JPS60215141A - Cross-shaft type synclinal gear mechanism with speed increasing gear - Google Patents

Cross-shaft type synclinal gear mechanism with speed increasing gear

Info

Publication number
JPS60215141A
JPS60215141A JP7058384A JP7058384A JPS60215141A JP S60215141 A JPS60215141 A JP S60215141A JP 7058384 A JP7058384 A JP 7058384A JP 7058384 A JP7058384 A JP 7058384A JP S60215141 A JPS60215141 A JP S60215141A
Authority
JP
Japan
Prior art keywords
gear
shaft
synclinal
gear mechanism
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7058384A
Other languages
Japanese (ja)
Inventor
Buichi Nakamura
中村 武一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7058384A priority Critical patent/JPS60215141A/en
Publication of JPS60215141A publication Critical patent/JPS60215141A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H1/321Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear the orbital gear being nutating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

PURPOSE:To improve efficiency, by braking a shaft having an increased speed and a low torque by means of a frictional braking material, and controlling the shaft of a surface driving gear, etc. by an independent power. CONSTITUTION:A cross-shaft type synclinal gear mechanism is formed by a surface driving gear 1, a synclinal gear 2 and a surface driven gear 4 to drive a motor M1 directly connected to an input shaft S1. Although same directional torque of an inclined shaft 3 and an output shaft S4 of the synclinal gear mechanism is increased in proportion to a rotational speed, output torque of the synclinal gear mechanism with a large reduction ratio as in the preferred embodiment is reduced by an amount of efficiency. One shaft S3 of the surface driving gear 1 of the cross-shaft type synclinal gear mechanism for the motor M1 is connected through helical grear train 6, 7 and 8 to the shaft S5 of a surface driven gear 14 of an independently formed speed-increasable synclinal gear mechanism. The braking plate 9 of an electromagnetic brake MB is fixed to the inclined shaft S6 of a conical rocking member 13.

Description

【発明の詳細な説明】 直交軸形内科首振歯車機構(昭59年3月12日特許出
願3、出願番号、昭59− 号)は内科首振歯車機構(
以下ノンクルギヤと略称する)の布振歯車の外周部に7
字形の溝を設け、之と嵌合する円錐ローラーを出力軸の
半径方向に設けた入力斜軸により駆動し、ノンクルギャ
の斜軸を定方向に同転することにより一対の面歯車を互
に反方向に首振させる偏移面歯車機構である。このため
入力軸は出力軸の半径方向に1乃至多数段けることが出
来ると共に入力軸と同転するノンクルギャの斜軸と駆・
従動面歯車、の3自転成分は出力又はその制御要素とし
て利用し易い特徴がある反面回転比の小さいものは作り
難い。特に直交軸形ノンクルギャは揺動中心が対向して
設けた自転面歯車間の中央附近にある回転比の比較的に
太き汝もの程強度的に設計し易いが差動成分により回転
比を大きくする程鎖錠性が急増し、効率が悪化して逆伝
達(増速)不可能となる欠点がある。ノンクルギャは一
機構で大きな回転比(最大基準面歯車歯数の自乗まで)
が得られるがその駆動面歯車は負荷トルクを直接支持す
るために之を制御する必要のある回転変換機では低速大
トルクの回転・制動装置を里付けなければならない。
[Detailed description of the invention] The orthogonal shaft type internal medicine oscillation gear mechanism (Patent application 3, March 12, 1980, application number, 1982-) is an internal medicine oscillation gear mechanism (
7 on the outer periphery of the cloth oscillating gear
A conical roller that fits into the groove is driven by an input diagonal shaft provided in the radial direction of the output shaft, and by rotating the diagonal shaft of the non-clutch gear in the same direction, the pair of face gears are rotated in opposite directions. It is a shift plane gear mechanism that swings in the direction. Therefore, the input shaft can be arranged in one or more stages in the radial direction of the output shaft, and the diagonal shaft of the non-cross gear that rotates at the same time as the input shaft can be used as a drive shaft.
Although the three rotational components of the driven surface gear are easy to use as output or control elements, it is difficult to produce a driven surface gear with a small rotation ratio. In particular, orthogonal shaft type non-cruise gears are easier to design for strength as the rotation ratio is relatively thicker near the center between the rotating plane gears with their oscillation centers facing each other, but the rotation ratio can be increased due to the differential component. The disadvantage is that the locking property increases rapidly, the efficiency deteriorates, and reverse transmission (speed increase) becomes impossible. Non-kuru gear has a large rotation ratio in one mechanism (up to the square of the maximum number of reference plane gear teeth)
However, since the driving face gear directly supports the load torque, a rotary converter that needs to control it must be equipped with a low-speed, large-torque rotation/braking device.

本発明は駆動面歯爪をクランク又は歯車列で鎖錠性の小
さい歯車機構に連結し、増速低トルク化した軸を摩擦式
制動機で制動すると共に駆動面歯車軸や増速軸を別個の
動力で制御することができるようにしだ増速歯車付直交
軸形内科首振歯車機構に関するものである。
The present invention connects the drive surface tooth pawl to a gear mechanism with low locking property using a crank or a gear train, brakes the shaft that increases speed and reduces torque with a friction brake, and separates the drive surface gear shaft and the speed increase shaft. This invention relates to an orthogonal shaft type internal medicine head oscillation gear mechanism with a speed-increasing gear that can be controlled by the power of .

勿論この種公転歯車変換機の制御は従来からの常套手段
ではあるが/ンクルギャの場合は他の歯車機構とは異っ
た特性と効果が多い。(参考文献ニシンクルギヤの技術
設計資料、JEC編)本発明は動力前、弁や開閉扉等回
転比の大きな用途で別動力源によって駆動したり負荷側
から被動できる用途に適する、ことを目的としたもので
従来のシンクルボンバーターとも異なる機構である。
Of course, control of this type of revolution gear converter is a conventional method, but the Nkuru Gya has many characteristics and effects that are different from other gear mechanisms. (Reference: Nishinkle Gear Technical Design Materials, edited by JEC) The purpose of the present invention is to make it suitable for use before power, in applications with large rotation ratios such as valves and opening/closing doors, which can be driven by a separate power source or driven from the load side. The mechanism is different from the conventional Shinkle Bomber.

図面に就て説明する。第1図は本機構の断面図である。I will explain the drawings. FIG. 1 is a sectional view of this mechanism.

直交軸形シンクルギヤの駆動面歯車(1)歯数N、 =
 29、布振歯車(2)歯数N2= 30 、 l’J
a= 31、従動面歯車(4)歯数N4 = aoとし
入力軸(St)に直結したモーター(Ml)回転数18
00 rpmとすると駆動面歯車(1)固定のとき、出
力軸(S4)の回転数はM+ x (1=矧静= ts
oo x (1−i) = 2 rpmNIN3< N
2N4 テロ ルカらノンクルギャノ斜軸(3) (8
2)及び出力軸(S4)は夫々同方向回転(但し52S
41d軸端より見ると反転)トルクは回転数に比例して
増大するが本実施例のような大減速比の場合シンクルギ
ヤでは出力トルクは効率分だけ減少する。この場合普通
に設計したシンクルギヤ減速機では完全なギヤロックと
なり、出力軸(s4)から斜軸(s2)及び入力斜軸(
S、)を逆駆動すること・はできない0駆動面歯車(1
)は出力軸(S4)に連結した負荷トルクをコンバータ
ーでは大トルクが支持できる噛合クラ、 ツチと減速高
トルク駆動部が直結されるが本実施例では電動機(M+
)直結式の直交軸形シンクルギヤの駆動面歯車(1)軸
(S3)をヘリカルギヤ列(6) (7) (s)で別
設した増速可能なシンクルギヤの従動面歯車α→軸(S
5)に連結し、この円錐揺動体(2)の斜軸(s6)に
電磁ブレーキ(MB ) の制動板(マーマチュア)(
9)を固定したものである。この増速可能なシンクルギ
ヤは他の歯車機構でもよいが、小型で強力、遊隙がない
特性上からこの種の増速歯車機構に適している。実施例
に於て、固定面歯車α力の歯数に=35、布振歯車(ロ
)の歯数N2=N3=37、従動面歯車α尋の歯数様=
36とすれば、この増速比はへりカルギヤ列(6) (
7) (8)の歯数比を50/36 とすると増速比は
−h= 皿X 36 = soとなる。この種のシン3
36 クルギヤの歯車効率は比較的に高く設計するととが容易
であり、鎖錠性も少いので軸(S6)側から軸(S5)
を逆駆動することができる。従って軸(S6)制動用ブ
レーキ(MB) tri出力トルクのV5o程度の容量
のもので充分であるから摩擦板式電磁ブレーキが使用で
きる。更に又軸(S6)に制御用モーター(MZ ) 
1800 rpm を取付けるとMIM2加動のとき出
力軸(S4)は 1 1 36 900 1800 X −−+ 1800 X−面X so X
屈、 = 2 + 3a04キ38rpm00 同様にM、 N2を差動でせたり、単独運転することに
より出力を4変速することができる。直交軸形シンクル
ギヤを歯車列や旋回腕で別設した増速歯車機構を連動で
せる本機構は円錐揺動体(3)の軸(S2)及び駆動面
歯車軸(S3)側からも手動ハンドルや別動力によって
出力軸(S4)を駆動することができる。
Driving face gear of orthogonal shaft type sinkle gear (1) Number of teeth N, =
29, cloth swing gear (2) number of teeth N2 = 30, l'J
a = 31, driven surface gear (4) number of teeth N4 = ao, motor (Ml) directly connected to input shaft (St) rotation speed 18
00 rpm, when the drive plane gear (1) is fixed, the rotation speed of the output shaft (S4) is M+
oo x (1-i) = 2 rpmNIN3<N
2N4 Terror Luka to Nonkhurgyano Oblique Axis (3) (8
2) and the output shaft (S4) rotate in the same direction (however, 52S
41d When viewed from the shaft end, the torque increases in proportion to the rotational speed, but in the case of a large reduction ratio as in this embodiment, the output torque of the sinkle gear decreases by the amount of efficiency. In this case, a normally designed sinkle gear reducer will have a complete gear lock, from the output shaft (s4) to the oblique shaft (s2) and input oblique shaft (
S, ) can and cannot be driven in reverse.0 drive face gear (1
) is a mesh clutch that can support large torque in the converter for the load torque connected to the output shaft (S4).
) The driving face gear (1) of the direct-coupled orthogonal shaft type sinkle gear (S3) is separated by a helical gear train (6) (7) (s).
5), and a brake plate (mermature) of an electromagnetic brake (MB) is connected to the oblique shaft (s6) of this conical rocker (2).
9) is fixed. This speed-increasing sinkle gear may be any other gear mechanism, but it is suitable for this type of speed-increasing gear mechanism due to its small size, strength, and lack of play. In the example, the number of teeth of the fixed surface gear α = 35, the number of teeth of the cloth vibration gear (B) N2 = N3 = 37, and the number of teeth of the driven surface gear α =
36, this speed increasing ratio is helical gear train (6) (
7) If the ratio of the number of teeth in (8) is 50/36, the speed increasing ratio will be -h=disk X36=so. This kind of Shin 3
36 If the gear efficiency of the cruise gear is designed to be relatively high, it will be easy to set up, and the locking property will be low.
can be driven in reverse. Therefore, a friction plate type electromagnetic brake can be used since a shaft (S6) braking brake (MB) with a capacity of about V5o of tri output torque is sufficient. Furthermore, there is a control motor (MZ) on the shaft (S6).
When 1800 rpm is installed, the output shaft (S4) when MIM2 is applied is 1 1 36 900 1800 X --+ 1800 X-plane X so X
= 2 + 3a04ki38rpm00 Similarly, the output can be changed to 4 speeds by differentially setting M and N2 or operating independently. This mechanism allows orthogonal shaft type sinkle gears to be linked with a separately installed speed increasing gear mechanism using a gear train or a rotating arm. The output shaft (S4) can be driven by separate power.

而も増速部の低トルク制動により主動力のクラッチ機能
が得られるために出力軸のインチング動作や定位置、定
圧停止動作が可能である。
Moreover, since the clutch function of the main power is obtained by low-torque braking of the speed increasing section, inching operation of the output shaft, fixed position, and constant pressure stopping operation are possible.

動力前や開閉扉等その最大回転角が900未満の用途に
は歯車列の代りに第2図のような旋回腕α啼O→を連結
稈α乃で連結することもできる。この式はクランクと異
な9回転体の両側で平均に駆、従動できるために死点が
なく、力の平衡が保てて軸受負担が軽減される。機構的
にも簡易で遊隙のない強力なものが容易に得られる。
For applications where the maximum rotation angle is less than 900 degrees, such as before power or for opening/closing doors, a rotating arm αO→ as shown in FIG. 2 can be connected via a connecting culm αNO instead of a gear train. This system allows both sides of the 9-rotating body (different from the crank) to be driven and driven evenly, so there is no dead center, the balance of forces is maintained, and the load on the bearings is reduced. Mechanically, it is simple and strong with no play.

本実施例を舶用動力舵機として応用する場合は出力軸(
S4)を直接前枠(87) VC直結するか又は第2図
のような旋回腕と連結枠を用いる。航海時舵は水圧によ
り直進復元性があるが駆、制動源遮断時舵θ→は波浪や
潮流により蛇行する恐れがある。この場合は第3図のよ
うに前枠(s7)と軸(s4)をコイルバネ翰によるダ
ンパーα優によって強制的に直進位置に復元はせる装置
を取付けることもできる。
When applying this embodiment as a marine power steering gear, the output shaft (
S4) is directly connected to the front frame (87) VC, or a rotating arm and a connecting frame as shown in Fig. 2 are used. When sailing, the rudder has the ability to restore straightness due to water pressure, but when the driving and braking sources are cut off, the rudder θ→ may meander due to waves and currents. In this case, as shown in FIG. 3, it is also possible to install a device that forcibly restores the front frame (s7) and shaft (s4) to the straight-ahead position using a damper α using a coil spring.

/ンクルギャは一機構で大きな回転比が得られるために
高速電動機を使用しても低速高トルク化でき、時間的な
ON 、 OFF 動作やパルス制御によって正確な操
舵ができる。又舵の微調整やインチングは電磁ブレーキ
(MB )のON 、 OFFで迅速に行えると共にブ
レーキON で保持、OFFで自動的に直進化するため
に操舵が容易である。万−動力系が故障の場合軸(S2
)又は(S3)に設けた手動ハンドルを利用することも
できる。遠隔操作は2〜3本の信号用電線と可逆開閉器
だけで済み、必要によっては舵角指示器等も簡単に設け
ることができる。
/NkuruGya can obtain a large rotation ratio with a single mechanism, so even if a high-speed electric motor is used, low speed and high torque can be achieved, and accurate steering can be achieved through temporal ON/OFF operation and pulse control. Further, fine adjustment and inching of the rudder can be done quickly by turning on and off the electromagnetic brake (MB), and steering is easy because it is held when the brake is on and automatically moves straight when the brake is off. - If the power system is malfunctioning, the shaft (S2
) or (S3) can also be used. Remote control requires only two or three signal wires and a reversible switch, and a steering angle indicator can also be easily installed if necessary.

特にシンクルギヤ式動力舵機は小型で強力、遊隙がない
ために衝撃負荷に有第1である。
In particular, the single gear type power steering gear is small, powerful, and has no play, so it is the best at resisting shock loads.

同様に本機構は開閉扉の駆動にも応用せられる。Similarly, this mechanism can also be applied to drive opening/closing doors.

開閉式扉I′i最犬回転角が90°以下であるために旋
回腕が利用できる。動力開放、流体制御、スプリングリ
ターン自動閉鎖式とすることもでき、手動開閉もできる
。機構的に鎖錠性がなく停止中手動操作ができるこの特
性によって本機構はンヤノター巻上機や各種弁類の開閉
駆動機等に多くの用途に大きな効果が期待てれる。
Since the maximum rotation angle of the openable/closable door I'i is 90 degrees or less, the swing arm can be used. It can be powered open, fluid controlled, spring return self-closing, or can be opened and closed manually. Due to this feature, which is mechanically non-lockable and can be manually operated while stopped, this mechanism is expected to be highly effective in many applications such as Nyanotar hoisting machines and opening/closing drives for various valves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本機溝1実施例の断面図、第2図は旋回腕式連
結部図、第3図はコイルバネによる出力軸の定位置停止
装置の構造図である。 Ml・・・駆動用モータ Sl・・・駆動軸1・・・駆
動面歯車 S3・・・駆動面歯車軸2・・・布振歯車 
3・・・円錐揺動体S2・・・円錐揺動体斜軸 4・・
・従動面歯車S4・・・出力軸 6,7.8・・・へり
カルギヤ9・・・制動板 10・・・ハウジング11・
・・固定面歯車 12・・・布振歯車13・・・円錐揺
動体 S6・・・円錐揺動体軸14・・・従動面歯車 
S5・・・従動面歯車軸M2・・・制御用モーター M
B・・電磁プレーヤ15 、16 ・・・旋回腕 17
・・・連結枠18・・・舵 S7・・・前枠 1.’:
FIG. 1 is a cross-sectional view of an embodiment of the groove 1 of the present invention, FIG. 2 is a view of a rotating arm type connection, and FIG. 3 is a structural view of a device for stopping an output shaft in a fixed position using a coil spring. Ml... Drive motor Sl... Drive shaft 1... Drive surface gear S3... Drive surface gear shaft 2... Cloth swing gear
3... Conical rocking body S2... Conical rocking body oblique shaft 4...
- Driven face gear S4... Output shaft 6, 7.8... Helical gear 9... Brake plate 10... Housing 11.
...Fixed face gear 12...Cloth oscillating gear 13...Conical oscillator S6...Conical oscillator shaft 14...Driven face gear
S5... Driven surface gear shaft M2... Control motor M
B...Electromagnetic player 15, 16...Swivel arm 17
...Connection frame 18...Rudder S7...Front frame 1. ':
vinegar

Claims (1)

【特許請求の範囲】[Claims] 直交軸形内科首振歯車機構の駆動用面歯車をクランク又
は歯車列で増速可能々歯車機構に連結した回転変換、連
動機構。
A rotation conversion and interlocking mechanism in which the driving face gear of a orthogonal shaft internal medicine oscillating gear mechanism is connected to a gear mechanism that can increase speed using a crank or a gear train.
JP7058384A 1984-04-09 1984-04-09 Cross-shaft type synclinal gear mechanism with speed increasing gear Pending JPS60215141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7058384A JPS60215141A (en) 1984-04-09 1984-04-09 Cross-shaft type synclinal gear mechanism with speed increasing gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7058384A JPS60215141A (en) 1984-04-09 1984-04-09 Cross-shaft type synclinal gear mechanism with speed increasing gear

Publications (1)

Publication Number Publication Date
JPS60215141A true JPS60215141A (en) 1985-10-28

Family

ID=13435719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7058384A Pending JPS60215141A (en) 1984-04-09 1984-04-09 Cross-shaft type synclinal gear mechanism with speed increasing gear

Country Status (1)

Country Link
JP (1) JPS60215141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216166A (en) * 2008-03-10 2009-09-24 Jtekt Corp Transmission ratio-variable mechanism and vehicular steering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216166A (en) * 2008-03-10 2009-09-24 Jtekt Corp Transmission ratio-variable mechanism and vehicular steering device

Similar Documents

Publication Publication Date Title
GB2277562A (en) Transmission whose ratio is changed by changing the rotational direction of the input to the transmission
JPS63502207A (en) Phase variable coupling device
JPS5953194A (en) Biaxial drive for hand element of industrial robot
JPS5970497A (en) Variable speed driving device for press
US20200224750A1 (en) Differential Deceleration and Continuously Variable Transmission Gear Box with Self-locking Functional Small Tooth Number Difference Planetary Gear
JPH0656083A (en) Internal/external shaft interlocking device for counter-rotating propeller using differential gear
JPS60215141A (en) Cross-shaft type synclinal gear mechanism with speed increasing gear
JP2003254396A (en) Power transmission device and driving device for model car using it
JP4072234B2 (en) Clutch device
JPS60185699A (en) Gearing for ship
JPH01303343A (en) Automatic variable speed gear
JPS6364661B2 (en)
JPH08502336A (en) Gearbox
CN106969098A (en) A kind of star-wheel is coaxial to turning deceleration device
JPH0349319Y2 (en)
JP4666443B2 (en) Electric actuator and rocket using the same
US4718297A (en) Infinite ratio transmission apparatus
JPH03113156A (en) Redundancy actuator mechanism
JPH09329204A (en) Full automatic continuously variable transmission with built-in rear wheel hub
US6324929B1 (en) Toothed gearing group for coupling two concentric shafts to a solitary driving shaft
JPS6350462Y2 (en)
JP3520360B2 (en) Booster
JPH07104360A (en) Motor driving device
JPS6284984A (en) Industrial robot device
JPS6034503A (en) Controller of hydraulic pressure rocking motor