JPH05122893A - Linear dynamic magnetic bearing device - Google Patents

Linear dynamic magnetic bearing device

Info

Publication number
JPH05122893A
JPH05122893A JP28013591A JP28013591A JPH05122893A JP H05122893 A JPH05122893 A JP H05122893A JP 28013591 A JP28013591 A JP 28013591A JP 28013591 A JP28013591 A JP 28013591A JP H05122893 A JPH05122893 A JP H05122893A
Authority
JP
Japan
Prior art keywords
movable body
axial
magnetic support
control
linear dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28013591A
Other languages
Japanese (ja)
Inventor
Hiroshi Takahashi
博 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28013591A priority Critical patent/JPH05122893A/en
Priority to EP92307755A priority patent/EP0534613B1/en
Priority to DE69206229T priority patent/DE69206229T2/en
Priority to US07/935,874 priority patent/US5287031A/en
Publication of JPH05122893A publication Critical patent/JPH05122893A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To move full shift range stably by controlling electric current of an axial electromagnet group bearing a movable body moving in an axial direction along a static body in a state of non-contact by output of radial position detectors, and providing axial driving force in accordance with an axial moving amount. CONSTITUTION:A movable body 4 moving along a static body 1 is levitated by a plurality of electromagnetic forces 10a and 10b of which a magnetic bearing device 10 is constituted and is borne in a state of non-contact. While, an electromagnet generation mechanism 20 constituted of an outside cylindrical section 7, a cylindrical hollow section 6, a circular permanent magnet 21 and a voice coil 22 is provided at the left end of the movable body 4, and thrust is applied to the movable body 4 in a state of non-contact. Excitation current of the electromagnets 10a and 10b is controlled by displacement detected by a plurality of radial position detector groups 15a-15d (15a is only illustrated). An axial moving amount is detected by an inclined plane of an auxiliary plate 24 attached to the movable body 4 and a moving amount detector 26, and the electric current of the voice coil 22 is controlled. According to the constitution, smooth movement is stably made through full shift range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光干渉計の走査鏡や精
密直進テーブル等のように高精度な位置決めの要求され
る要素を支持するのに適した直線動磁気支持装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear dynamic magnetic support device suitable for supporting elements such as a scanning mirror of an optical interferometer and a precision linear table which require highly accurate positioning.

【0002】[0002]

【従来の技術】周知のように、光干渉計の走査鏡や精密
直進テーブルを支持する支持装置には、これらを高精度
に位置決めする機能が要求される。このような要求に対
処するために通常は、ガイド機構に案内されて滑らかに
直線動する可動体を設け、この可動体を精密ボールネジ
送り機構で移動させる構造が採用されている。
2. Description of the Related Art As is well known, a supporting device for supporting a scanning mirror or a precision linear table of an optical interferometer is required to have a function of accurately positioning them. In order to cope with such a demand, usually, a structure is adopted in which a movable body which is guided by a guide mechanism and smoothly moves linearly is provided, and the movable body is moved by a precision ball screw feeding mechanism.

【0003】しかし、このような機械式の位置決め方式
を採用した支持装置では構成部品を極めて高い精度で加
工しなければならない問題があった。また、たとえ部品
を高精度に加工したとしてもボールネジのバックラッシ
ュなどの影響を完全に回避することができないので、位
置決め精度には限界がある。さらに、過酷な温度環境や
高真空下のような特殊環境においては、ガイド機構やボ
ールネジの潤滑などの問題で長期間使用することが困難
であった。
However, the supporting device adopting such a mechanical positioning system has a problem that the constituent parts must be processed with extremely high accuracy. Further, even if the parts are machined with high accuracy, it is not possible to completely avoid the influence of backlash of the ball screw, etc., so that the positioning accuracy is limited. Further, in a special environment such as a harsh temperature environment or a high vacuum, it is difficult to use for a long time due to problems such as lubrication of the guide mechanism and the ball screw.

【0004】そこで、このような問題を解消するため
に、可動体を磁気力で、つまり磁気軸受で完全非接触に
浮上させる方式が考えられる。
Therefore, in order to solve such a problem, a method is conceivable in which the movable body is levitated by a magnetic force, that is, a magnetic bearing in a completely non-contact manner.

【0005】しかしながら、このように磁気軸受を用い
た、いわゆる直線動磁気支持装置にあっても次のような
問題がある。すなわち、この直線動磁気支持装置では可
動体の軸方向への移動に伴って磁気軸受に対する可動体
の重心位置も移動する。このため磁気支持制御系が不安
定になるという問題がある。さらに、外部からの振動に
よって可動体を支える静止体が励振されたとき、可動体
がその重心運動と重心まわりの回転運動との干渉により
連成運動を起こし、位置決めの精度を維持できなくなる
問題がある。
However, even the so-called linear dynamic magnetic support device using the magnetic bearing has the following problems. That is, in this linear dynamic magnetic support device, the position of the center of gravity of the movable body with respect to the magnetic bearing also moves as the movable body moves in the axial direction. Therefore, there is a problem that the magnetic support control system becomes unstable. Furthermore, when a stationary body that supports a movable body is excited by external vibration, the movable body causes a coupled motion due to interference between its center-of-gravity motion and rotational motion around the center of gravity, which causes a problem that positioning accuracy cannot be maintained. is there.

【0006】[0006]

【発明が解決しようとする課題】このように、単に磁気
軸受を用いて直線動磁気支持装置を構成しても、可動体
が軸方向に大きく移動したときに磁気支持制御系が不安
定になったり、外部から加えられた振動により可動体に
連成運動が発生し、高精度な位置決めを行うのが困難で
あった。
As described above, even if the linear dynamic magnetic support device is constructed by simply using the magnetic bearings, the magnetic support control system becomes unstable when the movable body is largely moved in the axial direction. In addition, vibrations applied from the outside cause a coupled motion in the movable body, making it difficult to perform highly accurate positioning.

【0007】そこで本発明は、可動体の軸方向全移動距
離に亘っての安定した支持特性の実現と外乱に対する安
定性とを実現できる直線動磁気支持装置を提供すること
を目的としている。
Therefore, an object of the present invention is to provide a linear dynamic magnetic support device capable of realizing stable support characteristics over the entire axial movement distance of a movable body and stability against disturbance.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る直線動磁気支持装置では、静止体と、
この静止体の近傍に軸方向へ移動自在に配置された可動
体と、前記静止体の前記可動体を囲む位置で、かつ軸方
向の2箇所以上の位置に設けられた複数の電磁石群と、
前記可動体の半径方向の位置を検出する半径方向位置検
出手段と、この位置検出手段の情報に基づいて前記複数
の電磁石群の磁気力を調整して前記可動体を非接触に支
持する磁気支持制御系と、前記可動体の軸方向移動量を
検出する軸方向移動量検出手段と、前記可動体に軸方向
の移動力を与える駆動手段と、前記軸方向移動量検出手
段で得られた情報に応じて前記磁気支持制御系の制御パ
ラメータを間欠的または連続的に調整する制御パラメー
タ調整手段とを備えている。 制御パラメータ調整手段
は、具体的には前記電磁石群に流す定常励磁電流のレベ
ルを制御パラメータとし、前記電磁石群による力を加え
た力の平衡条件および前記可動体の重心運動と重心まわ
りの回転運動相互の非干渉化条件を満たすようなレベル
を選択する。また、これに加えて前記軸方向移動量検出
手段で得られた情報に応じて磁気支持系のモデルを更新
するとともに、この制御モデルの更新手段の結果から磁
気支持系の安定化のための補償パラメータを更新するこ
とも有効である。
In order to achieve the above object, in a linear dynamic magnetic support device according to the present invention, a stationary body,
A movable body that is arranged in the vicinity of the stationary body so as to be movable in the axial direction, and a plurality of electromagnet groups that are provided at a position surrounding the movable body of the stationary body and at two or more positions in the axial direction,
Radial position detecting means for detecting the radial position of the movable body, and magnetic support for supporting the movable body in a non-contact manner by adjusting the magnetic force of the plurality of electromagnet groups based on the information of the position detecting means. Control system, axial movement amount detecting means for detecting the axial movement amount of the movable body, driving means for applying an axial movement force to the movable body, and information obtained by the axial movement amount detecting means And a control parameter adjusting means for adjusting the control parameter of the magnetic support control system intermittently or continuously. Specifically, the control parameter adjusting means uses the level of the steady excitation current flowing in the electromagnet group as a control parameter, the equilibrium condition of the force applied by the electromagnet group, the center of gravity of the movable body, and the rotational movement around the center of gravity. Select a level that satisfies the mutual decoupling conditions. In addition to this, the model of the magnetic support system is updated according to the information obtained by the axial movement amount detecting means, and the compensation for stabilizing the magnetic support system is performed from the result of the updating means of the control model. Updating the parameters is also effective.

【0009】[0009]

【作用】可動体の軸方向移動距離に基づいて、磁気支持
制御系の制御パラメータを更新するようにしているの
で、可動体の軸方向移動範囲に亘って安定な支持系を実
現できる。さらに、非干渉化条件を満足するように制御
パラメータを調整すると、制御系の設計を重心運動およ
び回転運動に対して独立に行なうことができるので、制
御系設計を簡素化できるばかりか、外部振動に対して
も、その対策が比較的容易になる。すなわち、重心方向
外乱による回転運動への影響が理論的にはない状態にあ
るので、可動体の回転運動の精密位置決めを行なう場
合、回転運動系の固有振動数を十分高く、重心運動系の
固有振動数を低下させることにより、伝達される振動を
低減でき、位置決め精度を十分確保できる。一方、重心
運動の精密位置決めを行なう場合には、支持系の共振を
抑制し、振動の速やかな防止を図ることで対処できる。
非干渉化支持の調整は定常励磁電流で、支持特性の調整
は補償パラメータで行なうと、重心運動と回転運動の制
御系設計を個別に計算でき、しかも、計算が繁雑になら
ないので、容易に、かつ、正確に実施可能である。
Since the control parameters of the magnetic support control system are updated based on the axial moving distance of the movable body, a stable supporting system can be realized over the axial moving range of the movable body. Furthermore, if the control parameters are adjusted so as to satisfy the decoupling condition, the control system can be designed independently of the center-of-gravity motion and the rotational motion. Against this, the countermeasure becomes relatively easy. That is, since there is theoretically no influence on the rotational motion due to the center-of-gravity disturbance, when performing precise positioning of the rotational motion of the movable body, the natural frequency of the rotational motion system is sufficiently high and By reducing the frequency of vibration, the transmitted vibration can be reduced and the positioning accuracy can be sufficiently ensured. On the other hand, in the case of performing precise positioning of the center-of-gravity movement, it can be dealt with by suppressing the resonance of the support system and promptly preventing the vibration.
If the decoupling support is adjusted with a steady excitation current and the support characteristics are adjusted with compensation parameters, the control system design of the center of gravity motion and the rotary motion can be calculated individually, and the calculation is not complicated, so it is easy to And it can be carried out accurately.

【0010】[0010]

【実施例】以下、図面を参照しながら実施例を説明す
る。
Embodiments will be described below with reference to the drawings.

【0011】図1には本発明の一実施例に係る直線動磁
気支持装置、ここにはガス分布状態測定用光干渉計の走
査鏡を支持するための直線動磁気支持装置が示されてい
る。
FIG. 1 shows a linear dynamic magnetic supporting device according to an embodiment of the present invention, which is a linear dynamic magnetic supporting device for supporting a scanning mirror of an optical interferometer for measuring a gas distribution state. ..

【0012】同図において、1は静止体を示している。
この静止体1は、ベース2と、このベース2に固定され
た非磁性材製の筒体3とで構成されている。そして、筒
体3内には、ほぼ円柱状に形成された可動体4が筒体3
の軸心線方向に移動自在に配置されている。
In the figure, 1 indicates a stationary body.
The stationary body 1 is composed of a base 2 and a cylindrical body 3 made of a non-magnetic material and fixed to the base 2. The movable body 4 formed in a substantially columnar shape is provided in the cylindrical body 3.
Is arranged so as to be movable in the axial direction.

【0013】可動体4は、磁性材で形成されており、図
中ほぼ右半分が中空に形成されている。また、可動体4
の図中ほぼ左半分は中心棒状部5と、円筒状空洞部6
と、外側筒状部7とを同心的に配列した構造に形成され
ている。可動体4の図中右端部にはミラー支持体8が装
着されており、このミラー支持体8には走査鏡9が固定
されている。
The movable body 4 is made of a magnetic material, and the right half of the figure is hollow. In addition, the movable body 4
In the left half of the figure, the central rod portion 5 and the cylindrical hollow portion 6 are shown.
And the outer cylindrical portion 7 are concentrically arranged. A mirror support 8 is attached to the right end of the movable body 4 in the figure, and a scanning mirror 9 is fixed to the mirror support 8.

【0014】可動体4と筒体3とには、筒体3で可動体
4を非接触に支持するための磁気支持装置10の主要素
10a,10bが軸方向の2箇所、つまり図中矢印A,
Bで示す位置にそれぞれ設けられている。
Main elements 10a and 10b of the magnetic support device 10 for supporting the movable body 4 in a non-contact manner with the movable body 4 and the cylindrical body 3 are provided at two axial positions, that is, arrows in the figure. A,
They are provided at the positions indicated by B, respectively.

【0015】磁気支持装置10は磁気軸受を応用した吸
引支持型のもので、その主要素10a,10bのうち、
矢印Aで示す位置に設けられている主要素10aを代表
して示すと、図2に示すように構成されている。すなわ
ち、この主要素10aは筒体3の内周面に周方向へ90
度の間隔をあけ、かつ磁極面を可動体4の軸心線に向け
て固定された継鉄11a,11b,11c,11dと、
これら継鉄に装着されて電磁石を構成するコイル12
a,12b,12c,12dと、可動体4の外周面に周
方向へ90度の間隔をあけ、かつ可動体4のほぼ全長に
亘って延びる関係に形成された凸状磁極13a,13
b,13c,13dと、これら凸状磁極間に可動体4の
ほぼ全長に亘って延びる関係に固定された非磁性体、例
えばステンレス鋼の薄板によって形成されて半径方向の
変位検出に供される平坦面14a,14b,14c,1
4dと、各継鉄間に位置する関係に筒体3にそれぞれ固
定されて各平坦面との間の距離を検出する、たとえば渦
電流式検出器等の容積変化検出形の検出器で構成された
位置検出器15a,15b,15c,15dとで構成さ
れている。
The magnetic support device 10 is of a suction support type to which a magnetic bearing is applied, and of the main elements 10a and 10b thereof,
When the main element 10a provided at the position indicated by the arrow A is shown as a representative, it is configured as shown in FIG. That is, the main element 10a is circumferentially attached to the inner peripheral surface of the tubular body 3 by 90
Yokes 11a, 11b, 11c, 11d fixed with the magnetic pole surfaces facing the axis of the movable body 4 with a space between them,
Coil 12 attached to these yokes to form an electromagnet
a, 12b, 12c, 12d and the convex magnetic poles 13a, 13 formed on the outer peripheral surface of the movable body 4 at intervals of 90 degrees in the circumferential direction and extending over substantially the entire length of the movable body 4.
b, 13c, 13d and a non-magnetic body fixed between the convex magnetic poles so as to extend over substantially the entire length of the movable body 4, for example, a thin plate of stainless steel, and used for radial displacement detection. Flat surfaces 14a, 14b, 14c, 1
4d and each of the yokes are fixed to the cylindrical body 3 so as to detect the distance between each flat surface and each of them, for example, a volume change detection type detector such as an eddy current type detector. And position detectors 15a, 15b, 15c and 15d.

【0016】各継鉄11a,11b,11c,11d
は、図1に継鉄11cを代表して示すように、2つの磁
極面16a,16bを備え、これら2つの磁極面16
a,16bが軸方向に配列されるように筒体3の内面に
固定されている。各継鉄11a,11b,11c,11
dに装着されたコイル12a,12b,12c,12d
は、それぞれバイアスコイル17と制御コイル18とで
構成されている。可動体4を境にして対向する継鉄に装
着された制御コイル18は互いに同じ向きの磁束を発生
するように直列に接続されている。
Each yoke 11a, 11b, 11c, 11d
1 includes two magnetic pole surfaces 16a and 16b as shown in FIG. 1 as a representative of the yoke 11c.
The a and 16b are fixed to the inner surface of the cylindrical body 3 so as to be arranged in the axial direction. Each yoke 11a, 11b, 11c, 11
coils 12a, 12b, 12c, 12d mounted on d
Are each composed of a bias coil 17 and a control coil 18. The control coils 18 mounted on the yokes facing each other across the movable body 4 are connected in series so as to generate magnetic fluxes in the same direction.

【0017】なお、各継鉄11a,11b,11c,1
1dの2つの磁極面16a,16bと可動体4に設けら
れた4つの凸状磁極13a,13b,13c,13dの
磁極面とは両者が回転によって接触しないように可動体
4の軸心線を中心とした円筒曲面状に形成されている。
主要素10bについても主要素10aと同様に構成され
ている。
Each yoke 11a, 11b, 11c, 1
The axial center line of the movable body 4 is set so that the two magnetic pole surfaces 16a and 16b of 1d and the magnetic pole surfaces of the four convex magnetic poles 13a, 13b, 13c and 13d provided on the movable body 4 do not come into contact with each other by rotation. It is formed in a cylindrical curved surface centered at the center.
The main element 10b has the same structure as the main element 10a.

【0018】可動体4の図1中左側で、この可動体4と
筒体3とには、可動体4に対して軸方向の移動力を非接
触で選択的に与える電磁力発生機構20が設けられてい
る。この電磁力発生機構20は、公知のボイスコイルモ
ータと同様に、外側筒状部7の開放端側内周面に固定さ
れ、半径方向に着磁された環状の永久磁石21と、全体
が筒状に形成されて円筒状空洞部6に非接触に嵌入装着
された筒状コイル22とで構成されている。なお、筒状
コイル22の基端は、筒体3に固定されている。 ま
た、主要素10aと10bの間および静止体1の図1中
左側にはタッチダウン軸受23a,23b,23cが設
けられており、可動体4を磁気浮上させていないときに
各継鉄11a〜11dと凸状磁極13a〜13dとが衝
突しないようになっている。
On the left side of the movable body 4 in FIG. 1, an electromagnetic force generating mechanism 20 is provided to the movable body 4 and the cylindrical body 3 to selectively apply a moving force in the axial direction to the movable body 4 in a non-contact manner. It is provided. This electromagnetic force generation mechanism 20 is fixed to the inner peripheral surface of the outer tubular portion 7 on the open end side and is annularly magnetized in the radial direction, as in a known voice coil motor. And a cylindrical coil 22 that is formed into a cylindrical shape and is fitted into and attached to the cylindrical hollow portion 6 in a non-contact manner. The base end of the tubular coil 22 is fixed to the tubular body 3. Touchdown bearings 23a, 23b, and 23c are provided between the main elements 10a and 10b and on the left side of the stationary body 1 in FIG. 1, and the yokes 11a to 23a are provided when the movable body 4 is not magnetically levitated. 11d and the convex magnetic poles 13a to 13d do not collide with each other.

【0019】一方、ミラー支持体8の外周面には、可動
体4の軸心線に沿って延びる関係に配置された補助板2
4の一端側が固定されている。この補助板24の図1中
下面は、可動体4の軸心線に対して傾斜した傾斜面25
に形成されている。静止体1には、傾斜面25との間の
距離から可動体4の軸方向の移動量を非接触に検出する
軸方向移動量検出器26が固定されている。そして、軸
方向移動量検出器26、筒状コイル22、前述した磁気
支持装置10の主要素10a,10bを構成しているバ
イアスコイル、制御コイルおよび位置検出器は、図3に
示す制御装置31に接続されている。
On the other hand, the auxiliary plate 2 is arranged on the outer peripheral surface of the mirror support 8 so as to extend along the axis of the movable body 4.
One end side of 4 is fixed. The lower surface of the auxiliary plate 24 in FIG. 1 is an inclined surface 25 that is inclined with respect to the axis of the movable body 4.
Is formed in. The stationary body 1 is fixed with an axial movement amount detector 26 that detects the axial movement amount of the movable body 4 in a non-contact manner from the distance between the stationary body 1 and the inclined surface 25. The axial movement amount detector 26, the tubular coil 22, the bias coil, the control coil, and the position detector that form the main elements 10a and 10b of the magnetic support device 10 described above are the control device 31 shown in FIG. It is connected to the.

【0020】制御装置31は、磁気支持制御部32と、
軸方向移動量制御部33とで構成されている。なお、こ
の図3には主要素10aのコイル12a〜12dを付勢
制御する磁気支持制御部32が示されており、主要素1
0bの各コイルを付勢制御する制御部は省略されてい
る。
The controller 31 includes a magnetic support controller 32,
It is composed of an axial movement amount control unit 33. It should be noted that FIG. 3 shows a magnetic support control section 32 for urging and controlling the coils 12a to 12d of the main element 10a.
The control unit for controlling the energization of each coil of 0b is omitted.

【0021】磁気支持制御部32は、4つの移動量検出
器15a〜15dの出力をそれぞれ処理回路35に導入
し、半径方向の変位量に変換している。そして、これら
変位量を制御回路36に導入して基準位置との差から操
作量を決定し、これら操作量を電流増幅器37で電流に
変換し、この電流をコイル12a〜12dの制御コイル
18に与えるようにしている。なお、電流増幅器37の
入力端は電源38に接続されている。一方、後述する軸
方向位置制御部33の処理回路39から出力された軸方
向移動量信号をパラメータ調整器42に導入し、力の平
衡条件および可動体の重心運動と重心まわりの回転運動
との非干渉化条件を満たすような操作量を決定してい
る。
The magnetic support control section 32 introduces the outputs of the four movement amount detectors 15a to 15d into the processing circuit 35 and converts them into radial displacement amounts. Then, these displacement amounts are introduced into the control circuit 36 to determine operation amounts from the difference from the reference position, these operation amounts are converted into currents by the current amplifier 37, and these currents are supplied to the control coils 18 of the coils 12a to 12d. I am trying to give. The input end of the current amplifier 37 is connected to the power supply 38. On the other hand, an axial movement amount signal output from a processing circuit 39 of an axial position control unit 33, which will be described later, is introduced into the parameter adjuster 42 to balance the force balance condition, the center of gravity of the movable body, and the rotational movement around the center of gravity. The operation amount is determined so as to satisfy the decoupling condition.

【0022】すなわち、図4を用いて説明すれば、平衡
状態に支持された可動体4に対し、初期位置における可
動体4の重心Gを原点oとする可動体4の軸とz軸が一
致するように空間に固定された座標系o−xyzにおい
て、可動体4の重心運動およびxz平面内およびyz平
面内の回転運動は、平衡状態からの変動が微少であると
して近似したとき、次のように記述できる。まず、重心
運動は、
That is, referring to FIG. 4, with respect to the movable body 4 supported in an equilibrium state, the axis of the movable body 4 having the center of gravity G of the movable body 4 at the initial position as the origin o coincides with the z-axis. In the coordinate system o-xyz fixed in space as described above, when the center of gravity motion of the movable body 4 and the rotational motions in the xz plane and the yz plane are approximated as the fluctuation from the equilibrium state is Can be described as First of all,

【0023】[0023]

【数1】 [Equation 1]

【0024】ここで、¨は時間tによる微分d/dtを
表わし、Mは可動体4の質量、M0 はMの電磁石吸引力
方向成分で、
Here, ∘ represents the differential d / dt with respect to time t, M is the mass of the movable body 4, M 0 is the component of the electromagnet attraction force of M,

【0025】[0025]

【数2】 [Equation 2]

【0026】であり、F1 〜F8 は各継鉄11a〜11
dを介して可動体4に働く各電磁石の吸引力、gは重力
加速度である。回転運動は、
And F 1 to F 8 are the yokes 11 a to 11
The attraction force of each electromagnet acting on the movable body 4 via d, and g is the gravitational acceleration. The rotational movement is

【0027】[0027]

【数3】 [Equation 3]

【0028】である。なお、Iは可動体4の半径方向の
慣性モーメント、L1 は可動体4の重心Gからz軸の正
方向にF1 〜F4 が作用するまでの距離、L2 は可動体
4の重心Gからz軸の負方向にF5 〜F8 が作用するま
での距離を示す。
[0028] In addition, I is the inertial moment in the radial direction of the movable body 4, L 1 is the distance from the center of gravity G of the movable body 4 to the action of F 1 to F 4 in the positive direction of the z axis, and L 2 is the center of gravity of the movable body 4. The distance from G to the action of F 5 to F 8 in the negative direction of the z axis is shown.

【0029】ここで、パラメータ調整器42は、各電磁
石の特性が全て同じであると仮定して、以下の平衡条件 F3 =F1 +L2 /(L1 +L2 )・M0 ・g …(5) F4 =F2 +L2 /(L1 +L2 )・M0 ・g …(6) F7 =F5 +L1 /(L1 +L2 )・M0 ・g …(7) F8 =F6 +L1 /(L1 +L2 )・M0 ・g …(8) と、非干渉化条件 (F1 −F3 )・L1 −(F5 −F7 )・L2 =0 …(9) (F2 −F4 )・L1 −(F6 −F8 )・L2 =0 …(10) とを満足するように制御パラメータを調整している。具
体的には、各バイアスコイル17に定常的に流す励磁電
流のレベルをパラメータとし、可動体4の移動量に対応
させて定常励磁電流のレベルを決定している。そして、
パラメータ調整器42の出力は電流増幅器44で電流に
変換され、この電流がコイル12a〜12dの各バイア
スコイル17に与えられる。
Here, the parameter adjuster 42 assumes that the characteristics of each electromagnet are all the same, and the following equilibrium condition F 3 = F 1 + L 2 / (L 1 + L 2 ) · M 0 · g ... (5) F 4 = F 2 + L 2 / (L 1 + L 2 ) · M 0 · g (6) F 7 = F 5 + L 1 / (L 1 + L 2 ) · M 0 · g (7) F 8 = F 6 + L 1 / (L 1 + L 2) · M 0 · g ... (8), non-interference conditions (F 1 -F 3) · L 1 - (F 5 -F 7) · L 2 = 0 ... (9) (F 2 -F 4) · L 1 - (F 6 -F 8) · L 2 = 0 ... (10) which adjusts the control parameter to satisfy a. Specifically, the level of the steady excitation current flowing in each bias coil 17 is used as a parameter, and the level of the steady excitation current is determined in correspondence with the movement amount of the movable body 4. And
The output of the parameter adjuster 42 is converted into a current by the current amplifier 44, and this current is given to each bias coil 17 of the coils 12a to 12d.

【0030】軸方向移動量制御部33は軸方向移動量検
出器26の出力と位置検出器15a〜15dの出力とを
処理回路39に導入し、この処理回路39で可動体4の
半径方向移動量によって軸方向移動量検出器26の出力
に現われる誤差分を除去した真の軸方向移動量信号を得
ている。そして、得られた軸方向移動量信号と目標位置
信号Hとの偏差を制御回路40で求め、この偏差を電流
増幅器41で電流に変換し、この電流を筒状コイル22
に流すようにしている。この制御によって、可動体4を
目標位置まで移動させ、この目標位置で停止させるよう
にしている。
The axial movement amount control unit 33 introduces the output of the axial movement amount detector 26 and the outputs of the position detectors 15a to 15d into the processing circuit 39, and the processing circuit 39 causes the movable body 4 to move in the radial direction. The true axial movement amount signal is obtained by removing the error appearing in the output of the axial movement amount detector 26 depending on the amount. Then, the deviation between the obtained axial movement amount signal and the target position signal H is obtained by the control circuit 40, this deviation is converted into a current by the current amplifier 41, and this current is converted into the tubular coil 22.
I am trying to flush it. By this control, the movable body 4 is moved to the target position and stopped at this target position.

【0031】このような構成であると、磁気支持装置1
0を動作させると、各バイアスコイル17が付勢される
とともに各制御コイル18が可動体4の半径方向におけ
る変位量に応じたレベルで、かつ変位方向に応じた極性
の電流で付勢される。すなわち、継鉄11a〜11dの
磁極面と凸状磁極13a〜13dの磁極面との間の磁気
ギャップ長が位置検出器15a〜15dの出力に基いて
求められる。そして、磁気ギャップ長が広くなった部分
については、その磁気ギャップを通る磁束を増加させる
ように制御コイル18が付勢される。また磁気ギャップ
長が狭くなった部分については、その磁気ギャップを通
る磁束を減少させるように制御コイル18が付勢され
る。このため、可動体4は静止体1に対して磁気支持装
置10で完全に非接触に支持される。
With such a configuration, the magnetic support device 1
When 0 is operated, each bias coil 17 is energized and each control coil 18 is energized at a level according to the amount of displacement of the movable body 4 in the radial direction and with a current having a polarity according to the displacement direction. .. That is, the magnetic gap length between the magnetic pole surfaces of the yokes 11a to 11d and the magnetic pole surfaces of the convex magnetic poles 13a to 13d is obtained based on the outputs of the position detectors 15a to 15d. Then, for the portion where the magnetic gap length is widened, the control coil 18 is energized so as to increase the magnetic flux passing through the magnetic gap. The control coil 18 is urged to reduce the magnetic flux passing through the magnetic gap in the portion where the magnetic gap length is narrowed. Therefore, the movable body 4 is supported by the magnetic support device 10 in a completely non-contact manner with respect to the stationary body 1.

【0032】また、目標位置信号Hを与えると、電磁力
発生機構20が動作し、公知のボイスコイルモータと全
く同じ原理で、可動体4に対して非接触に軸方向への移
動力を与え、可動体4を目標位置で停止させる。この場
合、位置制御に必要な軸方向の位置検出は、補助板24
に設けられた傾斜面25を検出対象とした軸方向移動量
検出器26によって非接触に検出される。したがって、
軸方向の駆動及び位置決めも完全非接触で行なわれる。
Further, when the target position signal H is given, the electromagnetic force generating mechanism 20 operates to give a moving force in the axial direction to the movable body 4 in a non-contact manner on the same principle as that of a known voice coil motor. , The movable body 4 is stopped at the target position. In this case, the auxiliary plate 24 is used to detect the axial position required for position control.
The non-contact detection is performed by the axial movement amount detector 26 whose detection target is the inclined surface 25 provided on the. Therefore,
Axial driving and positioning are also performed without contact.

【0033】ところで、この装置においては、可動体4
の軸方向の移動量に応じてバイアスコイル17に磁気支
持装置10による力を含む力の平衡条件および可動体の
重心運動と回転運動との非干渉化条件を満たす定常励磁
電流が供給される。したがって、ベース2からの重心方
向の外乱による回転運動への影響が理論的にない状態が
形成されているので、可動体4の回転運動方向の精密な
位置決めを行う場合、回転運動系の固有振動数を高く、
重心運動系の固有振動数を低下させることにより、伝達
される振動を低減でき、位置決め精度を十分確保でき
る。一方、重心運動の精密位置決めを行う場合には、支
持系の共振を抑制し、振動の速やかな停止を図ることで
対処できる。
By the way, in this device, the movable member 4
The bias coil 17 is supplied with a steady exciting current satisfying the condition of equilibrium of forces including the force of the magnetic support device 10 and the condition of decoupling the center of gravity motion and the rotary motion of the movable body in accordance with the amount of axial movement of. Therefore, since there is theoretically no influence on the rotational movement due to the disturbance in the direction of the center of gravity from the base 2, when the movable body 4 is precisely positioned in the rotational movement direction, the natural vibration of the rotational movement system is generated. High number,
By reducing the natural frequency of the center-of-gravity motion system, the transmitted vibration can be reduced and the positioning accuracy can be sufficiently ensured. On the other hand, in the case of performing precise positioning of the center-of-gravity movement, it is possible to cope with it by suppressing the resonance of the support system and stopping the vibration quickly.

【0034】図5には上述した力の平衡条件および非干
渉化条件を満たすようにバイアスコイル17に定常電流
1 〜I8 を与えた一例が示されている。この図におい
て定常励磁電流I5 〜I8 が移動量LG の位置で零にな
るのは、可動体4の重心Gの位置が矢印A線上(図1、
図4参照)に設けられている継鉄11a〜11bの位置
と一致するためである。したがって、この移動量LG
位置では、可動体4の回転運動は無制御になる。このた
め、回転運動の制御を重視する場合には、最大移動量が
G を越えないようにするか、少なくともLG の位置に
おいては定常励磁電流の更新を見送るようにすればよ
い。図5ではI1およびI2 を一定値としているが、こ
れに限られるものではない。
FIG. 5 shows an example in which the steady currents I 1 to I 8 are applied to the bias coil 17 so as to satisfy the above-described force balance condition and decoupling condition. In this figure, the steady exciting currents I 5 to I 8 become zero at the position of the moving amount L G because the position of the center of gravity G of the movable body 4 is on the arrow A line (FIG. 1,
This is because it coincides with the positions of the yokes 11a to 11b provided in FIG. Therefore, at the position of this movement amount L G , the rotational movement of the movable body 4 is uncontrolled. For this reason, when importance is attached to the control of the rotational movement, the maximum movement amount may not exceed L G , or the update of the steady excitation current may be postponed at least at the position of L G. Although I 1 and I 2 are set to constant values in FIG. 5, the present invention is not limited to this.

【0035】なお、本発明は上述した実施例に限定され
るものではない。すなわち、上述した条件を満たしてい
る直線動磁気支持装置において、パラメータ調整器に磁
気支持系の制御モデルおよび補償パラメータの更新機能
を追加してもよい。力の平衡条件および非干渉化条件を
満足している系では、制御系の設計を重心運動および回
転運動について独立に行なうことができるので、パラメ
ータ調整器42に制御モデル更新機能と安定化支持のた
めの補償パラメータ更新機能を付加すれば、可動体4の
移動量に関係なく磁気支持系の特性を一定に保持するこ
とが可能となる。
The present invention is not limited to the above embodiment. That is, in the linear dynamic magnetic support device that satisfies the above-described conditions, the parameter adjuster may be added with a control model of the magnetic support system and a function of updating the compensation parameter. In a system satisfying the force equilibrium condition and the decoupling condition, the control system can be designed independently for the center-of-gravity motion and the rotational motion, so that the parameter adjuster 42 has a control model updating function and a stabilizing support function. By adding a compensation parameter updating function for this, it becomes possible to keep the characteristics of the magnetic support system constant regardless of the amount of movement of the movable body 4.

【0036】ここで、制御モデルの一般式を例に説明す
る。x方向の運動方程式は次のように記述できる。
Here, the general formula of the control model will be described as an example. The equation of motion in the x direction can be described as follows.

【0037】[0037]

【数4】 [Equation 4]

【0038】ここで、fは外力、kD (L1 )は移動量
1 における負平衡剛性、kU (L1 )・UX は安定化
のための制御力で移動量L1 の関数となっており、とく
にUX は変位x、xの一階微分の速度、二階微分の加速
度などの観測値をもとに系の安定化を実現する帰還操作
量である。
Here, f is an external force, k D (L 1 ) is a negative equilibrium rigidity in the moving amount L 1 , and k U (L 1 ) · U X is a control force for stabilization, which is a function of the moving amount L 1 . In particular, U X is a feedback manipulated variable that realizes stabilization of the system based on the observed values such as the displacement x, the velocity of the first derivative of x, and the acceleration of the second derivative.

【0039】この一般式に示されるkD (L1 )および
U (L1 )の各パラメータを可動体4の移動量に応じ
て更新する。また、これらkD (L1 )およびkU (L
1 )と所望の支持特性条件から、帰還操作量UX を決定
する補償パラメータを更新する。この更新に応じて制御
回路36の制御定数が調整される。
Each parameter of k D (L 1 ) and k U (L 1 ) shown in this general formula is updated according to the moving amount of the movable body 4. Also, these k D (L 1 ) and k U (L
The compensation parameter that determines the feedback manipulated variable U X is updated from 1 ) and the desired support characteristic condition. The control constant of the control circuit 36 is adjusted according to this update.

【0040】このような構成であると、可動体4の軸方
向の全移動量に対して常に同じ磁気支持特性が得られ
る。
With such a structure, the same magnetic support characteristic can be always obtained with respect to the total amount of movement of the movable body 4 in the axial direction.

【0041】また、上述した実施例ではバイアスコイル
を設けているが制御コイルだけで制御するようにしても
よい。また、上述した実施例では、磁気支持に必要な電
磁石群を軸方向に2組設けているが、3組以上設けても
よい。さらに、上述した実施例では制御パラメータを連
続的に調整しているが間欠的に調整するようにしてもよ
い。
Further, although the bias coil is provided in the above embodiment, the control may be performed only by the control coil. Further, in the above-described embodiment, two sets of electromagnet groups necessary for magnetic support are provided in the axial direction, but three or more sets may be provided. Furthermore, although the control parameter is continuously adjusted in the above-mentioned embodiment, it may be adjusted intermittently.

【0042】[0042]

【発明の効果】以上詳述したように本発明によれば、可
動体の軸方向の移動量に応じて磁気支持制御系の制御パ
ラメータを調整するようにしているので、可動体の重心
運動と重心まわりの回転運動との非干渉化支持が可能と
なる。また、重心運動と回転運動の制御系を独立して設
計できるので、設計が簡素化できる。さらに、位置決め
の精度に関わるベースからの重心方向外乱による回転運
動への影響および回転方向外乱による重心運動への影響
を極小化できる対策が容易に実施可能となり、全移動量
において所望の支持特性を安定に確保できる。
As described above in detail, according to the present invention, the control parameter of the magnetic support control system is adjusted in accordance with the amount of movement of the movable body in the axial direction. Support for decoupling with the rotational motion around the center of gravity becomes possible. Further, the control system for the center of gravity motion and the control system for the rotary motion can be designed independently, so that the design can be simplified. Furthermore, it is possible to easily implement measures that can minimize the influence of the disturbance from the base on the accuracy of positioning on the rotational movement due to the disturbance in the direction of the center of gravity and the influence on the center of gravity movement due to the disturbance in the direction of rotation. It can be secured stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る直線動磁気支持装置を
図2におけるS−S線に沿って切断し矢印方向に見た断
面図。
FIG. 1 is a cross-sectional view of a linear dynamic magnetic support device according to an embodiment of the present invention, taken along the line SS in FIG. 2 and viewed in the direction of the arrow.

【図2】同装置を図1におけるR−R線に沿って切断し
矢印方向に見た断面図。
FIG. 2 is a cross-sectional view of the same device taken along line RR in FIG. 1 and viewed in the direction of the arrow.

【図3】同装置における制御装置のブロック構成図。FIG. 3 is a block configuration diagram of a control device in the device.

【図4】力の平衡条件および非干渉化条件を説明するた
めの図。
FIG. 4 is a view for explaining a force equilibrium condition and a decoupling condition.

【図5】可動体の移動量と定常励磁電流との関係の一例
を示す図。
FIG. 5 is a diagram showing an example of a relationship between a moving amount of a movable body and a steady excitation current.

【符号の説明】[Explanation of symbols]

1…静止体、 4…可動体、10…磁
気支持装置、 11a〜11d…継鉄、12a
〜12d…コイル、 13a〜13d…凸状磁極、
14a〜14d…平坦面、 15a〜15d…半径
方向の位置検出器、17…バイアスコイル、 1
8…制御コイル、20…電磁力発生機構、21…永久磁
石、22…筒状コイル、 24…補助板、2
5…傾斜面、 26…軸方向移動量検出
器、31…制御装置、 32…磁気支持制御
部、33…軸方向移動量制御部。
DESCRIPTION OF SYMBOLS 1 ... Stationary body, 4 ... Movable body, 10 ... Magnetic support device, 11a-11d ... Yoke, 12a
~ 12d ... coil, 13a ~ 13d ... convex magnetic pole,
14a to 14d ... Flat surface, 15a to 15d ... Radial position detector, 17 ... Bias coil, 1
8 ... Control coil, 20 ... Electromagnetic force generation mechanism, 21 ... Permanent magnet, 22 ... Cylindrical coil, 24 ... Auxiliary plate, 2
5 ... Inclined surface, 26 ... Axial movement amount detector, 31 ... Control device, 32 ... Magnetic support control part, 33 ... Axial movement amount control part.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】静止体と、この静止体の近傍に軸方向へ移
動自在に配置された可動体と、前記静止体の前記可動体
を囲む位置で、かつ軸方向の2箇所以上の位置に設けら
れた複数の電磁石群と、前記可動体の半径方向の位置を
検出する半径方向位置検出手段と、この位置検出手段の
情報に基づいて前記複数の電磁石群の磁気力を調整して
前記可動体を非接触に支持する磁気支持制御系と、前記
可動体の軸方向移動量を検出する軸方向移動量検出手段
と、前記可動体に軸方向の移動力を与える駆動手段と、
前記軸方向移動量検出手段で得られた情報に応じて前記
磁気支持制御系の制御パラメータを間欠的または連続的
に調整する制御パラメータ調整手段とを具備しているこ
とを特徴とする直線動磁気支持装置。
1. A stationary body, a movable body disposed in the vicinity of the stationary body so as to be movable in the axial direction, a position surrounding the movable body of the stationary body, and at two or more positions in the axial direction. The plurality of electromagnet groups provided, the radial position detecting means for detecting the radial position of the movable body, and the magnetic force of the plurality of electromagnet groups based on the information of the position detecting means to move the movable body. A magnetic support control system for supporting the body in a non-contact manner, an axial movement amount detecting means for detecting an axial movement amount of the movable body, and a driving means for giving an axial moving force to the movable body,
A linear dynamic magnetic field comprising: a control parameter adjusting means for adjusting the control parameter of the magnetic support control system intermittently or continuously according to the information obtained by the axial movement amount detecting means. Support device.
【請求項2】前記制御パラメータ調整手段によって調整
される制御パラメータは、前記電磁石群に流す定常励磁
電流のレベルであることを特徴とする請求項1に記載の
直線動磁気支持装置。
2. The linear dynamic magnetic support apparatus according to claim 1, wherein the control parameter adjusted by the control parameter adjusting means is a level of a steady excitation current flowing through the electromagnet group.
【請求項3】前記制御パラメータ調整手段によって調整
される前記定常励磁電流のレベルは、前記電磁石群によ
る力を加えた力の平衡条件および前記可動体の重心運動
と重心まわりの回転運動相互の非干渉化条件を満たすよ
うに調整されることを特徴とする請求項2に記載の直線
動磁気支持装置。
3. The level of the steady-state exciting current adjusted by the control parameter adjusting means is a condition of equilibrium of the force applied by the electromagnet group and the center of gravity movement of the movable body and the rotational movement around the center of gravity. The linear dynamic magnetic support device according to claim 2, wherein the linear dynamic magnetic support device is adjusted so as to satisfy an interference condition.
【請求項4】前記制御パラメータ調整手段は、前記軸方
向移動量検出手段で得られた情報に応じて磁気支持系の
モデルを更新する制御モデル更新手段と、この制御モデ
ル更新手段の結果から磁気支持系の安定化のための補償
パラメータを更新する補償パラメータ更新手段とを具備
してなることを特徴とする請求項1または3に記載の直
線動磁気支持装置。
4. The control parameter adjusting means updates the model of the magnetic support system in accordance with the information obtained by the axial movement amount detecting means, and a magnetic field based on the result of the control model updating means. The linear dynamic magnetic support device according to claim 1 or 3, further comprising a compensation parameter updating means for updating a compensation parameter for stabilizing the support system.
JP28013591A 1991-08-26 1991-10-25 Linear dynamic magnetic bearing device Pending JPH05122893A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP28013591A JPH05122893A (en) 1991-10-25 1991-10-25 Linear dynamic magnetic bearing device
EP92307755A EP0534613B1 (en) 1991-08-26 1992-08-26 Device for supporting and linearly moving an object
DE69206229T DE69206229T2 (en) 1991-08-26 1992-08-26 Device for carrying and for linear movement of an object.
US07/935,874 US5287031A (en) 1991-08-26 1992-08-26 Device for supporting and linearly moving an object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28013591A JPH05122893A (en) 1991-10-25 1991-10-25 Linear dynamic magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH05122893A true JPH05122893A (en) 1993-05-18

Family

ID=17620831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28013591A Pending JPH05122893A (en) 1991-08-26 1991-10-25 Linear dynamic magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH05122893A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5671058A (en) * 1994-03-07 1997-09-23 Kabushiki Kaisha Toshiba Device for supporting linearly moving a movable member and a controlling system for the device
CN111469532A (en) * 2020-05-29 2020-07-31 湖北科技学院 Suspension type printing roller online torque monitoring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5671058A (en) * 1994-03-07 1997-09-23 Kabushiki Kaisha Toshiba Device for supporting linearly moving a movable member and a controlling system for the device
EP0869340A2 (en) * 1994-03-07 1998-10-07 Kabushiki Kaisha Toshiba A device for supporting and linearly moving a movable member
EP0869340A3 (en) * 1994-03-07 1998-11-25 Kabushiki Kaisha Toshiba A device for supporting and linearly moving a movable member
CN111469532A (en) * 2020-05-29 2020-07-31 湖北科技学院 Suspension type printing roller online torque monitoring method
CN111469532B (en) * 2020-05-29 2023-12-08 湖北科技学院 Online torque monitoring method for suspension printing roller

Similar Documents

Publication Publication Date Title
US6040675A (en) Supporting apparatus using magnetic power
US5530306A (en) Magnetic bearing apparatus
EP0514877B1 (en) Vibration eliminating apparatus for eliminating vibration of installation floor
CN116182765B (en) Self-calibration control method and device of displacement sensor based on magnetic suspension bearing
JP5611790B2 (en) Magnetic levitation device
Stadler et al. High precision hybrid reluctance actuator with integrated orientation independent zero power gravity compensation
JP2013123297A (en) Magnetic levitation device
JPH05122893A (en) Linear dynamic magnetic bearing device
JPH0557550A (en) Precision one-step, six-degree-of-freedom stage
JP2005036839A (en) Magnetic supporting device
JP3197031B2 (en) Linear motion magnetic support device
US6621241B2 (en) System and method for reducing oscillating tool-induced reaction forces
Tsao et al. Adaptive synchronization control of the magnetically suspended rotor system
EP0378678A1 (en) Electromagnetic bearings.
US20070080594A1 (en) Power amplification device and magnetic bearing
JPH048914A (en) Magnetic attraction gas floating type pad
JP2004003572A (en) Magnetic bearing and bearing device provided with it
JP2005169523A (en) Table positioning device
Higuchi et al. Super-clean actuator for machines and robots
JP2004293598A (en) Magnetic bearing
JP3434603B2 (en) Linear dynamic magnetic support device
JPH05122894A (en) Linear dynamic magnetic bearing device
JPH076541B2 (en) Magnetic bearing device
JPH05122891A (en) Linear dynamic magnetic bearing device
KR20060128367A (en) Non-contact revolving stage and a method for detecting the six degree-of-freedom position thereof