JPS60217662A - Solid-state image pickup board - Google Patents

Solid-state image pickup board

Info

Publication number
JPS60217662A
JPS60217662A JP59072945A JP7294584A JPS60217662A JP S60217662 A JPS60217662 A JP S60217662A JP 59072945 A JP59072945 A JP 59072945A JP 7294584 A JP7294584 A JP 7294584A JP S60217662 A JPS60217662 A JP S60217662A
Authority
JP
Japan
Prior art keywords
film
aluminum
polycrystalline silicon
solid
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59072945A
Other languages
Japanese (ja)
Inventor
Masaki Shintani
正樹 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Nippon Victor KK
Original Assignee
Victor Company of Japan Ltd
Nippon Victor KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd, Nippon Victor KK filed Critical Victor Company of Japan Ltd
Priority to JP59072945A priority Critical patent/JPS60217662A/en
Publication of JPS60217662A publication Critical patent/JPS60217662A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To improve the dimensional accuracy of finishing, and to enhance reliability and durability by constituting a polycrystalline silicon film under aluminum or an aluminum alloy layer for an electrode wiring in a solid-state image pickup board. CONSTITUTION:Light-receiving sections 12, signal transfer sections 13, insulating films 14 consisting of SiO2 or PSG or the like and signal transfer gates 15 are constituted to a silicon substrate 11. A polycrystalline silicon film 16 is formed on the whole surface through a decompression CVD method, and an aluminum film 17 is shaped on the whole surface of the polycrystalline silicon film 16. A predetermined resist is applied on the surface of the aluminum film 17, and a resist film 18 according to a prescribed pattern is formed through exposure etching. The aluminum film 17 is shaped according to a predetermined pattern for electrode wirings through plasma etching while using the resist film 18 as a mask. Plasma etching is completed, and the polycrystalline silicon film 16 on the surfaces of the light-receiving sections 12 is removed by treating the film 16 by a mixed solution of substances such as approximately 1% hydrofluoric acid and nitric acid, thus obtaining a solid-state image pickup board in which there is the polycrystalline silicon film 16 under the aluminum film 17 for electrode wirings.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体撮像板に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a solid-state imaging plate.

〔従来技術とその問題点〕[Prior art and its problems]

近年、固体撮像板には高解像度のものが増々要求されて
いる。
In recent years, solid-state imaging plates are increasingly required to have high resolution.

この高解像度の要求は、固体撮像板素子を微細化し、画
素密度を増すことによって実現され得る。
This requirement for high resolution can be achieved by miniaturizing solid-state image sensor elements and increasing pixel density.

ところが、例えば2μITI程度に固体撮像板素子を微
細化する為には、素子を構成する5in2やAZ等のエ
ツチング加工が溶液によるウェットエツチングでは満足
できず、プラズマエツチング法にたよらざるを得ない。
However, in order to miniaturize a solid-state imaging plate element to, for example, about 2 μITI, etching of 5in2, AZ, etc. constituting the element cannot be achieved by wet etching using a solution, and plasma etching must be used.

すなわち、5in2やktのエツチング加工手段として
プラズマエツチング法を採用することによって、2μm
程度の微細加工が可能となり、高解像度の固体撮像板が
得られるようになる。
In other words, by adopting the plasma etching method as the etching method for 5in2 and kt, it is possible to
It becomes possible to perform fine processing to a certain extent, and it becomes possible to obtain a high-resolution solid-state imaging plate.

しかし、プラズマエツチング技術を用いて固体撮像板を
得ようとすると、ウェットエツチング技術が用いられた
場合には起きなかった問題が生じる。例えば、固体撮像
板素子の微細化ということは受光部の面積も当然にして
狭くなることであり、従って高感度化の為には少しでも
多くの光が受光部に入射できるようにしておかねばなら
ない。ところが、プラズマエツチング技術が用いられる
と、プラズマエツチング後に除去困難な残清か受光部表
面に残り、この為受光部への入射光量はそれだけ減少し
てしまい、感度が低下してしまう。
However, when attempting to obtain a solid-state imaging plate using plasma etching techniques, problems arise that do not occur when wet etching techniques are used. For example, the miniaturization of solid-state image sensor elements naturally means that the area of the light-receiving part also becomes smaller, so in order to increase sensitivity, it is necessary to allow as much light as possible to enter the light-receiving part. No. However, when plasma etching technology is used, residual material that is difficult to remove remains on the surface of the light receiving section after plasma etching, and as a result, the amount of light incident on the light receiving section is reduced accordingly, resulting in a decrease in sensitivity.

すなわち、従来の固体撮像板は、第3図及び第4図に示
す如く、シリコン基板1に受光部(ソース)2、信号転
送部(ドレ、イン)3、Sin、等の絶縁膜4及び信号
転送ゲート5等が構成された後、全面に電極配線用のア
ルミニウム又はアルミニウム合金(以下単にアルミニウ
ム)膜6を成膜し、このアルミニウム膜6上に所定のレ
ジスト膜を形成して所定のパターンとなしたレジスト膜
7をマスクとしてプラズマエツチングを行なうこ・とに
よって、アルミニウム膜6が所定の電極配線用の・々タ
ーンとなった第3図に示すような固体撮像板が得られる
That is, as shown in FIGS. 3 and 4, the conventional solid-state image pickup plate includes a silicon substrate 1, a light receiving part (source) 2, a signal transfer part (drain, in) 3, an insulating film 4 such as Sin, and a signal After the transfer gate 5 and the like are constructed, an aluminum or aluminum alloy (hereinafter simply referred to as aluminum) film 6 for electrode wiring is formed on the entire surface, and a prescribed resist film is formed on this aluminum film 6 to form a prescribed pattern. By performing plasma etching using the formed resist film 7 as a mask, a solid-state imaging plate as shown in FIG. 3 is obtained in which the aluminum film 6 forms turns for predetermined electrode wiring.

ととるが、この固体撮像板は、アルミニウム膜を電極配
線用の所定パターンに形成するに際して、プラズマエツ
チング(リアクティブイオンエツチング)技術が用いら
れていることより、エツチング中に生成する重合膜、ア
ルミニウム中のSiやCu等の成分(アルミニウム合金
でなくてもアルミニウム材中に微量の不可避不純物が含
まれており、これら不可避不純物成分)が受光部2表面
に残yI!i、8として残ってしまい、これらの残渣8
が入射光を散乱させたり、吸収してしまう為、固体撮像
板の感度を劣下させてし寸うことになる。
However, since this solid-state imaging plate uses plasma etching (reactive ion etching) technology to form the aluminum film into a predetermined pattern for electrode wiring, the polymer film and aluminum produced during etching are Components such as Si and Cu (even if it is not an aluminum alloy, aluminum materials contain trace amounts of unavoidable impurities, and these unavoidable impurity components) remain on the surface of the light receiving part 2! i, 8, and these residues 8
Since the light scatters or absorbs the incident light, the sensitivity of the solid-state image pickup plate is reduced.

伺、上記残?h、8がエツチング中に生成する重合膜の
ものである場合には、このような残渣を除去することは
ほとんど不可能である。
Hey, what's left of the above? If h,8 is of a polymeric film formed during etching, it is almost impossible to remove such residues.

〔問題点を解決する為の手段〕[Means for solving problems]

固体撮像板の電極配線用アルミニウム又はアルミニウム
合金層の下に多結晶シリコン膜を構成する。
A polycrystalline silicon film is formed under the aluminum or aluminum alloy layer for electrode wiring of the solid-state imaging plate.

〔実施例〕〔Example〕

第1図は本発明に係る固体撮像板の1実施例の説明図、
第2図は第1図の固体撮像板製造工程における途中の説
明図である。
FIG. 1 is an explanatory diagram of one embodiment of a solid-state imaging plate according to the present invention,
FIG. 2 is an explanatory diagram in the middle of the solid-state imaging plate manufacturing process of FIG. 1.

同図中、11は、例えばシリコン基板でちり、このシリ
コン基板11には、従来の固体撮像板の場合と同様に受
光部12、信号転送部13.5102又はPSG等の絶
縁膜14及び信号転送ゲート15が構成されている。
In the figure, 11 is a silicon substrate, for example, and this silicon substrate 11 includes a light receiving part 12, a signal transfer part 13, an insulating film 14 such as PSG, and a signal transfer part 13, as in the case of a conventional solid-state image pickup plate. A gate 15 is configured.

そして、これらの構成が終った後、減圧CVD法によっ
て全面に多結晶シリコン膜16が約500 A厚形成さ
れ、この多結晶シリコン膜16全面上にアルミニウム膜
17が約1μm厚着膜形成される。
After these structures are completed, a polycrystalline silicon film 16 is formed to a thickness of about 500 A over the entire surface by low pressure CVD, and an aluminum film 17 is formed to a thickness of about 1 μm over the entire surface of the polycrystalline silicon film 16.

その後、このアルミニウム膜17面上に、所定のレジス
トを塗布し、露光エツチングして所定パターンのレジス
ト膜18とする。
Thereafter, a predetermined resist is applied onto the surface of this aluminum film 17, and exposed and etched to form a resist film 18 having a predetermined pattern.

そして、このレジスト膜18をマスクとして、例えばC
Ct4又はCCt、とBct3との混合ガスといった塩
素系化合物のエッチャントによってプラズマエツチング
を行ない、アルミニウム膜17を電極配線用の所定パタ
ーンに形成する。
Then, using this resist film 18 as a mask, for example, C.
Plasma etching is performed using a chlorine compound etchant such as Ct4 or a mixed gas of CCt and Bct3 to form the aluminum film 17 into a predetermined pattern for electrode wiring.

その後、アルミニウム膜17に対するプラズマエツチン
グが終了した後、受光部12面上の多結晶シリコン膜1
6を、例えば1%程度のフッ酸と硝酸との混合溶液で処
理することによって除去し、第1図に示されるような電
極配線用アルミニウム膜17の下には多結晶シリコン膜
16がある固体撮像板を得る。
After that, after the plasma etching of the aluminum film 17 is completed, the polycrystalline silicon film 1 on the surface of the light receiving part 12 is removed.
6 is removed by treating with a mixed solution of about 1% hydrofluoric acid and nitric acid, for example, to form a solid state with a polycrystalline silicon film 16 under the aluminum film 17 for electrode wiring as shown in FIG. Obtain an imaging plate.

上記構成の固体撮像板においては、アルミニウム膜17
の下に多結晶シリコン膜16があるので、アルミニウム
膜のエレクトロマイクレープヨンカ防止され、又、アル
ミニウム膜17のプラズマエツチングに際してアンダー
カットが生じる場合でもレジスト膜18の下の多結晶シ
リコン膜16はエツチングされないので、アンダーカッ
トは最小限にとどめられ、電極配線用のアルミニウム膜
のエツチング精度が向上し、つまり電極配線の精度は著
しくよくなシ、それだけ信頼性及び耐久性が向上する。
In the solid-state imaging plate having the above configuration, the aluminum film 17
Since there is a polycrystalline silicon film 16 underneath, electromicrobial crepe on the aluminum film is prevented, and even if an undercut occurs during plasma etching of the aluminum film 17, the polycrystalline silicon film 16 under the resist film 18 can be etched. Therefore, undercuts are minimized, and the etching accuracy of the aluminum film for electrode wiring is improved. In other words, the accuracy of the electrode wiring is significantly improved, and the reliability and durability are improved accordingly.

賞、多結晶シリコンは導電性であるから、電極配線の一
部として作用しても伺等差し支えない。
Since polycrystalline silicon is conductive, there is no problem in using it as part of the electrode wiring.

又、アルミニウム膜のプラズマエツチングに際して、ア
ルミニウム膜17に対するエツチングが終了すると多結
晶シリコン膜16に対するエツチングが始まるので、仁
の多結晶シリコンのエツチングによる発光スペクトルを
観測し、この発光スペクトルが観測されるとプラズマエ
ツチングを終了すればよく、すなわちプラズマエツチン
グのコントロールを簡単に行なえ、従ってプラズマエツ
チング精度が向上し、電極配線の精度は向上する。
Furthermore, during plasma etching of the aluminum film, when the etching of the aluminum film 17 is completed, etching of the polycrystalline silicon film 16 begins, so the emission spectrum due to the etching of the polycrystalline silicon is observed, and when this emission spectrum is observed, It is only necessary to finish the plasma etching, that is, the plasma etching can be easily controlled, thereby improving the precision of the plasma etching and the precision of the electrode wiring.

そして、アルミニウム膜のプラズマエツチングによって
従来と同じような残清か多結晶シリコン膜16上に生じ
ていても、多結晶シリコン膜16の除去によって簡単に
除去できる。つ1す、アルミニウム膜17に対するプラ
ズマエツチング終了後、1係程度のフッ酸と硝酸との混
合溶液中に浸漬すれば露出している受光部12面上の多
結晶ノリコン膜16は簡単に除去でき、その結果受光部
12面上の残渣はなくなり、しかも多結晶シリコン膜1
6はアルミニウム膜17に比べて薄いものであるから、
短時間の処理で受光部12面上の多結晶7リコン膜16
を除去でき、その際電極配線用のアルミニウム膜17に
はほとんど影響なく、電極配線用のアルミニウム膜17
の寸法精度はほとんど低下することもない。
Further, even if a residue similar to that in the conventional method is generated on the polycrystalline silicon film 16 due to the plasma etching of the aluminum film, it can be easily removed by removing the polycrystalline silicon film 16. First, after the plasma etching of the aluminum film 17 is completed, the polycrystalline silicon film 16 on the exposed surface of the light receiving part 12 can be easily removed by immersing it in a mixed solution of about 1% hydrofluoric acid and nitric acid. As a result, there is no residue on the surface of the light receiving part 12, and the polycrystalline silicon film 1 is removed.
6 is thinner than the aluminum film 17,
A polycrystalline silicon film 16 on the light receiving part 12 surface is formed in a short time.
The aluminum film 17 for electrode wiring can be removed with almost no effect on the aluminum film 17 for electrode wiring.
dimensional accuracy hardly decreases.

この結果、受光部12面上には不必要なものがなくなり
、入射光を減少させるものではないので撮像板の感度は
向−ヒする○ 又、例えば希フッ酸硝酸混液による処理は、プラズマエ
ツチングによってS + 02の絶縁膜14がダメージ
受けても、このダメージ層を除去できるので好ましいも
のである。
As a result, there is no unnecessary material on the surface of the light-receiving section 12, and since it does not reduce the incident light, the sensitivity of the image pickup plate is improved. This is preferable because even if the S + 02 insulating film 14 is damaged by this, the damaged layer can be removed.

〔効果〕〔effect〕

電極配線用アルミニウム又はアルミニウム合金層の加工
寸法精度が向上し、信頼性及び耐久性に富むものとなる
The processing dimensional accuracy of the aluminum or aluminum alloy layer for electrode wiring is improved, and it becomes highly reliable and durable.

又、受光部面上に入射光を遮るようなエツチング残渣の
ないものとでき、従って感度の向上した固体撮像板とな
る。
Furthermore, there is no etching residue on the light-receiving surface that would block incident light, resulting in a solid-state imaging plate with improved sensitivity.

又、素子の微細化を図ることができ、つまり画素密度を
高める手段が採用できるので、高解像度の固体撮像板と
なる。
Furthermore, it is possible to miniaturize the elements, that is, it is possible to employ means for increasing the pixel density, resulting in a high-resolution solid-state imaging plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係る固体撮像板の1実施例
の説明図、第3図及び第4図は従来の固体撮像板の説明
図である。 16・・・多結晶シリコン膜(多結晶シリコン層)、1
7・・・アルミニウム膜(電極配線用アルミニウム又は
アルミニウム合金層)。 ・(“1 ;−2 fil釣 才2n 才3図 才4図
FIGS. 1 and 2 are explanatory diagrams of one embodiment of a solid-state imaging plate according to the present invention, and FIGS. 3 and 4 are explanatory diagrams of a conventional solid-state imaging plate. 16... Polycrystalline silicon film (polycrystalline silicon layer), 1
7... Aluminum film (aluminum or aluminum alloy layer for electrode wiring).・(“1 ;-2 fil fishing 2n 3rd figure 4th figure

Claims (1)

【特許請求の範囲】[Claims] 固体撮像板の電極配線用アルミニウム又はアルミニウム
合金層の下に多結晶シリコン層を構成したことを特徴と
する固体撮像板。
A solid-state imaging plate comprising a polycrystalline silicon layer under an aluminum or aluminum alloy layer for electrode wiring of the solid-state imaging plate.
JP59072945A 1984-04-13 1984-04-13 Solid-state image pickup board Pending JPS60217662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59072945A JPS60217662A (en) 1984-04-13 1984-04-13 Solid-state image pickup board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59072945A JPS60217662A (en) 1984-04-13 1984-04-13 Solid-state image pickup board

Publications (1)

Publication Number Publication Date
JPS60217662A true JPS60217662A (en) 1985-10-31

Family

ID=13504023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59072945A Pending JPS60217662A (en) 1984-04-13 1984-04-13 Solid-state image pickup board

Country Status (1)

Country Link
JP (1) JPS60217662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589705A (en) * 1992-03-24 1996-12-31 Seiko Instruments Inc. Real-time semiconductor radiation detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589705A (en) * 1992-03-24 1996-12-31 Seiko Instruments Inc. Real-time semiconductor radiation detector
US5757040A (en) * 1992-03-24 1998-05-26 Seiko Instruments Inc. Real-time semiconductor radiation detector

Similar Documents

Publication Publication Date Title
US6344369B1 (en) Method of protecting a bond pad structure, of a color image sensor cell, during a color filter fabrication process
JPH0745510A (en) Pattern forming method
JP5532438B2 (en) P (VDF / TrFE) copolymer layer sensor manufacturing method and corresponding sensor
US7670863B2 (en) Method of fabricating complementary metal oxide silicon image sensor
US4532005A (en) Device lithography using multi-level resist systems
KR100873275B1 (en) Method for fabricating image sensor
JP2002334987A (en) Manufacturing method of imager array
JP2997452B2 (en) Processing method of complementary MOS color filter
US5871886A (en) Sandwiched middle antireflection coating (SMARC) process
JPS60217662A (en) Solid-state image pickup board
KR100971207B1 (en) microlens, method of fabricating microlens thereof
US4690880A (en) Pattern forming method
JP2003229551A (en) Method for manufacturing solid-state imaging apparatus
US20100022037A1 (en) Method for fabricating cmos image sensor
US6153531A (en) Method for preventing electrochemical erosion of interconnect structures
JP2007096202A (en) Integrated circuit and manufacturing method therefor
JPH08222543A (en) Formation of micropattern and manufacture of solid-state imaging device
JPH0536648A (en) Semiconductor substrate etching method and semiconductor device manufactured thereby
EP0104235A4 (en) Electron beam-optical hybrid lithographic resist process.
JPH0319540B2 (en)
JPH0555218A (en) Semiconductor device and manufacture thereof
US5212117A (en) Method of manufacturing a semiconductor device contact structure using lift
JPS58175863A (en) Processing of semiconductor element
JPH03257825A (en) Manufacture of semiconductor device
KR100876873B1 (en) Method for forming conductive pattern of semiconductor device