JPS60217522A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPS60217522A
JPS60217522A JP7403484A JP7403484A JPS60217522A JP S60217522 A JPS60217522 A JP S60217522A JP 7403484 A JP7403484 A JP 7403484A JP 7403484 A JP7403484 A JP 7403484A JP S60217522 A JPS60217522 A JP S60217522A
Authority
JP
Japan
Prior art keywords
film
permalloy
layer
films
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7403484A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Kazuyoshi Honda
和義 本田
Hiroshi Nishida
宏 西田
Kyoji Noda
恭司 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7403484A priority Critical patent/JPS60217522A/en
Publication of JPS60217522A publication Critical patent/JPS60217522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having excellent high reproduction output by having he multi-layered structure of ''Permalloy'' films separated by >=1 layers of Ti films on a non-magnetic substrate, forming >=1 layers of the Ti films in the form of discontinuous films and forming a vertically magnetized Co-Cr film on the ''Permalloy'' films. CONSTITUTION:The ''Permalloy film'' 4 and the thin Ti film 6 are formed on the substrate 1 consisting of a heat resistant high polymer film, etc. by stopping once deposition then starting deposition again without depositing continuously the Ti over the entire layer to the entire film thickness. The ''Permalloy'' film 4 is again formed thereon and the vertically magnetized Co-Cr film is formed thereon. The ''Permalloy films'' are otherwise separated by the plural Ti films and the multi-layered structure is made by forming the ''Permally'' film 4 on the substrate 7, the Ti film 8 deposited continuously in the thickness direction, the film 4, the Ti film deposited again after stopping once the deposition in the thickness direction, the film 4 and the film 2. The magnetic recording medium which has excellent recording and recording characteristics and is suitable for high-density recording is thus obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度記録特性の優れた、垂直磁気記録用の媒
体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a medium for perpendicular magnetic recording that has excellent high-density recording characteristics.

従来例の構成とその問題点 短波長記録特性の優れた磁気記録方式として、垂直磁気
記録方式がある。この方式においては、媒体の膜面に略
垂直方向が磁化容易軸である垂直磁気記録媒体が必要と
なる。このような媒体に信号を記録すると残留磁化は媒
体の膜面に略垂直方向を向き、従って信号が短波長にな
る程媒体内反磁界は減少し、優れた再生出力が得られる
。単層膜媒体と呼ばれるCo−Cr垂直磁気記録媒体は
、非磁性材料より成る基板上に、COとCrを主成分と
する垂直磁化膜を、スパッタリング法や真空蒸着法(イ
オンブレーティング法のように蒸発原子の一部をイオン
化して蒸着する方法も含む)で形成したものである。こ
のような構造の単層膜媒体に対し、第1図に示すような
、非磁性材料より成る基板1とCo−Cr垂直磁化膜2
との間に、ノ(−マロイ膜3を設けた、いわゆる2層膜
媒体と呼ばれる構造にすることにより、記録効率及び再
生出力が向上することが知られている。特に公知の補助
磁極励磁型垂直ヘッドを用いて記録再生を行なう際には
、記録効率が約20 dB改善され、再生出力が約20
 dB内向上る。
Conventional Structure and Problems There is a perpendicular magnetic recording system as a magnetic recording system with excellent short wavelength recording characteristics. This method requires a perpendicular magnetic recording medium whose axis of easy magnetization is approximately perpendicular to the film surface of the medium. When a signal is recorded on such a medium, the residual magnetization is oriented in a direction substantially perpendicular to the film surface of the medium, and therefore, the shorter the wavelength of the signal, the smaller the demagnetizing field within the medium, resulting in excellent reproduction output. Co-Cr perpendicular magnetic recording media, also known as single-layer media, are made by depositing a perpendicularly magnetized film containing CO and Cr as main components on a substrate made of non-magnetic material using sputtering or vacuum evaporation methods (such as ion blating). (including a method in which some of the evaporated atoms are ionized and deposited). For a single-layer film medium having such a structure, a substrate 1 made of a non-magnetic material and a Co-Cr perpendicularly magnetized film 2 as shown in FIG.
It is known that recording efficiency and reproduction output can be improved by creating a structure called a so-called two-layer film medium in which a No(-Malloy film 3 is provided between the When recording and reproducing using a vertical head, the recording efficiency is improved by approximately 20 dB, and the reproduction output is approximately 20 dB.
Improve within dB.

上記の如く2層膜媒体の記録再生特性が、単層膜媒体よ
りも大幅に優れている原因の1つは、)(−マロイ膜3
がヘッドの一部として動作するからである。従って、パ
ーマロイ膜3の透磁率μは大きい方が望ましい。μを丙
きくするためには、材料組成9作製条件等を最適にする
ことが考えられるが、これら以外に、膜構造を変えるこ
とによっても、μを大きくすることが可能である。すな
わち第2図あるいは第3図に示すように、パーマロイ膜
4を非磁性層6で2層以上に分離することにより、第1
図に示される単層構造のパーマロイ膜3に対し、μが大
きくなることが本発明者らにより確認されている。なお
ここでは、第2図及び第3図のパーマロイを、それぞれ
2層構造及び3層構造と称し、2層以上の構造を多層構
造と称する。
As mentioned above, one of the reasons why the recording and reproducing characteristics of the dual-layer film media are significantly superior to that of the single-layer film media is as follows: )(-Malloy film 3
This is because it operates as part of the head. Therefore, it is desirable that the magnetic permeability μ of the permalloy film 3 is large. In order to increase μ, it is conceivable to optimize the manufacturing conditions of the material composition 9, but in addition to these, it is also possible to increase μ by changing the film structure. That is, as shown in FIG. 2 or 3, by separating the permalloy film 4 into two or more layers with the nonmagnetic layer 6, the first
The present inventors have confirmed that μ is larger than the permalloy film 3 having a single layer structure shown in the figure. Here, the permalloys shown in FIGS. 2 and 3 are referred to as a two-layer structure and a three-layer structure, respectively, and a structure with two or more layers is referred to as a multilayer structure.

またパーマロイ膜を多層構造にすることによりμが増大
する原因は、多層構造のパーマロイ膜においては、各層
間の静磁相互作用によシ磁壁エネルギーが低下すること
にあるものと思われる。
Moreover, the reason why μ increases when the permalloy film has a multilayer structure is thought to be that in the multilayer permalloy film, the domain wall energy decreases due to magnetostatic interaction between each layer.

パーマロイ膜を多層構造にするだめの非磁性層6として
は、AI 、Al2O3,Cu、Tt 、Si 、5i
n2等のいずれでも良いが、この際にCo−Cr膜3の
結晶配向性を考慮に入れなければならない。すなわちC
The nonmagnetic layer 6 used to make the permalloy film into a multilayer structure includes AI, Al2O3, Cu, Tt, Si, and 5i.
Any film such as n2 may be used, but the crystal orientation of the Co--Cr film 3 must be taken into consideration at this time. That is, C
.

−Cr膜が垂直磁化膜であるためには、稠密六方構造の
C軸が膜面の略垂直方向に配向する必要があるが、非磁
性層5を入れることによりとの配向性に乱れが生じると
、記録再生特性の劣化につながシ、好ましくない。本発
明者らが実験を行なった結果、非磁性層5としてTi 
を用いた場合に、C0−Cr膜のC軸配向性が最も優れ
ていたが、まだ十分な特性とは言えず、更なる特性向上
が望まれていた。
- In order for the Cr film to be a perpendicularly magnetized film, the C-axis of the dense hexagonal structure must be oriented in a direction substantially perpendicular to the film surface, but the inclusion of the non-magnetic layer 5 disrupts the orientation. This is undesirable because it leads to deterioration of recording and reproducing characteristics. As a result of experiments conducted by the present inventors, it was found that Ti was used as the nonmagnetic layer 5.
Although the C-axis orientation of the C0-Cr film was the best when using C0-Cr, the properties were still not sufficient, and further improvement of the properties was desired.

発明の目的 本発明は従来の2層膜媒体に比べ、更に記録再生特性の
優れた2層膜媒体を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a two-layer film medium that has even better recording and reproducing characteristics than conventional two-layer film media.

発明の構成 本発明は非磁性基板上にパーマロイ膜が形成され、その
上に直接にあるいは非磁性層を介してC0−Cr垂直磁
化膜が形成された2層膜媒体において、前記パーマロイ
膜が少なくとも1層のTi 膜で分離された多層構造を
しておシ、かつ前記Ti 膜の少なくとも1層が不連続
形成膜であることを特徴とする垂直磁気記録媒体に関す
るものである。
Structure of the Invention The present invention provides a two-layer film medium in which a permalloy film is formed on a non-magnetic substrate, and a C0-Cr perpendicularly magnetized film is formed on the permalloy film directly or via a non-magnetic layer. The present invention relates to a perpendicular magnetic recording medium characterized in that it has a multilayer structure separated by one Ti film, and at least one of the Ti films is a discontinuously formed film.

実施例の説明 第4図を用いて本発明の説明を行なう。第4図は本発明
の2層膜媒体の1例の基本構成を示し、第2図に示した
従来の2層膜媒体に対し、Ti膜の構造が異なる。すな
わち、従来の2層媒体におけるTi膜は連続形成膜であ
るのに対し、本発明では不連続形成膜になっている。な
お、ここで言う連続形成膜とは、Ti の全膜厚にわた
って連続的に堆積された膜のことである。第4図は2層
構造の不連続形成Ti膜6を設けた場合を示しており、
この構造はT1 の全膜厚にわたって、連続的に膜を堆
積するのではなく、堆積途中で一旦堆積を停止し、再び
堆積を開始して作嶽された膜のことである。3層以上の
構造の不連続形成膜も同様である。このように堆積途中
で一旦堆積を停止すると、堆積が停止している間に、表
面状態の変化。
DESCRIPTION OF EMBODIMENTS The present invention will be explained using FIG. 4. FIG. 4 shows the basic structure of an example of the two-layer film medium of the present invention, which differs from the conventional two-layer film medium shown in FIG. 2 in the structure of the Ti film. That is, while the Ti film in the conventional two-layer medium is a continuously formed film, in the present invention it is a discontinuously formed film. Note that the term "continuously formed film" as used herein refers to a film that is continuously deposited over the entire thickness of Ti. FIG. 4 shows a case where a discontinuously formed Ti film 6 with a two-layer structure is provided.
This structure is a film formed by not continuously depositing a film over the entire film thickness of T1, but by stopping the deposition midway through the deposition and starting the deposition again. The same applies to discontinuously formed films having a structure of three or more layers. In this way, once deposition is stopped midway through deposition, the surface condition changes while deposition is stopped.

表面温度の低下等が生じ、再び堆積を開始して、全膜厚
を形成しても、堆積を停止した部分に境界層が生じる。
Even if the surface temperature decreases and the deposition is restarted to form the full film thickness, a boundary layer is generated in the area where the deposition has stopped.

この層はSEM(走査型電子顕微鏡)やオージェデプス
プロファイル等により観察される。
This layer is observed by SEM (scanning electron microscope), Auger depth profile, or the like.

Ti膜を不連続形成膜にして、第4図に示したような構
造を有する2層膜媒体を作製し、Go −Cr膜の配向
性及び記録再生特性を測定すると、膜の配向性が従来の
2層膜媒体よりも良くなっておシ、また再生出力が増加
することが確かめられた。以下にこのことを説明する。
A two-layer film medium having the structure shown in Fig. 4 was prepared using a discontinuous Ti film, and the orientation and recording/reproducing characteristics of the Go-Cr film were measured. It was confirmed that the playback output was improved compared to the two-layer film medium, and the reproduction output was increased. This will be explained below.

下の表に従来及び本発明の2層膜媒体のCo−0r膜の
配向性及びμの1例をまとめて示す。なお配向性は(0
02)面に関するロッキング曲線の半値幅Δθ。で表わ
し、この値が小さい程、配向性が良いことを意味する。
The table below summarizes an example of the orientation and μ of the Co-Or film of the conventional and inventive two-layer film media. The orientation is (0
02) Half width Δθ of the rocking curve regarding the surface. The smaller this value is, the better the orientation is.

上の表から、従来の2層膜媒体の1例である第1図の構
造の媒体に対し、やはり従来の2層膜媒体の1例である
第2図の構造の媒体は、Δθ5゜及びμともに向上して
いるが、第4図の構造を有する本発明の媒体においては
、Δθ5゜の更なる向上が見られる。以上のように優れ
たΔθ5゜が得られる原因は次のように考えられる。T
i膜は稠密六方構造であシ、真空蒸着法やスパッタリン
グ法により膜を堆積すると、容易にC軸が膜面の垂直方
向に配向する。この上にパーマロイ膜を形成すると、エ
ピタキシー的に成長し、面心立方構造の(111)面が
膜面に平行に配向する。この配向したパーマロイ膜上に
Co−0r膜を形成すると、これもエピタキシー的に成
長し、C軸が膜面の垂直方向に配向する。従ってTi 
のC軸配向性を出来る限シ良くすることが必要であシ、
連続坦成Ti膜よシも不連続形成Ti膜の方がC軸配向
性が優れているためと考えられる♂ 次に実際に信号の記録再生を行ない、従来の媒体(第1
図及び第2図)と、本発明の媒体(第4図)の再生出力
を調べた結果の1例について述べる。なおパーマロイ膜
の全厚は3000A 、 Co −Cr垂直磁化膜の膜
厚は1000人、第2図及び第4図におけるTi膜の全
厚は400人とした。また、信号の記録再生は補助磁極
励磁型垂直ヘッドで行ない、記録密度は1ooKFRP
Iとした。なお、100、KFRPIとは1インチ当た
り10oOoO回磁化反転のあるディジタル信号の記録
状態である。
From the table above, it can be seen that the medium with the structure shown in FIG. 1, which is an example of a conventional two-layer film medium, has a difference of Δθ5° and Although both μ is improved, the medium of the present invention having the structure shown in FIG. 4 shows a further improvement in Δθ5°. The reason why the excellent Δθ5° is obtained as described above is considered to be as follows. T
The i-film has a dense hexagonal structure, and when the film is deposited by vacuum evaporation or sputtering, the C-axis is easily oriented in the direction perpendicular to the film surface. When a permalloy film is formed on this, it grows epitaxially, and the (111) plane of the face-centered cubic structure is oriented parallel to the film surface. When a Co-0r film is formed on this oriented permalloy film, it also grows epitaxially and the C-axis is oriented in the direction perpendicular to the film surface. Therefore, Ti
It is necessary to improve the C-axis orientation of
This is thought to be because the C-axis orientation of the discontinuously formed Ti film is better than that of the continuously planarized Ti film.
2) and the reproduction output of the medium of the present invention (FIG. 4). The total thickness of the permalloy film was 3000 Å, the thickness of the Co-Cr perpendicular magnetization film was 1000 Å, and the total thickness of the Ti film in FIGS. 2 and 4 was 400 Å. In addition, signal recording and reproduction is performed using an auxiliary magnetic pole excitation type vertical head, and the recording density is 1ooKFRP.
It was set as I. Note that 100KFRPI is a recording state of a digital signal in which magnetization is reversed 10oOoO times per inch.

第1図の構造の媒体の再生出力をodB とすると、第
2図及び第4図の構造の媒体は、それぞれ十ydB及び
+12dBであった。従って、Ti膜を不連続形成する
ことにより、従来の2層膜媒体よりも再生出力が大幅に
高くなることがわかる。
If the reproduction output of the medium having the structure shown in FIG. 1 is odB, then the medium having the structures shown in FIGS. 2 and 4 had outputs of 10 ydB and +12 dB, respectively. Therefore, it can be seen that by forming the Ti film discontinuously, the reproduction output is significantly higher than that of the conventional two-layer film medium.

以上では2層構造のパーマロイ膜の場合について述べた
が、第3図に示されるような3層構造、あるいはそれ以
上の構造のパーマロイ膜の場合にも同様のことが言える
。すなわちパーマロイ膜を多層に分離しているTi膜の
、少なくとも1層が不連続形成膜であれば、従来の2層
膜媒体よシもΔθ。が小さくなシ、再生出力が増大する
。また以上では、パーマロイ膜上に直接Co−Cr垂直
磁化膜を形成した例について述べたが、パーマロイ膜と
Co−0r垂直磁化膜との間に、TiやCu等の稠密六
方構造あるい悼與心立方構造を有する非磁性層が存在す
る場合にも、本発明は有効である。
Although the case of a permalloy film with a two-layer structure has been described above, the same can be said in the case of a permalloy film with a three-layer structure or more as shown in FIG. In other words, if at least one layer of the Ti film that separates the permalloy film into multiple layers is a discontinuously formed film, Δθ will be lower than that of the conventional two-layer film medium. The smaller the value, the greater the playback output. Furthermore, in the above, an example was described in which a Co-Cr perpendicularly magnetized film was formed directly on a permalloy film, but between the permalloy film and the Co-0r perpendicularly magnetized film, there is The present invention is also effective when a nonmagnetic layer having a centered cubic structure is present.

次によシ具体的な実施例の説明を行なう0第1の実施例 第6図を用いて本発明の第1の実施例について説明する
。同図において7妊膜厚12μmの耐熱性高分子フィル
ム、2は膜厚120OAのCo −Cr垂直磁化膜、4
は膜厚700へのノく−マロイ膜、8は膜厚8oへの連
続形成Ti膜、6は膜厚300への2層構造になってい
る不連続形成Ti膜である。この様な構造の2層膜媒体
に補助磁極励磁型垂直ヘッドで100KFRPIの信号
を記録し再生すると、従来のCO含有酸化鉄塗布型媒体
に対し3o dB高い再生出力が得られた。また、不連
続形成T1膜6の変わシに膜厚300人の連続形成Ti
膜を用いた以外は′、第6図と同じ構造の2層膜媒体に
対しても、s dB高い出力が得られた。
Next, a more specific embodiment will be explained.0 First Embodiment A first embodiment of the present invention will be described with reference to FIG. In the same figure, 7 is a heat-resistant polymer film with a thickness of 12 μm, 2 is a Co-Cr perpendicular magnetization film with a thickness of 120 OA, and 4 is a heat-resistant polymer film with a thickness of 12 μm.
8 is a continuously formed Ti film having a film thickness of 800 mm, and 6 is a discontinuously formed Ti film having a two-layer structure having a film thickness of 300 mm. When a 100 KFRPI signal was recorded and reproduced on a two-layer film medium having such a structure using an auxiliary magnetic pole excitation type vertical head, a reproduction output 3 odB higher than that of a conventional CO-containing iron oxide coating type medium was obtained. In addition, instead of the discontinuously formed T1 film 6, a continuously formed Ti film with a film thickness of 300 mm was used.
Even with a two-layer film medium having the same structure as shown in FIG. 6 except that a film was used, an output higher by s dB was obtained.

第2の実施例 第6図を用いて本発明の第2の実度例について説明する
。同図において7は膜厚12μmの耐熱性高分子フィル
ム、2は膜厚1200人のCo−Cr垂直磁化膜、4昧
膜厚1000へのノく一マロイ膜、9は膜厚10〇への
連続形成Ti膜、6は膜厚300への2層構造になって
いる不連続形成Ti膜である。このTi膜9はCo−C
r垂直磁化膜の配向性を良くするために設けである。こ
のような構造の2層膜媒体に補助磁極励磁型垂直へ、ノ
ドで100KFRPIの信号を記録し再生すると1従来
のCO含有酸化鉄塗布型媒体に対し32 dB高い再生
出力が得られた。
Second Embodiment A second practical example of the present invention will be described with reference to FIG. In the figure, 7 is a heat-resistant polymer film with a film thickness of 12 μm, 2 is a Co-Cr perpendicular magnetization film with a film thickness of 1200 μm, 4 is a malloy film with a film thickness of 1000 μm, and 9 is a film with a film thickness of 100 μm. The continuous Ti film 6 is a discontinuous Ti film having a two-layer structure with a thickness of 300 mm. This Ti film 9 is Co-C
r This is provided to improve the orientation of the perpendicularly magnetized film. When a 100 KFRPI signal was recorded and reproduced using an auxiliary magnetic pole excitation type perpendicular to a two-layer film medium having such a structure, a reproduction output 32 dB higher than that of a conventional CO-containing iron oxide coating type medium was obtained.

発明の効果 本発明によれば、記録再生特性の優れた垂直磁気記録媒
体を提供できる。
Effects of the Invention According to the present invention, a perpendicular magnetic recording medium with excellent recording and reproducing characteristics can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の2層膜媒体の構成を示す断面図、第2図
及び第3図は多層構造のノ(−マロイ膜を有する従来の
2層膜媒体の構成を示す断面図、第4図は本発明による
2層膜媒体の構成の1例を示す断面図、第6図及び第6
図はそれぞれ本発明の第1、第2の実施例である2層膜
媒体の構成を示す断面図である。 1・・・・・・非磁性材料よりなる基板、2・・・・・
・Co−Cr垂直磁化膜、3・・・・・・単層構造のパ
ーマロイ膜、4・・・・・・多層構造のパーマロイ膜、
5・・・・・・非磁性層、6・・・・・・不連続形成T
i膜、8,9・・・・・・連続形成Ti膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is a cross-sectional view showing the structure of a conventional two-layer film medium, FIGS. The figures are cross-sectional views showing one example of the structure of a two-layer film medium according to the present invention, and FIGS.
The figures are cross-sectional views showing the configurations of two-layer film media that are first and second embodiments of the present invention, respectively. 1...Substrate made of non-magnetic material, 2...
・Co-Cr perpendicular magnetization film, 3... Permalloy film with single layer structure, 4... Permalloy film with multilayer structure,
5...Nonmagnetic layer, 6...Discontinuous formation T
i film, 8, 9... Continuously formed Ti film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] 非磁性基板上にパーマロイ膜が形成され、その上に直接
にあるいは非磁性層を介してCo−Cr垂直磁化膜が形
成された2層膜媒体において、前記パーマロイ膜が少な
くとも1層のTi膜で分離された多層構造をしており、
かつ前記Ti 膜の少なくとも1層が不連続形成膜であ
ることを特徴とする垂直磁気記録媒体。
In a two-layer film medium in which a permalloy film is formed on a non-magnetic substrate, and a Co-Cr perpendicular magnetization film is formed on the permalloy film directly or via a non-magnetic layer, the permalloy film is formed of at least one layer of Ti film. It has a separated multilayer structure,
A perpendicular magnetic recording medium characterized in that at least one layer of the Ti film is a discontinuously formed film.
JP7403484A 1984-04-13 1984-04-13 Vertical magnetic recording medium Pending JPS60217522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7403484A JPS60217522A (en) 1984-04-13 1984-04-13 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7403484A JPS60217522A (en) 1984-04-13 1984-04-13 Vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60217522A true JPS60217522A (en) 1985-10-31

Family

ID=13535459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7403484A Pending JPS60217522A (en) 1984-04-13 1984-04-13 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60217522A (en)

Similar Documents

Publication Publication Date Title
JPH01158618A (en) Magnetic recording medium
JPS60128605A (en) Amorphous magnetic alloy multilayer film and magnetic head using the same
JP3382084B2 (en) Magnetic thin film for magnetic head, method of manufacturing the same, and magnetic head using the magnetic thin film
JPS60217522A (en) Vertical magnetic recording medium
JPS58166531A (en) Vertical magnetic recording medium
JPS5975429A (en) Vertically magnetized magnetic recording medium
JPS63317922A (en) Perpendicular magnetic recording medium
JPS5971128A (en) Vertical magnetic recording medium
JPS60140525A (en) Magnetic recording medium for vertical recording
JP3045797B2 (en) Perpendicular magnetic recording media
JPH0357535B2 (en)
JPS6015807A (en) Magnetic head
JPS6134722A (en) Vertical magnetic recording medium
JPH0581967B2 (en)
JPS62128019A (en) Magnetic recording medium
JPS5977621A (en) Vertical magnetic recording medium
JPS60217523A (en) Vertical magnetic recording medium
JPH03178028A (en) Magnetic recording medium
JPH0380445A (en) Magneto-optical recording medium
JPS58158028A (en) Production of magnetic recording medium
JPH0554320A (en) Multilayered magnetic film
JPH05258272A (en) Prependicular magnetic recording medium and its production
JPS63249924A (en) Magnetic recording medium
JPS58125235A (en) Manufacture of magnetic recording medium
JPS58169334A (en) Magnetic recording medium