JPH0882757A - Biaxial luminous flux driving device - Google Patents

Biaxial luminous flux driving device

Info

Publication number
JPH0882757A
JPH0882757A JP24187794A JP24187794A JPH0882757A JP H0882757 A JPH0882757 A JP H0882757A JP 24187794 A JP24187794 A JP 24187794A JP 24187794 A JP24187794 A JP 24187794A JP H0882757 A JPH0882757 A JP H0882757A
Authority
JP
Japan
Prior art keywords
reflection mirror
optical system
coils
light
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24187794A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hagiwara
裕之 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24187794A priority Critical patent/JPH0882757A/en
Publication of JPH0882757A publication Critical patent/JPH0882757A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE: To provide a biaxial luminous flux driving device simple and easy in assembling, small in size and light in weight. CONSTITUTION: This device is provided with a movable part consisting of a yoke 3 consisting of ferromagnetic body fixed to a reflection mirror 1 reflecting a required luminous flux and a magnet 2 having a doughnut shape and magnetized into four poles, a pin 4 pivotally supporting the rear surface center of the reflection mirror 1 through a leaf spring turnable around two axes, four pieces or integral multiple pieces of four of coils 5, 9 opposing to the magnet 2 and arranged in a plane shape at a prescribed interval and a fixed yoke 6 arranged on the rear side of the coils 5, 9 and attached to a casing 15 and consisting of the ferromagnetic body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば、レーザービーム
プリンタ、物体読取り装置、レーザマーキング、レーザ
ートリミング、画像解析、各種計測分野等に好適に利用
される2軸光束駆動装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-axis light flux driving device suitably used in, for example, a laser beam printer, an object reading device, a laser marking, a laser trimming, an image analysis and various measurement fields.

【0002】[0002]

【従来の技術】図7は従来の2軸駆動装置の概略図を示
すもので、図7において、401は第1の反射ミラーで
あり、主軸406に設けられている。この主軸406は
1軸のみ駆動可能なアクチュエータ403により回動駆
動され、第1のスキャンユニットを構成する。402は
第2の反射ミラーであり、主軸405に設けられてい
る。この主軸405は1軸のみ駆動可能なアクチュエー
タ404により回動駆動され、第2のスキャンユニット
を構成する。そして、これら第1、第2のスキャンユニ
ットを所定の面内で互いに直交するように配設してい
る。
2. Description of the Related Art FIG. 7 is a schematic view of a conventional two-axis driving device. In FIG. 7, 401 is a first reflecting mirror, which is provided on a main shaft 406. The main shaft 406 is rotationally driven by an actuator 403 that can drive only one shaft, and constitutes a first scan unit. Reference numeral 402 denotes a second reflecting mirror, which is provided on the main shaft 405. The main shaft 405 is rotationally driven by an actuator 404 that can drive only one shaft, and constitutes a second scan unit. Then, the first and second scan units are arranged so as to be orthogonal to each other within a predetermined plane.

【0003】次に動作について説明する。アクチュエー
タ403、404で第1、第2の反射ミラー401、4
02を回動させ、入射光束407をターゲット408の
面内で、X、Y軸の2軸方向に駆動する。
Next, the operation will be described. The actuators 403 and 404 are used to form the first and second reflection mirrors 401 and 4
02 is rotated to drive the incident light beam 407 in the plane of the target 408 in the two directions of the X and Y axes.

【0004】[0004]

【発明が解決しようとしている課題】以上のように従来
の2軸光束駆動装置は所定の面内で互いに直交するよう
に配設した第1、第2のスキャンユニット反射ミラー
を、それぞれ独立した2個のアクチュエータにより駆動
しているため、それぞれのアクチュエータの配置による
スペースが大きく、全体のシステムが大がかりになると
いう問題点がある。また、2個のアクチュエータ間の位
置調整が困難であるなどの問題点があった。
As described above, in the conventional two-axis light flux driving device, the first and second scan unit reflecting mirrors arranged so as to be orthogonal to each other within a predetermined plane are provided as two independent mirrors. Since the actuators are driven by individual actuators, there is a problem that a large space is required due to the arrangement of the actuators, and the entire system becomes large-scale. Further, there is a problem that it is difficult to adjust the position between the two actuators.

【0005】本発明は上記のような従来装置の問題点を
解消した2軸光束駆動装置を得ることを目的とする。
An object of the present invention is to obtain a two-axis light flux driving device which solves the above-mentioned problems of the conventional device.

【0006】[0006]

【課題を解決するための手段】本発明は所望の光束を反
射する反射ミラーに固着された強磁性体からなるヨーク
及びドーナツ状で4極に磁化された磁石とからなる可動
部と、前記反射ミラーの背面中央を2軸回りに回動可能
な板バネを介してピボット支持するピンと、前記磁石に
対向し所定の間隔を有して平面状に配設した4個または
4の整数倍個のコイルと、前記コイルの裏側に配設し匡
体に取付けた強磁性体からなる固定ヨークとを具備した
ことにより2軸同時に駆動することが可能となり、小型
軽量化された2軸光束駆動装置が実現できる。また、駆
動源が1組の磁石系であるため、困難な位置調整がまっ
たく不必要である。
According to the present invention, there is provided a movable part comprising a yoke made of a ferromagnetic material fixed to a reflection mirror for reflecting a desired light beam and a donut-shaped magnet magnetized to have four poles, and the reflection. A pin that pivotally supports the center of the rear surface of the mirror through a leaf spring that is rotatable about two axes, and four pins that are opposed to the magnet and are arranged in a plane with a predetermined interval or an integral multiple of four. Since the coil and the fixed yoke made of a ferromagnetic material disposed on the back side of the coil and attached to the housing are provided, two axes can be simultaneously driven, and a compact and lightweight two-axis light flux driving device is provided. realizable. Further, since the drive source is a set of magnet systems, difficult position adjustment is completely unnecessary.

【0007】[0007]

【実施例】図1は本発明の実施例による2軸光束駆動装
置を示す断面図、図2はその上面図である。図1、図2
において、1は外部からの光束16を反射する反射ミラ
ー1であり、正方形をした反射面は反射コーティングさ
れ、その側面は平行板ガラスの役目を果たすように鏡面
処理が施され平行板ガラスの役目を果たす。この反射ミ
ラー1の反射面に対する反対側の面には2軸周りに回動
可能な板バネとしてのジンパルバネ7を介してピン4が
ピボット支持され、このピン4の他端は匡体15に保持
されている。ジンバルバネ7には電磁軟鉄等の強磁性体
からなるドーナツ状のヨーク3が固着され、このヨーク
3には磁石2が固着されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view showing a biaxial light flux driving device according to an embodiment of the present invention, and FIG. 2 is a top view thereof. 1 and 2
In the drawing, reference numeral 1 denotes a reflection mirror 1 for reflecting a light beam 16 from the outside, and a square reflection surface is reflection coated, and its side surface is mirror-finished so as to function as parallel plate glass, and functions as parallel plate glass. . A pin 4 is pivotally supported on a surface of the reflection mirror 1 opposite to the reflection surface via a ginpal spring 7 as a leaf spring rotatable about two axes, and the other end of the pin 4 is held by a housing 15. Has been done. A donut-shaped yoke 3 made of a ferromagnetic material such as electromagnetic soft iron is fixed to the gimbal spring 7, and a magnet 2 is fixed to the yoke 3.

【0008】ここでジンバルバネ7は図8に示す構成を
とる。ジンバルバネ7はバネ材等の弾性変形に優れた材
料を使用し一体に成形されている。口の字型の固定部7
1には対向する内辺に支持部74a,bが設けられ可動
部72が接合されており、支持部74a,bを中心に回
動可能である。さらに口の字型の可動部72には対向す
る内辺に第2の支持部75a,bが設けられ、第2の可
動部73が接合されており、第2の支持部75a,bを
中心に可動部73は回動可能である。このジンバルバネ
により、固定部71に対して可動部73はX軸及びY軸
を中心にフレキシブルに回動する。
Here, the gimbal spring 7 has a structure shown in FIG. The gimbal spring 7 is integrally formed using a material such as a spring material that is excellent in elastic deformation. Mouth-shaped fixed part 7
1, support portions 74a and 74b are provided on the inner sides facing each other, and a movable portion 72 is joined thereto, and the movable portion 72 is rotatable around the support portions 74a and 74b. Further, the square-shaped movable portion 72 is provided with second supporting portions 75a and 75b on the inner sides facing each other, and the second movable portion 73 is joined to the second supporting portions 75a and 75b. The movable portion 73 is rotatable. With this gimbal spring, the movable portion 73 flexibly rotates about the X axis and the Y axis with respect to the fixed portion 71.

【0009】磁石2は図3に示すように、表面を4極に
磁化されている。ここで上記磁石2、ヨーク3、反射ミ
ラー1は可動部を構成している。この可動部は反射ミラ
ー1の背面中心部に上記ジンバルバネ7を介してピボッ
ト支持されたピン4により、2軸周り回動可能に匡体1
5に取付けられている。図9にコイル部の構成を示す。
As shown in FIG. 3, the magnet 2 has its surface magnetized into four poles. Here, the magnet 2, the yoke 3, and the reflection mirror 1 constitute a movable portion. The movable portion is rotatable about two axes by a pin 4 pivotally supported at the center of the back surface of the reflection mirror 1 through the gimbal spring 7.
5 is attached. FIG. 9 shows the structure of the coil portion.

【0010】また、匡体15には磁石2に対向するよう
に隙間をもって略矩形に巻き線されたコイル5、9が4
個または4の整数倍個、平面状に配設されている。この
コイル5、9の下には強磁性体からなる固定ヨーク6が
配設されており、前記可動部を構成する磁石2及びヨー
ク3の作りだす磁束を集約し、コイル5、9を透過する
磁束を増大させる役目を果たすと共に、前記可動部をピ
ン4側に吸引する力を発生し、可動部の上方向の移動を
規制している。
Further, the housing 15 has four coils 5 and 9 wound in a substantially rectangular shape with a gap facing the magnet 2.
Or a multiple of 4 is arranged in a plane. A fixed yoke 6 made of a ferromagnetic material is disposed below the coils 5 and 9, and the magnetic fluxes produced by the magnet 2 and the yoke 3 that form the movable portion are collected and the magnetic flux transmitted through the coils 5 and 9. And a force for attracting the movable portion to the pin 4 side is generated, and the upward movement of the movable portion is restricted.

【0011】ここで対向するコイル5、9は図10に示
すように結線されている。磁石2が発生する磁力線に対
して直列に決線されたコイルは、それぞれ逆方向に巻線
され、それぞれ正負の力を発生する。これに伴って可動
部が回動される。
The coils 5 and 9 facing each other are connected as shown in FIG. The coils fixed in series with the magnetic lines of force generated by the magnet 2 are wound in opposite directions, and generate positive and negative forces, respectively. Along with this, the movable part is rotated.

【0012】10a、10bは半導体レーザー等の光
源、11a、11bはコリメータレンズ、14a−1、
14a−2,14b−1、14b−2は反射ミラー、1
3a、13bはPDS等の受光センサであり、光源10
a、10bとコリメータレンズ11aおよび反射ミラー
14a−1、14a−2で入射光学系を、反射ミラー1
4b−1、14b−2と受光センサ13a、13bで出
射光学系を構成しており、この入射光学系と出射光学系
の一対を直交する軸上に配設し、可動部の2軸方向の回
転角度を計測することに用いられる。なお、図4に示す
ように、光源10aまたは10bとコリメータレンズ1
1aまたは11bの間にはスリット板30を配置しても
よい。
10a and 10b are light sources such as semiconductor lasers, 11a and 11b are collimator lenses, 14a-1 and
14a-2, 14b-1, 14b-2 are reflection mirrors, 1
3a and 13b are light receiving sensors such as PDS,
a and 10b, the collimator lens 11a, and the reflection mirrors 14a-1 and 14a-2 to form the incident optical system.
4b-1 and 14b-2 and the light receiving sensors 13a and 13b constitute an output optical system. A pair of the input optical system and the output optical system are arranged on orthogonal axes, and are arranged in two axial directions of the movable portion. It is used to measure the rotation angle. As shown in FIG. 4, the light source 10a or 10b and the collimator lens 1 are
A slit plate 30 may be arranged between 1a or 11b.

【0013】次に上記実施例の動作を図5に示す制御ブ
ロック図について説明する。光源10aからの光はコリ
メータレンズ11aによって略平行光束とされ、反射ミ
ラー14a−1、14a−2を2回通過して前記可動部
の反射ミラー1の側面に入射する。反射ミラー1の内部
を通過し反射側の側面より出射した光束は反射ミラー1
4b−1、14b−2を2回通過して受光センサ13a
に到達する。また、光源10bからの光は11b、14
a−1、14a−2,1,14b−1、14b−2を介
して受光センサ13bに到達する。
Next, the operation of the above embodiment will be described with reference to the control block diagram shown in FIG. The light from the light source 10a is made into a substantially parallel light flux by the collimator lens 11a, passes through the reflection mirrors 14a-1 and 14a-2 twice, and enters the side surface of the reflection mirror 1 of the movable portion. The light flux passing through the inside of the reflection mirror 1 and emitted from the side surface on the reflection side is reflected by the reflection mirror 1.
4b-1 and 14b-2 are passed twice to receive the light receiving sensor 13a.
To reach. Also, the light from the light source 10b is
The light sensor 13b is reached via a-1, 14a-2, 1, 14b-1, and 14b-2.

【0014】図1は中立状態を示しているので、受光セ
ンサ13a、13bの電気出力は中立状態のゼロ点出力
を表わすことになる。
Since FIG. 1 shows the neutral state, the electric outputs of the light receiving sensors 13a and 13b represent the zero point output in the neutral state.

【0015】コンピュータ(図示せず)等からの目標位
置情報(X、Y)をコントローラ71で可動部の振れ角
度に計算し直し、1組のコイル5、9の駆動電流を決定
する。これをドライバ73、72で電流に変換し、この
電流をコイル5、9に流すことによって、可動部が移動
する。この可動部の移動角度を受光センサ13a、13
bからの出力電圧でコントローラ71にフィードバック
し、目標角度とのずれ量を再度計算してコイル5、9に
電流を供給する。
Target position information (X, Y) from a computer (not shown) or the like is recalculated by the controller 71 into the deflection angle of the movable portion, and the drive currents of the pair of coils 5 and 9 are determined. This is converted into a current by the drivers 73 and 72, and the current is passed through the coils 5 and 9 to move the movable part. The moving angle of the movable part is determined by the light receiving sensors 13a, 13a.
The output voltage from b is fed back to the controller 71, the amount of deviation from the target angle is calculated again, and the current is supplied to the coils 5 and 9.

【0016】図6はコイル5に所定の電流を流し、可動
部を1軸方向に傾けた状態を示す。この場合、可動部の
反射ミラー1は平行板ガラスの役割を果たすため、前記
光源10aからの光束は受光センサ13a上で位置が下
方向にずれるので、この時の受光センサ出力と前記ゼロ
点出力とを不図示の演算手段で比較することによって、
可動部の傾き角度を算出することができる。従って、図
2に示すような角度計測系を2つ、直交軸上に配設する
ことによって、可動部の2軸周りの回転角度を算出する
ことができる。
FIG. 6 shows a state in which a predetermined current is passed through the coil 5 and the movable portion is tilted in one axis direction. In this case, since the reflecting mirror 1 of the movable part plays the role of a parallel plate glass, the position of the light beam from the light source 10a is shifted downward on the light receiving sensor 13a, so that the light receiving sensor output at this time and the zero point output are By comparing
The tilt angle of the movable part can be calculated. Therefore, by arranging two angle measuring systems as shown in FIG. 2 on orthogonal axes, it is possible to calculate the rotation angle of the movable portion around the two axes.

【0017】[0017]

【発明の効果】以上のように本発明によれば、直交軸上
に配設したコイルと該コイルに磁束を作用させる1組の
磁石系によりなる駆動源によって、同時に2軸方向の駆
動ができるように構成したので、格段に小型軽量化を達
成することが可能となった。また、駆動源としてのアク
チュエータを用いた従来装置では、各アクチュエータ間
の位置調整がきわめて面倒であったが、本発明はアクチ
ュエータを用いないので、位置調整が不要となり、組付
けが簡単、かつ容易な2軸光束駆動装置が得られるとい
う効果がある。
As described above, according to the present invention, it is possible to drive in two axial directions at the same time by the drive source composed of the coils arranged on the orthogonal axes and a set of magnet systems that act the magnetic flux on the coils. With this configuration, it has become possible to achieve a marked reduction in size and weight. Further, in the conventional device using the actuator as the drive source, the position adjustment between the actuators was extremely troublesome, but since the present invention does not use the actuator, the position adjustment is unnecessary, and the assembly is easy and easy. There is an effect that a two-axis luminous flux driving device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による実施例を示す断面図FIG. 1 is a sectional view showing an embodiment according to the present invention.

【図2】 図1の正面図2 is a front view of FIG.

【図3】 磁石の斜視図FIG. 3 is a perspective view of a magnet

【図4】 光学系の図FIG. 4 Diagram of optical system

【図5】 実施例の動作を説明する制御ブロック図FIG. 5 is a control block diagram for explaining the operation of the embodiment.

【図6】 可動部を傾けた状態図FIG. 6 is a state diagram in which the movable part is tilted.

【図7】 図7は従来例を示す斜視図FIG. 7 is a perspective view showing a conventional example.

【図8】 ジンバルバネの概略図FIG. 8 is a schematic view of a gimbal spring.

【図9】 コイル部の概略図FIG. 9 is a schematic view of a coil portion.

【図10】 コイルの結線の説明図FIG. 10 is an explanatory diagram of coil connection.

【符号の説明】[Explanation of symbols]

1 反射ミラー 2 磁石 3 ヨーク 4 ピン 5 コイル 6 固定ヨーク 7 ジンバルバネ(板バネ) 10 光源 13a、13b 受光センサー 14a−1、14a−2,14b−1、14b−2 反
射ミラー 15 匡体
DESCRIPTION OF SYMBOLS 1 reflection mirror 2 magnet 3 yoke 4 pin 5 coil 6 fixed yoke 7 gimbal spring (leaf spring) 10 light source 13a, 13b light receiving sensor 14a-1, 14a-2, 14b-1, 14b-2 reflection mirror 15 case

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所望の光束を反射する反射ミラーに固着
された強磁性体からなるヨーク及びドーナツ状で4極に
磁化された磁石とからなる可動部と、前記反射ミラーの
背面中央を2軸回りに回動可能な板バネを介してピボッ
ト支持するピンと、前記磁石に対向し所定の間隔を有し
て平面状に配設した4個または4の整数倍個のコイル
と、前記コイルの裏側に配設し匡体に取付けた強磁性体
からなる固定ヨークとを具備したことを特徴とする2軸
光束駆動装置。
1. A movable part composed of a yoke made of a ferromagnetic material fixed to a reflection mirror for reflecting a desired light beam and a donut-shaped magnet magnetized with four poles, and the center of the back surface of the reflection mirror is biaxial. A pin that is pivotally supported via a leaf spring that can be rotated around, four coils that are opposed to the magnet and are arranged in a plane with a predetermined interval, or an integral multiple of four coils, and the back side of the coil. And a fixed yoke made of a ferromagnetic material, which is attached to the casing and is attached to the casing.
【請求項2】 前記匡体に配設された光源からの光を略
平行光束に成形して前記反射ミラーの側面に入射する入
射光学系と、前記反射ミラーの側面を透過した前記平行
光束を受光センサに投影する出射光学系とを具備し、前
記入射光学系と出射光学系の一対を直交する軸上に配設
し、それぞれの出射光学系に対応する受光センサの出力
信号に基づいて前記反射ミラーの傾き角度を計測するこ
とを特徴とする請求項1記載の2軸光束駆動装置。
2. An incident optical system that shapes light from a light source disposed in the casing into a substantially parallel light flux and enters the side surface of the reflection mirror, and the parallel light flux that has passed through the side surface of the reflection mirror. An output optical system for projecting on a light receiving sensor, a pair of the input optical system and the output optical system are arranged on orthogonal axes, and based on the output signal of the light receiving sensor corresponding to each output optical system, The two-axis light flux driving device according to claim 1, wherein an inclination angle of the reflection mirror is measured.
JP24187794A 1994-09-09 1994-09-09 Biaxial luminous flux driving device Pending JPH0882757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24187794A JPH0882757A (en) 1994-09-09 1994-09-09 Biaxial luminous flux driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24187794A JPH0882757A (en) 1994-09-09 1994-09-09 Biaxial luminous flux driving device

Publications (1)

Publication Number Publication Date
JPH0882757A true JPH0882757A (en) 1996-03-26

Family

ID=17080872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24187794A Pending JPH0882757A (en) 1994-09-09 1994-09-09 Biaxial luminous flux driving device

Country Status (1)

Country Link
JP (1) JPH0882757A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046639A1 (en) * 2001-11-27 2003-06-05 Olympus Corporation Light deflecting device
JP2006003421A (en) * 2004-06-15 2006-01-05 Sony Corp Lens driving mechanism and imaging apparatus
US7129601B2 (en) 2001-03-30 2006-10-31 Gsi Group Corporation Apparatus for controlled movement of an element
JP2008003130A (en) * 2006-06-20 2008-01-10 Fujifilm Corp Image stabilizing apparatus and photographing apparatus
JP2008125288A (en) * 2006-11-14 2008-05-29 Matsushita Electric Works Ltd Actuator
JP2010078842A (en) * 2008-09-25 2010-04-08 Mitsumi Electric Co Ltd Camera shake correction device for camera
JP2010250045A (en) * 2009-04-15 2010-11-04 Nidec Sankyo Corp Optical device for photography
JP2011066580A (en) * 2009-09-16 2011-03-31 Mitsumi Electric Co Ltd Camera-shake correction device
JP5846636B2 (en) * 2009-07-17 2016-01-20 日本電気株式会社 Compact mirror tilt actuator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129601B2 (en) 2001-03-30 2006-10-31 Gsi Group Corporation Apparatus for controlled movement of an element
WO2003046639A1 (en) * 2001-11-27 2003-06-05 Olympus Corporation Light deflecting device
US7286273B2 (en) 2001-11-27 2007-10-23 Olympus Optical Co., Ltd. Light deflecting device
JP2006003421A (en) * 2004-06-15 2006-01-05 Sony Corp Lens driving mechanism and imaging apparatus
JP2008003130A (en) * 2006-06-20 2008-01-10 Fujifilm Corp Image stabilizing apparatus and photographing apparatus
JP2008125288A (en) * 2006-11-14 2008-05-29 Matsushita Electric Works Ltd Actuator
JP2010078842A (en) * 2008-09-25 2010-04-08 Mitsumi Electric Co Ltd Camera shake correction device for camera
JP4626780B2 (en) * 2008-09-25 2011-02-09 ミツミ電機株式会社 Camera shake correction device
JP2010250045A (en) * 2009-04-15 2010-11-04 Nidec Sankyo Corp Optical device for photography
CN102388330A (en) * 2009-04-15 2012-03-21 日本电产三协株式会社 Image-capturing optical device
JP5846636B2 (en) * 2009-07-17 2016-01-20 日本電気株式会社 Compact mirror tilt actuator
JP2011066580A (en) * 2009-09-16 2011-03-31 Mitsumi Electric Co Ltd Camera-shake correction device

Similar Documents

Publication Publication Date Title
EP2435875B1 (en) Single mirror optical scanner
JP5872073B2 (en) Optical scanning device and projector
US9417458B2 (en) Image stabilizing device and system for telescopic optical instruments
US4157861A (en) Optical beam steering system
US20100091120A1 (en) Optical unit with shake correcting function
CN107925717A (en) Swing roller guides voice coil motor
JP4309929B2 (en) Actuator
US5243241A (en) Totally magnetic fine tracking miniature galvanometer actuator
JPH0882757A (en) Biaxial luminous flux driving device
JP4680373B2 (en) Galvano mirror
US10928644B2 (en) Anti-vibration device and binocle
US11956540B2 (en) Tiltable fold mirror for an optical imaging system
JP2017184600A (en) Stage device
JPH1115037A (en) Camera shake correcting mechanism for optical device
JP2001290100A (en) Mirror scanner
JP2828871B2 (en) Trepanning head
JP2015194722A (en) Optical member drive unit and projection type image display device
WO2007148664A1 (en) Actuator
JPH0566832A (en) Biaxial driving actuator
US7272082B2 (en) Optical scanning device comprising a tiltable lens system
JPH09230226A (en) Optical device
JP4838445B2 (en) Galvano mirror
JP2021076811A (en) Camera device and optical output device
JPH10253901A (en) Light angle deviating device and optical device using the same
JPH0972975A (en) Xy drive stage