en)
AT (1) ATE55474T1 (en)
CH (1) CH662405A5 (en)
DE (1) DE3482955D1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726483A1 (en) * 1987-08-08 1989-02-16 Hoelter Heinz Process and device for reducing the formation of CO in the combustion process of fossil fuels, preferably coals
EP0319722A1 (en) * 1987-12-09 1989-06-14 Deutsche Kohle Marketing GmbH Steinkohlevertrieb-Wärmeversorgung Combustion chamber for an atmospheric stationary fluidized-bed furnace
DE3822999C1 (en) * 1988-07-07 1990-01-04 Vereinigte Kesselwerke Ag, 4000 Duesseldorf, De
US5105748A (en) * 1990-02-22 1992-04-21 Mitsui Engineering & Shipbuilding Co., Ltd. Fluidized bed combustion method for burning wastes
EP0509364B1 (en) * 1991-04-15 1996-01-24 Ebara Corporation Incinerator
US5257585A (en) * 1991-04-15 1993-11-02 Ebara Corporation Incinerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1524154A (en) * 1976-03-26 1978-09-06 Rolls Royce Fluidised bed combustion apparatus
DE2810455B2 (en) * 1977-05-20 1980-01-10 Gebrueder Sulzer Ag, Winterthur (Schweiz) Device for mixing the dusty combustion gases in a flow channel of an incineration plant, in particular a waste incineration plant
CH652190A5 (en) * 1981-04-23 1985-10-31 Sulzer Ag STEAM GENERATOR WITH FLUIDIZED BURN FIRING.

Also Published As

Publication number Publication date
EP0157901A2 (en) 1985-10-16
EP0157901B1 (en) 1990-08-08
EP0157901A3 (en) 1987-05-06
DE3482955D1 (en) 1990-09-13
CH662405A5 (en) 1987-09-30
ATE55474T1 (en) 1990-08-15

Similar Documents

Publication Publication Date Title
US5730763A (en) Heat exchanger and apparatus for gasification and/or reforming
US4259088A (en) Distributing fluids into fluidized beds
EP0005964B1 (en) Boiler and combustion means therefor
CN201258298Y (en) Kiln for burning lime
JPS5853241B2 (en) boiler
GB1577717A (en) Thermal reactors incorporating fluidised beds
CA2127742C (en) Gas-fired, porous matrix, surface combustor-fluid heater
US3799747A (en) Fuel burner system for a fluidized bed
JPS6223237B2 (en)
US4574743A (en) Heat generator for heating a fluid by heat exchange through a fluidized bed and a process for implementing same
US9470416B2 (en) Method to enhance operation of circulating mass reactor and method to carry out such reactor
CS223966B2 (en) Method of baking the lime and device for executing the said method
US6461154B2 (en) Method for burning carbonate-containing material
JPS60218507A (en) Fluidized bed furnace
US4510892A (en) Seal for boiler water wall
US4312302A (en) Combustion chamber for fluid-bed combustion
US3957420A (en) Low NOx emission burners
PL164006B1 (en) Fluidized bed reactor and a method for delivering fluid to the fluidized bed reactor
US5137602A (en) Heating chamber for a coke oven and method of heating a coke oven
US5588378A (en) Combustion enhancement system with in-bed foils
US5039301A (en) Fluidized bed furnace
RU2586384C2 (en) Method of increasing temperature homogeneity in heating furnace
US2976855A (en) Combustion apparatus for low heat value fuel
US4758154A (en) Fluidized-bed plant
US2630413A (en) Pebble heater apparatus and method of regenerating pebbles therein