JPS60217318A - Optical axis aligning device - Google Patents

Optical axis aligning device

Info

Publication number
JPS60217318A
JPS60217318A JP7298884A JP7298884A JPS60217318A JP S60217318 A JPS60217318 A JP S60217318A JP 7298884 A JP7298884 A JP 7298884A JP 7298884 A JP7298884 A JP 7298884A JP S60217318 A JPS60217318 A JP S60217318A
Authority
JP
Japan
Prior art keywords
optical axis
gap
magnetic bearing
mirror
axis alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7298884A
Other languages
Japanese (ja)
Inventor
Yasuhiko Iwai
靖彦 祝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7298884A priority Critical patent/JPS60217318A/en
Publication of JPS60217318A publication Critical patent/JPS60217318A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1822Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors comprising means for aligning the optical axis
    • G02B7/1827Motorised alignment
    • G02B7/1828Motorised alignment using magnetic means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE:To execute precise positioning and remote control by using a magnetic bearing for a supporting part of a mirror of an optical axis aligning device. CONSTITUTION:A mirror 2 is installed to a holder 11 of a nonmagnetic material, and a permanent magnet 13 magnetized in the axial direction is installed to the holder 11. Also, on a base 16 for installing a bearing part, an electromagnet 15 is installed to the upper part and the lower part of the bearing, respectively. Moreover, a gap sensor 17 for measuring a gap in the diameter direction is provided on an inner frame 19, and a gap sensor 18 for measuring a gap in the axial direction is provided on the lower part of the permanent magnet 13. The whole supporting part is floated up by controlling a value of a gap reactance between the supporting part and the non-supporting part, the displacement in the diameter direction is executed by moving differentially the right and left electromagnets 15, and the displacement in the gimbals direction is executed by moving differentially the upper and lower electromagnets 15.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、例えばレーザ光線の光軸を合わせる光軸合
わせ機構、特にその精密位置決め、遠隔操作、真空中で
の動作に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to, for example, an optical axis alignment mechanism for aligning the optical axes of laser beams, and particularly to its precise positioning, remote control, and operation in vacuum.

〔従来の技術〕[Conventional technology]

従来この種の光軸合わせ機構として第1図に示すものが
あった。図において、(1)はミラーホルダ。
A conventional optical axis alignment mechanism of this type is shown in FIG. In the figure, (1) is a mirror holder.

(2)はこのミラーホルダ(1)に装着されたミラー、
(3)はミラーホルダ(1)管支持するベース板、(4
)は圧縮 ;コイルバネ、(5)は圧縮コイルバネを止
めるボルト、(6)はスピンドルを介してミラーホルダ
(1)K装置されたマイクロメータ、(7)はミラーホ
ルダの支点棒、(8)は支点棒を受ける支点棒受けであ
る。第2図はマイクロメータ(6)の部分の詳細図を示
し、(9)はマイクロメータに取り付けであるスピンド
ル、αQはスピンドル(9)ヲ受けるスピンドル受けで
ある。
(2) is the mirror attached to this mirror holder (1),
(3) is a base plate that supports the mirror holder (1) tube, (4
) is a compression coil spring, (5) is a bolt that fixes the compression coil spring, (6) is a micrometer attached to the mirror holder (1) via a spindle, (7) is a fulcrum rod of the mirror holder, (8) is a It is a fulcrum rod holder that receives a fulcrum rod. FIG. 2 shows a detailed view of the micrometer (6), where (9) is a spindle attached to the micrometer, and αQ is a spindle receiver that receives the spindle (9).

次に上記機構の動作について説明する。ミラーホルダー
(1)は支点棒(7) ?支点としてマイクロメータ(
6)ヲ回わすことにより、スピンドル(9)t−回転す
せてスピンドル受けα1を押す。その反作用でミラ−ホ
ルダ(1)が傾むいて光軸を合わせる。なお、圧縮コイ
ルバネ(4)とポル) (5)により、ミラーホルダ(
1)はベース板(3)全席に押して柔軟に固定されてい
る。
Next, the operation of the above mechanism will be explained. Is the mirror holder (1) a fulcrum rod (7)? Micrometer (
6) Turn the spindle (9) by t to push the spindle receiver α1. The reaction causes the mirror holder (1) to tilt and align the optical axis. Note that the compression coil spring (4) and pole (5) hold the mirror holder (
1) is flexibly fixed to the base plate (3) by pushing it to all seats.

従来の光軸合わせ機構は以上のように構成されているの
で、マイクロメータ(6)により手動で動かさなければ
ならず、多数のミラー光軸全台わせることはきわめて困
難であった。また機械的接触が大きいので、ミクロン単
位での光軸合わせが困難であるとともに1真空中などで
光軸を合わせるのに別の機構が必要であるという欠点が
あった。
Since the conventional optical axis alignment mechanism is constructed as described above, it must be manually moved using a micrometer (6), and it is extremely difficult to align the optical axes of all the mirrors. Furthermore, since the mechanical contact is large, it is difficult to align the optical axis in microns, and another mechanism is required to align the optical axis in a vacuum.

〔発明の概要〕 この発明は、上記のような従来のものの欠点全除去する
ため釦なされたもので、光を反射するミラーの支持部に
磁気軸受を用いることにより精密位置決めができ、かつ
真空中などでの遠隔操作の゛・できる光軸合わせ機構を
提供するものである。
[Summary of the Invention] This invention has been developed to eliminate all of the drawbacks of the conventional products as described above. It uses a magnetic bearing in the support of the mirror that reflects light, allowing precise positioning, and allows for precise positioning in a vacuum. This provides an optical axis alignment mechanism that can be remotely controlled.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第3
図において、(6)は光を反射するミラーで上記従来装
置と全く同一のものである。0ルは非磁性材料のホルダ
ー、a2Fi磁性材料の歯、α]は軸方向に着磁された
永久磁石、Q4は永久磁石ホルダ、(至)は軸受上部と
下部にそれぞれ4個づつ取付けられた電磁石、αQは軸
受部を取り付けるベース、α力は径方向のギャップを測
るギャップセンサ、a枠は軸方向のギャップを測るギャ
ップセンサ、0呻は内枠である、第4図は動作原理4示
すブロック線図で、翰は磁気軸受部、(へ)は電磁石、
α力はギャップセンサ、(21+は基準信号、(2)は
基準信号音変位させるボリューム、taは補償回路、c
!4)は電磁石に′1流t−流すためのパワー増幅器、
+2!9はミラー支持部の位置を表示するデジタルメー
タである。
An embodiment of the present invention will be described below with reference to the drawings. Third
In the figure, reference numeral (6) denotes a mirror that reflects light, which is exactly the same as the conventional device described above. 0 is a holder made of non-magnetic material, a2Fi is a tooth made of magnetic material, α] is a permanent magnet magnetized in the axial direction, Q4 is a permanent magnet holder, and (to) is a 4 piece each attached to the top and bottom of the bearing. Electromagnet, αQ is the base on which the bearing is attached, α force is the gap sensor that measures the gap in the radial direction, frame a is the gap sensor that measures the gap in the axial direction, 0 is the inner frame, Figure 4 shows the operating principle 4 In the block diagram, the handle is the magnetic bearing part, (to) is the electromagnet,
α force is the gap sensor, (21+ is the reference signal, (2) is the volume for displacing the reference signal sound, ta is the compensation circuit, c
! 4) is a power amplifier for flowing t- current to the electromagnet;
+2!9 is a digital meter that displays the position of the mirror support.

次に上記装置の動作について説明する。上記のように構
成された光軸合わせ機構においては、第4図のブロック
図に示すフィードバック制御系を各制御コイルである電
磁石(ハ)の対に対して1系統づつ設け、支持部と非支
持部間のギャップリアクタンスの値全一定値に保つよう
に制御することK ′よって、支持部全体全浮上させる
。先ず、ギャップセンサaηによりギャップ長を測定し
、基準信号Qυとの差を本質的忙不安定な磁気軸受部分
−の動力学的ふるまいを安定化させる進み遅れ回路を主
体とする補償回路(ハ)に入力し、それを電磁石(ハ)
K電流管流すためのパワー増幅器(2)へ入力して電磁
石に電流を流す。また光軸を合わせるためのミクロン単
位での可変は、第4図のボリューム(221ヲ可変する
ことにより基準信号a1)を変化させ、径方向の変位は
左右の電磁石(至)を差動的に動かすことにより変位さ
せ、ジンバル方向の変位は上、下の電磁石(ト)を差動
的に動かすことKより変位させる。
Next, the operation of the above device will be explained. In the optical axis alignment mechanism configured as described above, the feedback control system shown in the block diagram of FIG. By controlling the gap reactance between the parts so as to keep it at a constant value K', the entire support part is completely floated. First, the gap length is measured by the gap sensor aη, and the difference from the reference signal Qυ is determined by a compensation circuit (c) mainly consisting of a lead/lag circuit that stabilizes the dynamic behavior of the inherently unstable magnetic bearing part. and connect it to the electromagnet (ha)
The current is input to the power amplifier (2) for flowing the K current tube, and the current is passed through the electromagnet. Also, to adjust the optical axis in micron units, change the volume (221 in Figure 4 to change the reference signal a1), and change the radial displacement by differentially adjusting the left and right electromagnets (to). The displacement in the gimbal direction is achieved by differentially moving the upper and lower electromagnets (K).

また径方向の変位はギャップセンサαりの値をデジタル
メータ(ハ)により表示し、ジンバル方向の変位はギャ
ップセンサα→の値をデジタルメータ(ハ)に表示する
ことにより位置を表示させながら光軸合わせを行なう。
Also, for displacement in the radial direction, the value of the gap sensor α is displayed on a digital meter (C), and for displacement in the gimbal direction, the value of the gap sensor α→ is displayed on the digital meter (C). Perform axis alignment.

上記実施例ではミラー(2)を取り付けた場合を示した
が、内枠(至)は中空なのでレンズを設けてもよい、ま
た、上記実施例では光軸合わせの場合について説明した
が、駆動モータを取り付けることにより高速回転用ビー
ムスキャナや振動回転用ビームスキャナの軸受としても
よく、上記実施例と同様の効果を奏する。
The above embodiment shows the case where the mirror (2) is attached, but since the inner frame (to) is hollow, a lens may also be provided.Also, although the above embodiment describes the case of optical axis alignment, the drive motor By attaching this, it may be used as a bearing for a beam scanner for high-speed rotation or a beam scanner for vibration rotation, and the same effects as in the above embodiments can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればミラー支持部を磁気力
を利用して機械的接触なしで支持するので、機械的摩擦
がなく精密位置決めができ、また電気信号による自動制
御機構なので、遠隔操作及びデジタル表示ができ簡単に
光軸合わせが出来る。
As described above, according to the present invention, since the mirror support part is supported without mechanical contact using magnetic force, precise positioning is possible without mechanical friction, and since the mirror support part is automatically controlled by electric signals, remote control is possible. It also has a digital display, making it easy to align the optical axis.

また真空中などの環境で動作ができるとともにメンテナ
ンス無しで使用できるものが得られる効果がある。
It also has the advantage of being able to operate in environments such as vacuum and being usable without maintenance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (h)は従来の光軸合わせ機構を示す
平面図及び一部所面図、第2図はマイクロメータ部分の
詳細図、第3図(−)、 (#)はこの発明の一実施例
による光軸合わせ機構を示す断面図及び上面図、第4図
はこの発明の一実施例による動作原理を示すブロック線
図である。 図において、(1)はミラーホルダ、(2)はミラー、
(3ンケベース板、01)はホルダ、(2)は歯、o3
は永久磁石、Q4は永久磁石ホルダ、αOは電磁石、α
Qはベース、α力は径方向ギャップセンサ、0呻は軸方
向ギャップセンサ、(至)は内枠、(イ)は磁気軸受部
、Qυは基準信号、(221はボリューム、(ハ)は補
償回路、(2aはパワー増幅器、(251はデジタルメ
ータである。 なお、図中、同一符号は同一、又は相当部分を示すもの
とする。 代理人 弁理士 木 村 三 朗
Figures 1 (a) and (h) are plan views and partial views showing a conventional optical axis alignment mechanism, Figure 2 is a detailed view of the micrometer section, and Figures 3 (-) and (#) are FIG. 4 is a cross-sectional view and a top view showing an optical axis alignment mechanism according to an embodiment of the present invention, and a block diagram showing the principle of operation according to an embodiment of the present invention. In the figure, (1) is a mirror holder, (2) is a mirror,
(3 base plate, 01) is holder, (2) is tooth, o3
is a permanent magnet, Q4 is a permanent magnet holder, αO is an electromagnet, α
Q is the base, α force is the radial gap sensor, 0 is the axial gap sensor, (To) is the inner frame, (A) is the magnetic bearing, Qυ is the reference signal, (221 is the volume, (C) is the compensation Circuit, (2a is a power amplifier, (251 is a digital meter. In the diagram, the same reference numerals indicate the same or corresponding parts. Agent: Mitsuro Kimura, patent attorney)

Claims (5)

【特許請求の範囲】[Claims] (1)光を反射するミラーを支持する磁気軸受、ギャッ
プ長を測定するギャップセンサ及び上記磁気軸受全制御
する制御回路4備えた光軸合わせ装置。
(1) An optical axis alignment device that includes a magnetic bearing that supports a mirror that reflects light, a gap sensor that measures the gap length, and a control circuit 4 that fully controls the magnetic bearing.
(2)磁気軸受の支持部が中空であることfIf#徴と
する特許請求の範囲第1項記載の光軸合わせ装置。
(2) The optical axis alignment device according to claim 1, characterized in that the supporting portion of the magnetic bearing is hollow.
(3)磁気軸受の径方向上に2個のギャップセンサと、
直交軸より径方向に外れた位置に1個のギャップセンサ
とを備えたことを特徴とする特許請求の範囲第1項記載
の光軸合わせ装置。
(3) Two gap sensors in the radial direction of the magnetic bearing,
The optical axis alignment device according to claim 1, further comprising one gap sensor located at a position radially offset from the orthogonal axis.
(4)磁気軸受の上、下それぞれに4個の電磁石を備え
たことvi−特徴とする特許請求の範囲第1項記載の光
軸合わせ装置。
(4) The optical axis alignment device according to claim 1, characterized in that four electromagnets are provided on each of the upper and lower sides of the magnetic bearing.
(5)磁気軸受部と支持部とに永久機pt−備えたこと
t%徴とする特許請求の範囲第1項記載の光軸合わせ装
置。
(5) The optical axis alignment device according to claim 1, wherein the magnetic bearing portion and the support portion are provided with a permanent mechanism PT-t%.
JP7298884A 1984-04-13 1984-04-13 Optical axis aligning device Pending JPS60217318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7298884A JPS60217318A (en) 1984-04-13 1984-04-13 Optical axis aligning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7298884A JPS60217318A (en) 1984-04-13 1984-04-13 Optical axis aligning device

Publications (1)

Publication Number Publication Date
JPS60217318A true JPS60217318A (en) 1985-10-30

Family

ID=13505282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7298884A Pending JPS60217318A (en) 1984-04-13 1984-04-13 Optical axis aligning device

Country Status (1)

Country Link
JP (1) JPS60217318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287031A (en) * 1991-08-26 1994-02-15 Kabushiki Kaisha Toshiba Device for supporting and linearly moving an object
RU2502882C2 (en) * 2009-09-03 2013-12-27 Сименс Акциенгезелльшафт Piston machine with piston magnetic bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287031A (en) * 1991-08-26 1994-02-15 Kabushiki Kaisha Toshiba Device for supporting and linearly moving an object
RU2502882C2 (en) * 2009-09-03 2013-12-27 Сименс Акциенгезелльшафт Piston machine with piston magnetic bearing
US8978595B2 (en) 2009-09-03 2015-03-17 Siemens Aktiengesellschaft Piston engine having magnetic piston bearing

Similar Documents

Publication Publication Date Title
US6040675A (en) Supporting apparatus using magnetic power
EP0342639B1 (en) Microlithographic apparatus
US4948230A (en) Objective lens driving apparatus
JPH0680533B2 (en) Opto-electronic device
JPS61208641A (en) Optical information recording and reproducing device
US4285552A (en) Torquer apparatus for magnetically suspended members
JPH10503890A (en) Positioning device with article table not subject to vibration
JP2984526B2 (en) Optical pickup device
JPS60217318A (en) Optical axis aligning device
JP2001264663A (en) Mirror driving mechanism
JPH0882757A (en) Biaxial luminous flux driving device
US4684811A (en) Frictionless translational bearing for optical instrument element
JPS6139241A (en) Objective lens driver
JPS58111136A (en) Vertical and horizontal moving device for objective lens of light pick-up device
JPS6220408B2 (en)
JP2601811B2 (en) Objective lens drive
JPS6233658B2 (en)
JPH1169762A (en) Positioning device and aligner provided with the device
JPS6117054B2 (en)
JPH05122893A (en) Linear dynamic magnetic bearing device
JPH05122891A (en) Linear dynamic magnetic bearing device
JPS6240630A (en) Optical pickup
JP2637223B2 (en) Optical disk drive
JPH11136906A (en) Polygon mirror driving motor
JPS62269576A (en) Automatic focus adjustor