JPS60217723A - Level converting circuit - Google Patents

Level converting circuit

Info

Publication number
JPS60217723A
JPS60217723A JP7424784A JP7424784A JPS60217723A JP S60217723 A JPS60217723 A JP S60217723A JP 7424784 A JP7424784 A JP 7424784A JP 7424784 A JP7424784 A JP 7424784A JP S60217723 A JPS60217723 A JP S60217723A
Authority
JP
Japan
Prior art keywords
turned
point
drain
potential
contention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7424784A
Other languages
Japanese (ja)
Inventor
Heihachiro Ebihara
平八郎 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP7424784A priority Critical patent/JPS60217723A/en
Publication of JPS60217723A publication Critical patent/JPS60217723A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356017Bistable circuits using additional transistors in the input circuit
    • H03K3/356026Bistable circuits using additional transistors in the input circuit with synchronous operation

Landscapes

  • Manipulation Of Pulses (AREA)

Abstract

PURPOSE:To improve the matching with other circuit parts with low power and high speed operation by combining logical circuits to a CMOS constitution level converter so as to control the converter thereby eliminating the contention state of the converter without requiring considerable change of element size. CONSTITUTION:An MOS13 is turned on when an MOS11 is turned on, but since an MOS15 is turned off, no contention is caused. Further, the MOS13 is turned off when the MOS15 is turned on and no contention is caused. On the other hand, both MOS14, 16 are turned on when an MOS12 is turned off and the potential at a point Q falls down rapidly to Vss. Since an output X of a NAND17 rises when the MOS16 is turned off, the potential at the point Q falls down sufficiently. When the MOS16 is turned off, the point Q reaches the floating state and the low potential is kept by the floating capacitance at the point Q. Thus, the desired operation with no contention is attained in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補型電界効果トランジスタ(以下CMO8と
略記する)により構成され、かつ異なる信号レベルが混
在する回路に於て、小振巾の信号を大振巾に変換するレ
ベル変換器に関するもので有る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to small amplitude signals in a circuit that is composed of complementary field effect transistors (hereinafter abbreviated as CMO8) and in which different signal levels coexist. It is related to a level converter that converts a signal to a large amplitude.

〔発明の背景〕[Background of the invention]

近年CMO8回路の発展が目覚しいが、0MO3の特徴
として第1に低消費電力が挙げられる。また第2は動作
電圧範囲が広い事で有る。これらの理由により、電池で
動作する超小型機器にはほとんどCMO8が採用される
が、一方これらの一超小型機器では表示装置として低電
力の液晶表示装置が使用される場合が多い。液晶表示装
置は3〜5vの駆動電圧を必要とするため、通γフ回路
の大部分は電池電圧(1,5V程度)で動かし、液晶駆
動回路は昇圧回路によって得た高圧電源で動かす場合が
多いが、この時1.5 V系から高圧系へ信号を供給す
るためにレベル変換器が必要となる。また液晶駆動に限
らず、例えば電子時計に於てはより一層の低電力を達成
するため降圧回路を用いて電池電圧より低い電圧を作り
、比較的高い周波数で動作する部分を低電圧で動作させ
、残りの部分を電池電圧で動かす場合が有り、この時も
低電圧部から電池電圧部へ信号を供給するためにレベル
変換器を必要とする。この様に使用されるレベル変換器
は十分に低電力で動作しなければならない。
Although the development of CMO8 circuits has been remarkable in recent years, the first feature of 0MO3 is low power consumption. The second reason is that the operating voltage range is wide. For these reasons, most of the CMO8 devices are used in ultra-small devices that operate on batteries, but low-power liquid crystal display devices are often used as display devices in these ultra-small devices. Since a liquid crystal display device requires a driving voltage of 3 to 5V, most of the current gamma circuit is operated by battery voltage (about 1.5V), and the liquid crystal drive circuit is sometimes operated by a high voltage power source obtained from a booster circuit. In most cases, a level converter is required to supply the signal from the 1.5 V system to the high voltage system. Furthermore, in order to achieve even lower power consumption not only in LCD drives but also in electronic watches, for example, a step-down circuit is used to create a voltage lower than the battery voltage, and parts that operate at a relatively high frequency are operated at a low voltage. , the remaining part may be operated by battery voltage, and in this case also a level converter is required to supply a signal from the low voltage part to the battery voltage part. Level converters used in this way must operate with sufficiently low power.

〔従来技術と問題点〕[Prior art and problems]

第1図は従来技術によるレベル変換回路の代表的な例を
示す回路図で有って、第1のPチャネルMOSトランジ
スタ(以下PMO8Tとする)1と第2のPMOS T
 2のソースは電源の高電位側vddに接続され、前記
第1のPMO8T1のドレインは第1ONチヤネルMO
8)ランジスタ(以下NMO8Tとする)6のドレイン
と第29NMOS T 4のゲートに接続され、前記第
2のPMO8T2のドレインは前記第2ONMO8T4
のドレインを前記第1のNMO8T乙のゲートに接続さ
れ、該第1及び第2ONMOS T 3.4のソースは
電源の低電位側Vlll+に接続される。
FIG. 1 is a circuit diagram showing a typical example of a level conversion circuit according to the prior art, in which a first P-channel MOS transistor (hereinafter referred to as PMO8T) 1 and a second PMOS T
The source of the first PMO8T1 is connected to the high potential side vdd of the power supply, and the drain of the first PMO8T1 is connected to the first ON channel MO
8) The drain of the transistor (hereinafter referred to as NMO8T) 6 is connected to the gate of the 29th NMOS T4, and the drain of the second PMO8T2 is connected to the second ONMO8T4.
The drain of the ONMOS T3.4 is connected to the gate of the first NMO8T, and the sources of the first and second ONMOS T3.4 are connected to the low potential side Vllll+ of the power supply.

前記第1及び第2のPMOS T 1.2のゲートには
vddと、■88よりも高いレベルVQQの間で動く信
号φ、φが印加され、前記第1又は第2のPMOS T
 1.2のドレインにVddとVmsの間で動く出力信
号を得る。この回路の動作は次の如くで有る。金入力信
号φがVddレベル、従ってφがVQQレベルとすると
、前記第1のPMOS T 1はオフで有り、前記第2
のPMO8T2はオンで有る。第1及び第2のPMOS
 T 1.2のドレインをそれぞれQ、Qとすると点Q
の電位はVI+8、点Qの電位はvddとなって居り、
従って前記第1ONMOS T 6はオンで有り、前記
第2のNMOS T 4はオフで有る。この状態ではv
ddとV、8間には電流経路はなく電力は消費されない
。次に信号φがVddからvQQレベルに、従って信号
φが■、Qから■ddレベルに変化したとする。前記第
2のPMOS T 2はオフになるが前記点Qには浮遊
容量が存在するため点Qの電位はVddに維持され、従
って前記第1ONMO8T3はオンのままで有る。従っ
てオフからオンに転じた前記第1のPMO8T1と、や
はりオン状態に有る前記第1のNMO8T5との競合と
なり、前記第1のPMO3T1のオン抵抗が前記第1O
NMOS T 3のオン抵抗より十分小さければ前記点
点の電位はVddに向い、従って前記第2ONMO8T
4はオンとなり前記点QはVgg レベルとなり、前記
第1ONMOS T 3はオフとなり前記点点は完全に
Vddレベルとなって反転動作が完了する。
Signals φ, φ that move between VDD and a level VQQ higher than 88 are applied to the gates of the first and second PMOS T1.2, and the first and second PMOS T1.
At the drain of 1.2 we get an output signal that moves between Vdd and Vms. The operation of this circuit is as follows. When the gold input signal φ is at Vdd level, therefore, φ is at VQQ level, the first PMOS T1 is off and the second PMOS T1 is off.
PMO8T2 is on. First and second PMOS
If the drains of T 1.2 are Q and Q, respectively, the point Q
The potential at point Q is VI+8, and the potential at point Q is vdd.
Therefore, the first ONMOS T 6 is on and the second NMOS T 4 is off. In this state v
There is no current path between dd and V, and no power is consumed. Next, assume that the signal φ changes from the Vdd level to the vQQ level, and therefore the signal φ changes from the ■, Q level to the ■dd level. The second PMOS T2 is turned off, but since there is a stray capacitance at the point Q, the potential at the point Q is maintained at Vdd, and therefore the first ONMO 8T3 remains on. Therefore, the first PMO8T1, which has turned on from off, competes with the first NMO8T5, which is also in the on state, and the on-resistance of the first PMO3T1 increases.
If it is sufficiently smaller than the on-resistance of NMOS T3, the potential of the point points to Vdd, and therefore the second ONMO8T
4 is turned on, the point Q becomes the Vgg level, the first ONMOS T 3 is turned off, and the point Q becomes completely the Vdd level, completing the inversion operation.

上記の動作説明で明かな如く、反転動作時は共にオン状
態に有るPMO8TとNMO8Tの競合状態が有り、こ
の時に両者のドレインに現れる分圧電圧が十分大きくな
いと反転動作が行われなかったり、反転動作完了までに
多大の時間を要したり、消費電力が増大したりする。従
って前記競合状態に於て、PMO8Tのオン抵抗がNM
OS Tのオン抵抗よりも十分小さくなる様に設計する
必要が有る。しかるにPMO8Tを駆動する信号の振巾
は小さく、NMO8Tを駆動する信号振巾は大で有るか
ら、MOS Tのオン抵抗がゲートソース間電圧からス
レッショルド電圧を引いて2乗した値に反比例する事を
考えれば、PMO8Tの方はチャネル巾を十分に大きく
してgmを大とし、NMO8Tの方はチャネル長を十分
に長くしてgmを小とする様に設計しなければならない
。ここで生ずる問題点は4つ考えられる。1つには上記
の設計はPMO8,NMO8T共にサイズが大きくなる
方向で有り、従って他の論理回路部分とのレイアウト上
の整合性が悪くなると同時に、多数個の使用はチンプサ
イズにも影響を与える。第2はPMO8Tのサイズが大
きくなる事により、その入力容量も増大する。それ故P
MO8Tを駆動するトランジスタのサイズも太き(しな
いと遅延時間が長くなり、高速性が失われると同時に消
費電力が増大する。またPMO8Tの入力容量の増大は
、この入力容量を充放電するための電力が大きくなり、
これは信号周期が早い場合問題となる。次にNMO8T
のサイズ増大は、やはり入力容量が増大する事になり、
電力が増大する方向となる。またこの入力容量は第1図
の点Q及び点Qに下る事になり、出力遅延の原因となる
。特に潰Q及びQが立下る時はオン抵抗の高いNMO8
Tを介しての放電となるため、立下り時間が極端に悪く
なり高速性が望めない。第4に本質的にPMO8TとN
MO8Tの競合状態が存在するから、反転時には必ず直
流的なパスが出来、過渡1に電流が流れる事が必然で有
る。
As is clear from the above explanation of the operation, there is a competition between PMO8T and NMO8T, both of which are in the on state, during the inversion operation, and if the divided voltage appearing at the drains of both at this time is not large enough, the inversion operation will not be performed. It takes a long time to complete the inversion operation, and power consumption increases. Therefore, in the competitive state, the on-resistance of PMO8T is NM
It is necessary to design the on-resistance to be sufficiently smaller than the on-resistance of the OST. However, the amplitude of the signal that drives PMO8T is small, and the amplitude of the signal that drives NMO8T is large, so the on-resistance of MOS T is inversely proportional to the square of the gate-source voltage minus the threshold voltage. If you think about it, PMO8T must be designed to have a sufficiently large channel width and gm, and NMO8T must be designed so that the channel length is sufficiently long and gm is small. There are four possible problems that arise here. One is that the above design tends to increase the size of both PMO8 and NMO8T, so the layout consistency with other logic circuit parts becomes poor, and at the same time, the use of a large number of them also affects the chimp size. . Second, as the size of PMO8T increases, its input capacity also increases. Therefore P
The size of the transistor that drives the MO8T is also large (otherwise, the delay time will be longer, high speed will be lost, and the power consumption will also increase. Also, the increase in the input capacitance of the PMO8T is due to the need for charging and discharging this input capacitance. The power increases,
This becomes a problem when the signal period is fast. Next, NMO8T
Increasing the size of will also increase the input capacity,
The direction is that the power increases. Moreover, this input capacitance will drop to points Q and Q in FIG. 1, causing an output delay. Especially when the collapse Q and Q fall, NMO8 has high on-resistance.
Since the discharge occurs via T, the fall time becomes extremely poor and high speed cannot be expected. Fourth, essentially PMO8T and N
Since there is a MO8T competition state, a DC-like path is always created during inversion, and it is inevitable that a current will flow in the transient 1.

従って第1図の回路の設計に当っては上記の項につき検
討した上で最適な設計を行わねばならないが、低電力、
高速性の全てを満す事は困難で有る。また定められた条
件の場合について最適な設計を行っても使用条件が変化
すれば全く意味がなくなる。例えば■QQ、■、、があ
る条件の時最適動作が保障されてもVssが変化すれば
動作の保障はなくなる。逆に広い動作電圧での動作を保
障しようとすれば恐らく他の性能を大巾に落さざるを得
なくなる。
Therefore, when designing the circuit shown in Figure 1, the optimal design must be carried out after considering the above items.
It is difficult to satisfy all requirements for high speed. Furthermore, even if an optimal design is made for a given set of conditions, it will be completely meaningless if the usage conditions change. For example, even if optimum operation is guaranteed under certain conditions of ■QQ, ■, the operation is no longer guaranteed if Vss changes. On the other hand, if you try to guarantee operation over a wide range of operating voltages, you will probably have to significantly degrade other performances.

〔発明の目的〕[Purpose of the invention]

上記の如〈従来技術には極めて多くの欠点が有り、限ら
れた条件の下で限られた性能で使用するしかなかった。
As mentioned above, the conventional technology has many drawbacks and has to be used under limited conditions and with limited performance.

本発明の目的は従来技術の欠点を解消し、低電力、高速
動作、広い電源電圧範囲と言5CMO8本来の特性を十
分に生かしたレベル変換器を提供する事に有る。
An object of the present invention is to eliminate the drawbacks of the prior art and provide a level converter that fully utilizes the inherent characteristics of 5CMO8, such as low power consumption, high speed operation, and wide power supply voltage range.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいて本発明の詳細な説明すると、第2
図は本発明の一実施例で有って、第1のPMO8T11
のドレインは第1のNMO8T16のドレインと第2の
NMO8T14のゲートと第2のNANDゲート18の
一方の入力端に接続され、第2のPMO8T12のドレ
インは前記第2のNMO8T14のドレインと前記第2
めNMO8T13のゲートと第1のNANDゲート17
の一方の入力端に接続される。第3のNMO8T15の
ドレインは前記第1のNMOS T13のソースに接続
され、ゲートは前記第1のNANDゲート17の出力端
と前記第2のNANDゲートの残る一方の入力端に接続
され、ソースはVssに接続される。第4のNMO8T
16のドレインは前記第2のNMO8T14のソースに
接続され、ゲートは前記第2のNANDゲートの出力端
と前記第1のNANDゲート17の残る一方の入力端に
接続され1.ソースはV zに接続される。前記第1、
第2のPMOS T 1.2のソースはVddに接続さ
れる。
Hereinafter, a detailed explanation of the present invention based on the drawings will be given.
The figure shows one embodiment of the present invention, in which the first PMO8T11
The drain of the second PMO8T12 is connected to the drain of the first NMO8T16, the gate of the second NMO8T14, and one input terminal of the second NAND gate 18, and the drain of the second PMO8T12 is connected to the drain of the second NMO8T14 and the second NAND gate 18.
The gate of NMO8T13 and the first NAND gate 17
is connected to one input end of the The drain of the third NMOS T15 is connected to the source of the first NMOS T13, the gate is connected to the output terminal of the first NAND gate 17 and the remaining input terminal of the second NAND gate, and the source is connected to the output terminal of the first NAND gate 17 and the remaining input terminal of the second NAND gate. Connected to Vss. 4th NMO8T
The drain of 1.16 is connected to the source of the second NMO8T14, and the gate is connected to the output terminal of the second NAND gate and the remaining input terminal of the first NAND gate 17. The source is connected to Vz. Said first,
The source of the second PMOS T 1.2 is connected to Vdd.

第3図は第2図に示した実施例の動作波形図で有って、
前記第1、第2のPMO8T11.12のゲートに印加
される信号φ、φはVddと■QQのレベルを有する信
号で有って、該信号φが立下ると(従ってφが立上ると
)前記第1のPMO8T11のドレインQの電位はある
遅れを待ってvddに立上る。すると前記第2のPMO
8T12のドレインQはV81に立下る。従って前記第
1のNANDゲート17の出力XはVddに立上り、続
いて前記第2のNANDゲート18の出力YがVllg
に立下る。この一連の動作に於て、前記第1のPMO8
T11がオンとなる時点に於ては前記第1のNMO8T
13はオンであるが、前記第3ONMO8T15はオフ
で有るため競合が起きない。また該第3ONMOS T
 15がオンとなる時は前記第1のNMO8T13がオ
フになってからで有るから、ここでも競合する事がない
。一方前記載2CPMO8T12がオフになる時点では
前記第2、第4のNMO8T14.16が共にオンで有
るから前記の点Qの電位は急速にVllgに立下る事に
なる。しかも前記第4ONMOS T16がオフになる
のはQの電位が下り、従って前記第1のNANDゲート
17の出力Xが立上った後で有るから、この間にQの電
位は十分に下り得る。ここで前記NMO8T16がオフ
になると、前記点Qはフローティング状態となるが、Q
に浮遊する容量により低い電位が維持される。もしリー
ケージ等で点Qの電位が変動する恐れが有るならば、点
QとvBIlの間にリーケージに打勝つ程度の直流パス
を設けて置けば良いが、第2図に破線で示した如く前記
第3、第4のNMO8T15.16のドレインM、Nと
V58との間に抵抗成分19.20を設けた方が効率は
良い。
FIG. 3 is an operational waveform diagram of the embodiment shown in FIG.
The signals φ and φ applied to the gates of the first and second PMO8T11.12 are signals having the levels of Vdd and QQ, and when the signal φ falls (therefore, when φ rises) The potential of the drain Q of the first PMO8T11 rises to vdd after a certain delay. Then, the second PMO
The drain Q of 8T12 falls to V81. Therefore, the output X of the first NAND gate 17 rises to Vdd, and then the output Y of the second NAND gate 18 rises to Vllg.
Falling down. In this series of operations, the first PMO8
At the time when T11 is turned on, the first NMO8T
13 is on, but the third ONMO8T15 is off, so no conflict occurs. Also, the third ONMOS T
15 is turned on after the first NMO8T13 is turned off, so there is no conflict here either. On the other hand, since the second and fourth NMO8T14.16 are both on at the time when the 2CPMO8T12 is turned off, the potential at the point Q rapidly falls to Vllg. Furthermore, the fourth ONMOS T16 is turned off only after the potential of Q falls and therefore the output X of the first NAND gate 17 rises, so the potential of Q can sufficiently fall during this period. Here, when the NMO8T16 is turned off, the point Q becomes a floating state, but Q
A low potential is maintained by the floating capacitance. If there is a risk that the potential at point Q may fluctuate due to leakage, etc., a DC path sufficient to overcome leakage may be provided between point Q and vBIl, but as shown by the broken line in FIG. Efficiency is better if a resistance component 19.20 is provided between the drains M and N of the third and fourth NMO8T15.16 and V58.

第4図は本発明の他の実施例で有って、第2図に於ける
NANDゲート17.18に替えてNORゲート26.
24を用いた例で有り、該NORゲート23.24のそ
れぞれの一方の入力端はそれぞれインバータ21.22
を介してQ、Qに接続される。第5図は第4図に示す実
施例の動作波形図で有って若干の違いは有るが第3図に
ついて説明したと同様の効果が得られるのが明白で有る
。またフローティング状態については前述した通りで有
り説明を省略する。(以下の実施例についても同様とす
る) 次に第6図、第7図は第4図に実した実施例を論理変換
してNANDゲートとインバータに置き替えた実施例で
有って、各波形に若干の相異は有るが基本的には同一の
効果を得る。また第8図、第9図は第2図に示した実施
例を論理変換してインバータとNORゲートに置き替え
た実施例を示すもので有って、基本的には第2図と同一
で有る。
FIG. 4 shows another embodiment of the present invention, in which NOR gates 26.18 are replaced with NAND gates 17.18 in FIG.
24, one input terminal of each of the NOR gates 23 and 24 is connected to an inverter 21 and 22, respectively.
Connected to Q and Q via. FIG. 5 is an operational waveform diagram of the embodiment shown in FIG. 4, and although there are some differences, it is clear that the same effect as explained with respect to FIG. 3 can be obtained. Further, the floating state is as described above and will not be described here. (The same applies to the following embodiments.) Next, FIGS. 6 and 7 are embodiments in which the embodiment shown in FIG. 4 is logically converted and replaced with a NAND gate and an inverter. There are some differences in waveforms, but basically the same effect is obtained. Moreover, FIGS. 8 and 9 show an example in which the embodiment shown in FIG. 2 is logically converted and replaced with an inverter and a NOR gate, and is basically the same as FIG. 2. Yes.

上記の実施例に於ては説明の簡略化のため、その動作波
形の立上り立下り時間を無視して単純に遅延時間のみを
示したが、実際には論理ゲートのスレッショルドレベル
とトランジスタのスレッショルドレベルは異るから立上
り立下り時間を吟味する必要が有る。第8図に示した実
施例の如く、遅延する部分が多い場合は良いが、第2図
に示した実施例の如(遅延部分が少ない場合には、例え
ば前記点Qの電位が下って行って前記NANDゲート1
)の出力Xが立上った時点で前記NMO8T13がオン
のままの危険性が存在する。
In the above embodiment, to simplify the explanation, only the delay time is shown, ignoring the rise and fall times of the operating waveform, but in reality, the threshold level of the logic gate and the threshold level of the transistor are shown. Since these are different, it is necessary to carefully examine the rise and fall times. It is good if there are many delayed parts as in the embodiment shown in FIG. 8, but if there are few delayed parts as in the embodiment shown in FIG. The NAND gate 1
) There is a risk that the NMO8T13 remains on at the time when the output X of

この点については前記NANDゲート17.18を構成
するトランジスタのサイズを変える事により1問題を解
決する事が可能で有る。更にこの様な方法を積極的に採
入れる方向を考えるならば第10図に示す実施例が採用
出来る。即ち第10図−に於てインバータ61.62.
66.64の遅延が十分大きくなる如く構成すれば第1
1図に示した波形で明かな如く前述の実施例と同様の効
果が得られる。また第12図に示した実施例の如く遅延
を抵抗成分41.42と浮遊容量とで構成しても良、い
事が分る。
Regarding this point, it is possible to solve one problem by changing the size of the transistors constituting the NAND gates 17 and 18. Furthermore, if we consider actively adopting such a method, the embodiment shown in FIG. 10 can be adopted. That is, in FIG. 10, inverters 61, 62.
If the configuration is configured so that the delay of 66.64 is sufficiently large, the first
As is clear from the waveform shown in FIG. 1, the same effects as in the previous embodiment can be obtained. It can also be seen that the delay may be constructed from resistance components 41, 42 and stray capacitance as in the embodiment shown in FIG.

以上の実施例から本発明の特徴をまとめると、本発明は
前記第3のNMO3T15のゲートに前記点Qに現れる
信号と同相で有って、かつ位相が遅れた信号を印加し、
前記第4のNMO8T16のゲートに前記点Qに現れる
信号と同相で有って、かつ位相が遅れた信号を印加する
事を特徴としている事が分る。
To summarize the features of the present invention from the above embodiments, the present invention applies a signal that is in phase with the signal appearing at the point Q and delayed in phase to the gate of the third NMO3T15,
It can be seen that the feature is that a signal which is in phase with the signal appearing at the point Q and whose phase is delayed is applied to the gate of the fourth NMO8T16.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明のレベル変換回路は競合状態がな
いためトランジスタサイズの大巾な変更は必要とせず、
他の回路部分との整合性が良い上、消費電流が少なく、
かつ電圧特性、高速性に優れたもので有り、その実施効
果は極めて犬で有る。
As described above, the level conversion circuit of the present invention does not require a large change in transistor size because there is no competition condition.
Good compatibility with other circuit parts, low current consumption,
It also has excellent voltage characteristics and high speed, and its implementation effects are extremely impressive.

なお第14図に示した如く、第1及び第2のPM、03
T11.12に並列に第3、第4のPMOS T 51
.52を接続し、各々のゲートを前記点Q、Qに接続す
る等の変更も可能で有る。
In addition, as shown in FIG. 14, the first and second PM, 03
3rd and 4th PMOS T51 in parallel with T11.12
.. It is also possible to make changes such as connecting 52 and connecting each gate to the points Q and Q.

更に前記の点M及びNに下げる抵抗成分を共通にして第
14図の如(M及びN間に接続しても良い。
Furthermore, the resistance component lowered at the points M and N may be connected in common (between M and N as shown in FIG. 14).

また上記説明中、各トランジスタの基板の接続について
記述しなかったが、電源に接続するか、ソースに接続す
るか、オープンにするかは使用者の任意で有る。更に又
上記の各実施例は■ddを基準とするレベル変換器の場
合について示したが、Vssを基準とする場合は同様の
思想の下で構成を変えれば良い事は明白で有、る。
Further, in the above description, connection of the substrate of each transistor was not described, but it is up to the user to connect it to the power supply, to the source, or to leave it open. Furthermore, although each of the above-mentioned embodiments has been shown in the case of a level converter using DD as a reference, it is obvious that if Vss is used as a reference, the configuration can be changed based on the same concept.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は従来技術を示す回路図と波形図
。 第2図〜第9図は本発明の一実施例を示し、第2図、第
4図、第6図、第8図は回路図、第3図、第5図、第7
図、第9図は波形図。 第10図、第11図は本発明の他の実施例を示す回路図
と波形図。 第12図、第13図は更に他の実施例を示す回略図と波
形図。 第14図も本発明の他の実施例を示す回路図で有る。 11・・・・・第1のPMO8T。 12・・・・・第2のPMO8T。 16・・・・・・第1ONMO8T。 14・・・・・第2のNMO8T。 15・・・・第3ONMO8T。 1゛;稀・・・・・・第4ONMOS T0第2図 第
3図 第6図 第7図 第8図 第9図 第10図 第11図
FIGS. 1(a) and 1(b) are circuit diagrams and waveform diagrams showing the prior art. 2 to 9 show an embodiment of the present invention, FIGS. 2, 4, 6, and 8 are circuit diagrams, and FIGS. 3, 5, and 7
Figure 9 is a waveform diagram. FIGS. 10 and 11 are circuit diagrams and waveform diagrams showing other embodiments of the present invention. FIG. 12 and FIG. 13 are a schematic diagram and a waveform diagram showing still another embodiment. FIG. 14 is also a circuit diagram showing another embodiment of the present invention. 11...First PMO8T. 12...Second PMO8T. 16...1st ONMO8T. 14...Second NMO8T. 15...3rd ONMO8T. 1゛;Rare...4th ONMOS T0 Fig. 2 Fig. 3 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11

Claims (1)

【特許請求の範囲】[Claims] 第1の型のMOS)ランジスタ(以下PMO8Tと略記
する)と第2の型のMOS)ランジスタ(以下NMO8
Tと略記する)で構成され、第1のPMO8Tのドレイ
ンを第1のNMO8Tのドレイン及び第2ONMO8T
のゲートに接続する手段と、前記第1のNMO8Tのソ
ースを第3ONMO8Tのドレインに接続する手段と、
第2のPMO8Tのドレインを前記第2ONMO8Tの
ドレイン及び前記第1ONMO8Tのゲートに接続する
手段と、前記第2のNMO8Tのソースを第4のNMO
8Tのドレインに接続する手段と、前記第1、第2のP
MO8Tのソースを第1の電源線に接続する手段と、前
記第3、第4ONMO8Tのソースを第2の電源線に接
続する手段と、前記第3ONMO8Tのゲートに前記第
1のPMO8Tのドレインに現れる信号を遅延して印加
する手段と、前記第4ONMO8Tのゲートに前記第2
のPMO8Tのドレインに現れる信号を遅延して印加す
る手段を有し、前記第1、第2のPMO8Tのゲートの
それぞれに、前記第1の電源線と第3の電源線のレベル
で動く信号φ及びφを印加する事を特徴とするレベル変
換回路。
The first type MOS) transistor (hereinafter abbreviated as PMO8T) and the second type MOS) transistor (hereinafter abbreviated as NMO8T)
(abbreviated as T), and the drain of the first PMO8T is connected to the drain of the first NMO8T and the second ONMO8T.
means for connecting the source of the first NMO8T to the drain of the third ONMO8T;
means for connecting the drain of a second PMO8T to the drain of the second ONMO8T and the gate of the first ONMO8T; and means for connecting the source of the second NMO8T to a fourth NMO8T;
means for connecting to the drain of 8T, and the first and second P
means for connecting the source of the MO8T to a first power supply line; means for connecting the sources of the third and fourth ONMO8T to a second power supply line; means for applying a delayed signal; and means for applying a delayed signal to the gate of the fourth ONMO8T;
has means for delaying and applying a signal appearing at the drain of the PMO 8T, and a signal φ that operates at the level of the first power supply line and the third power supply line is applied to each of the gates of the first and second PMO 8T. A level conversion circuit characterized by applying φ and φ.
JP7424784A 1984-04-13 1984-04-13 Level converting circuit Pending JPS60217723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7424784A JPS60217723A (en) 1984-04-13 1984-04-13 Level converting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7424784A JPS60217723A (en) 1984-04-13 1984-04-13 Level converting circuit

Publications (1)

Publication Number Publication Date
JPS60217723A true JPS60217723A (en) 1985-10-31

Family

ID=13541638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7424784A Pending JPS60217723A (en) 1984-04-13 1984-04-13 Level converting circuit

Country Status (1)

Country Link
JP (1) JPS60217723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010882A3 (en) * 2001-07-25 2004-09-30 Koninkl Philips Electronics Nv Electronic circuit comprising an amplifier for amplifying a binary signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010882A3 (en) * 2001-07-25 2004-09-30 Koninkl Philips Electronics Nv Electronic circuit comprising an amplifier for amplifying a binary signal

Similar Documents

Publication Publication Date Title
KR100197188B1 (en) Voltage level converting circuit
US7061299B2 (en) Bidirectional level shifter
US6700429B2 (en) Semiconductor device
KR100218506B1 (en) Level shift circuit for liquid crystal device
US7683668B1 (en) Level shifter
JPH11274912A (en) Level shift circuit
EP2965425B1 (en) Voltage level shifter with a low-latency voltage boost circuit
JP3512763B2 (en) Single-ended high voltage level shifter used for gate driver of thin film transistor liquid crystal display
JP3230655B2 (en) Dynamic latch circuit and flip-flop circuit
US20040085092A1 (en) Level shifter
JP2002076882A (en) Semiconductor integrated circuit device
JP3251268B2 (en) Level shift circuit
JPS60217723A (en) Level converting circuit
JP2001111412A (en) Input signal level conversion circuit and liquid crystal display device
EP0034465B1 (en) Address buffer circuit
KR100214079B1 (en) Level shifter for semiconductor device
JP2011004313A (en) Semiconductor integrated circuit device
JPH1127137A (en) Semiconductor integrated circuit
JPH0546113A (en) Semiconductor integrated circuit
JPH0774620A (en) Buffer circuit
JP2004007831A (en) Level shift circuit
JPS60212025A (en) Master-slave type level converting circuit
JPH11122092A (en) Signal level conversion circuit
JP3396555B2 (en) Semiconductor pump circuit
JP3505314B2 (en) High breakdown voltage circuit and voltage level conversion circuit