JPS6034503A - Controller of hydraulic pressure rocking motor - Google Patents

Controller of hydraulic pressure rocking motor

Info

Publication number
JPS6034503A
JPS6034503A JP14211183A JP14211183A JPS6034503A JP S6034503 A JPS6034503 A JP S6034503A JP 14211183 A JP14211183 A JP 14211183A JP 14211183 A JP14211183 A JP 14211183A JP S6034503 A JPS6034503 A JP S6034503A
Authority
JP
Japan
Prior art keywords
driving shaft
drive shaft
controller
controlling mechanism
fluid pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14211183A
Other languages
Japanese (ja)
Other versions
JPS624561B2 (en
Inventor
Takeshi Kuroda
武 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunikamu KK
Original Assignee
Yunikamu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunikamu KK filed Critical Yunikamu KK
Priority to JP14211183A priority Critical patent/JPS6034503A/en
Publication of JPS6034503A publication Critical patent/JPS6034503A/en
Publication of JPS624561B2 publication Critical patent/JPS624561B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Actuator (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Manipulator (AREA)
  • Servomotors (AREA)

Abstract

PURPOSE:To contrive compactness of a controller and to perform control of the angular velocity of a driving shaft highly accurately, by connecting a controlling mechanism with the driving shaft through a velocity increasing mechanism. CONSTITUTION:A controlling mechanism 3 is connected with a driving shaft 1A through a velocity increasing mechanism 2. With this construction, the quantity of angular displacement of the driving shaft 1A of a fluid pressure rocking motor 1 can be transmitted to the controlling mechanism 3 under an amplified state and a state wherein its torque is made as small as possible. When the controlling mechanism 3, therefore, is a brake, it can be managed with small braking capacity even through output torque of the driving shaft 1A is made large and compactness of a controller can be contrived. When the controlling mechanism 3 is a pulse encoder, resolving power of the quantity of the angular displacement of the driving shaft 1A is improved and control of an angular velocity of the driving shaft 1A can be performed highly accurately.

Description

【発明の詳細な説明】 本発明は、主として産業用ロボット等の作動装置i’?
におりるjl(P以下の範囲の角変位運動をとする駆動
源として用いられる流体圧揺動モータ1)7+I川−J
−Z、 従来の流体圧揺動モータでは、作動装置の速度制御や位
置制御尋を行なうに当って、流体圧揺動モータの駆動軸
でその出力部とは反対側に、この駆動軸の角速度を自動
制御するだめのブレーキやパルスエンコーダ等の制御用
機構を直接連係していたのであるが、これによる場合に
は次のような欠点があった。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to an actuating device i'? of an industrial robot or the like.
Noriru jl (fluid pressure swing motor 1 used as a drive source with angular displacement movement in the range of P or less) 7+Ikawa-J
-Z, In conventional fluid pressure swing motors, when performing speed control or position control of the actuating device, the angular velocity of the drive shaft is set on the opposite side of the drive shaft of the fluid pressure swing motor from its output section. However, this system had the following drawbacks:

即ち、前記制御用機構がブレーキである場合には、揺動
モータの駆動軸の出力)zレフが大きくなる程ブレーキ
容量も非常に大きくなるため、制御装置全体の大型化を
招来し易く、また、前記制御用機構がパルスエンコーダ
である場合には、駆動軸の角変位そのものを直接捕捉す
るだめ、その角変位量の分解能力が低く、作動装置の制
御精度が大雑把になり易い。
That is, when the control mechanism is a brake, the larger the output (zref) of the drive shaft of the swing motor, the larger the brake capacity becomes, which tends to increase the size of the entire control device. If the control mechanism is a pulse encoder, the angular displacement itself of the drive shaft cannot be directly captured, and the ability to resolve the amount of angular displacement is low, and the control accuracy of the actuating device tends to be rough.

本発明は、流体圧揺動モータの駆動軸と制御用機構との
間での伝動系の合理的な改造をもって前述の欠点を改善
する点に目的を有する。
An object of the present invention is to improve the above-mentioned drawbacks by rationally modifying the transmission system between the drive shaft of the hydraulic oscillating motor and the control mechanism.

かかる目的を達成するために講じられた本発明による流
体圧揺動モータの制御装置の特徴構成は、前記制御用機
構が増速機構を介して前記駆ll1b軸に連係されてい
る点にある。
A characteristic configuration of the control device for a fluid pressure swing motor according to the present invention, which has been adopted to achieve such an object, resides in that the control mechanism is linked to the drive shaft 111b via a speed increasing mechanism.

上記特徴構成による作用効果は次の通りである。The effects of the above characteristic configuration are as follows.

〈作 用〉 流体圧揺動モータの駆動軸の角変位量を増幅した状態で
、かつ、そのトルクを可及的に小さくした状態で制御用
機構に伝えることができるから、例えば、前記制御用機
構がブレーキである場合は、駆動軸の出力トルクを大き
くし乍らもブレーキ容量が小さくて済み、制御装置のコ
ンパクト化を図ることができる。 また、前記制御用機
(竹がパルスエンコーダである場合には、駆動軸の角変
位量の分解能力が向上し、駆動軸の角速度制御を高精度
に行なうことができる。
<Function> Since the amount of angular displacement of the drive shaft of the fluid pressure swing motor can be amplified and the torque can be transmitted to the control mechanism in a state that is as small as possible, for example, If the mechanism is a brake, the output torque of the drive shaft can be increased while the brake capacity is small, and the control device can be made more compact. Further, when the control device (bamboo) is a pulse encoder, the ability to resolve the amount of angular displacement of the drive shaft is improved, and the angular velocity of the drive shaft can be controlled with high precision.

〈効 果〉 従って、111記流体圧揺動モータの駆動軸と制御用機
構との間の伝動系に前述のような増速機(1りを介在す
るだけの簡単改造をもって従来欠点を改善し得るに至っ
た。
<Effects> Therefore, the conventional drawbacks can be improved by simply modifying the transmission system between the drive shaft and the control mechanism of the fluid pressure swing motor described in No. 111 by simply inserting a speed increaser (1) as described above. I ended up getting it.

以下、本発明構成の実施例を図面に基づいて詳述する。Hereinafter, embodiments of the configuration of the present invention will be described in detail based on the drawings.

第1図、第2図で示すように、シングルベーン形の流体
圧揺動モータf1+の駆動軸(IA)で、その出力部(
1a)側とは反対側に、遊星ギヤ機構利用の増速機構(
2)を連結し、この増速機構(2)の出力軸(2A)に
、前記駆動軸(IA)の角速度を自動制御するだめの機
構(3)の構成部材で、前記出力軸(2A)に制動力を
付与可能な電磁ブレーキ(8A)及び前記出力軸(2A
)の回転量を検出するパルスエンコーダ(8B)を設け
ている。
As shown in FIGS. 1 and 2, the drive shaft (IA) of the single vane type fluid pressure swing motor f1+ is connected to the output section (
On the opposite side to the side 1a), there is a speed increasing mechanism using a planetary gear mechanism (
2), and is a component of a mechanism (3) that automatically controls the angular velocity of the drive shaft (IA), and the output shaft (2A) is connected to the output shaft (2A) of the speed increasing mechanism (2). An electromagnetic brake (8A) capable of applying braking force to the output shaft (2A)
) is provided with a pulse encoder (8B) that detects the amount of rotation of the motor.

前記流体圧揺動モータ(11は、密閉状モータケース(
IB)に支承された前記の駆動軸(IA)に、前記モー
タケース(IB)の内周面に摺接するベーン(IC)を
固着すると共に、前記モータケース(IB)には、前記
ベーン(IC)とでモータケース(IB)内部を二つの
室(ID)、(lE)に区画する壁体(IF)と前記の
両室(ID) 、 (tE)に対して圧力流体を給徘可
能な口(IG)、(IH)とを設けて構成されている。
The fluid pressure swing motor (11 is a closed motor case (
A vane (IC) that is in sliding contact with the inner peripheral surface of the motor case (IB) is fixed to the drive shaft (IA) supported by the motor case (IB). ) and a wall (IF) that divides the interior of the motor case (IB) into two chambers (ID) and (lE), and a pressure fluid can be supplied to both chambers (ID) and (tE). It is configured by providing an opening (IG) and an opening (IH).

前記増速機構(2)は、前記出力軸(2人)と駆動軸(
IA)の隣接端部に太陽ギヤ(2B)及びキャリヤ(2
C)を固iγ;し、そのうち、前記キャリヤ(2C)に
、+3il記太陽ギヤ(2B)に噛合い連動する遊星ギ
ヤ(21))を枢着するとともに、前記モータケース(
IB)に固定連結された減速ケース(2E)には、前j
j[4、iI′i:基ギヤ(2D)に噛合い1ilf動
する内歯ギ−Y (2F)を固着して構成されている。
The speed increasing mechanism (2) includes the output shaft (two people) and the drive shaft (
Sun gear (2B) and carrier (2B) are attached to the adjacent ends of IA).
A planetary gear (21) which meshes with and interlocks with the sun gear (2B) is pivotally attached to the carrier (2C), and a planetary gear (21)) is fixed to the carrier (2C).
The deceleration case (2E) fixedly connected to the front
j[4, iI'i: It is constructed by fixing an internal gear Y (2F) that meshes with the base gear (2D) and moves 1ilf.

との増速機構(2)の増速率は、太陽ギヤ(2B)及び
内歯ギヤ(2F)の歯数を夫々ZA 、 ZBとすると
、2人 そして、前記モータケース(IB)の一方の室(II+
)に11−力流体を供給すると、この室(ID)の容積
、に漸増し乍らかつ同時に他の室(IE)内の圧力ン介
体を排出させ乍らベーン(IC)が回転され、とのベー
ンQc)に加わる圧力により駆動軸(IA)が回転され
る。 これに伴い前記の増速機構(2)を介し、て出力
軸(2人)が回転し、同時にパルスエンコーダ(8B)
の入力軸も回転する。
If the number of teeth of the sun gear (2B) and the internal gear (2F) are ZA and ZB, respectively, the speed increase rate of the speed increase mechanism (2) is calculated by two people and one chamber of the motor case (IB). (II+
), the vane (IC) is rotated while gradually increasing the volume of this chamber (ID) and simultaneously discharging the pressure medium in the other chamber (IE); The drive shaft (IA) is rotated by the pressure applied to the vane Qc). Along with this, the output shaft (2 persons) rotates via the speed increasing mechanism (2), and at the same time the pulse encoder (8B)
The input shaft also rotates.

パルスエンコーダ(8B)の出力信号がコントローブで
カウントされ、これが設定値と一致したときにコントロ
ーブの制御信号が圧力流体回路中の電磁パルプを閉動す
る。 同時に電磁ブレーキ(8A)を作動させる。
The output signal of the pulse encoder (8B) is counted by a controller, and when it matches a set value, the control signal of the controller closes the electromagnetic pulp in the pressure fluid circuit. At the same time, operate the electromagnetic brake (8A).

前記増速機構(2)の増速比が例えば10であると、前
記駆動軸(IA)が/回転する間にパルスエンコーダ(
8B)の入力軸は/θ回転する。 それ故ニ、パルスエ
ンコーダの分解能φが/θ0であるなら、駆動軸(IA
)の揺動角制御の精度は、10 860 1 ψ=1°なら精度は0.1°である。
If the speed increasing ratio of the speed increasing mechanism (2) is, for example, 10, the pulse encoder (
The input shaft of 8B) rotates by /θ. Therefore, if the resolution φ of the pulse encoder is /θ0, then the drive axis (IA
) The accuracy of the swing angle control is 10 860 1 If ψ=1°, the accuracy is 0.1°.

また、出力軸(2A)のトルりが小さくなるから、電磁
ブレーキ(8A)のブレーキ容量が小さくて済む。
Furthermore, since the torque of the output shaft (2A) is reduced, the brake capacity of the electromagnetic brake (8A) can be reduced.

パルスエンコーダ(8B)が接続されるコントローラと
してマイクロコンピュータなどを利用するのが好ましい
It is preferable to use a microcomputer or the like as the controller to which the pulse encoder (8B) is connected.

尚、前記圧力流体としては油圧、水圧、空気圧などの何
れを使用しても良い。
Note that as the pressure fluid, any of hydraulic pressure, water pressure, pneumatic pressure, etc. may be used.

次に別の実施例を説明する。Next, another embodiment will be described.

(1) 前記流体圧揺動モータ0)としては、上述実施
例のシングルベーン形す外に、ダブルベーン形、トリプ
ルベーン形があり、また、ビス 4トン方式のものには
ラックピニオン形、ピノトンヘリカルスプライン形、ピ
ストンチェーン形、ピストンリンク形などがあり、何れ
の形式のものでも良い。
(1) In addition to the single vane type in the above-mentioned embodiment, the fluid pressure swing motor 0) includes a double vane type and a triple vane type, and the 4-ton screw type includes a rack and pinion type and a pinion type. There are helical spline types, piston chain types, piston link types, etc., and any type may be used.

[11前記増速機構(2)として遊星ギヤ機構以外何で
も良い。
[11 The speed increasing mechanism (2) may be anything other than a planetary gear mechanism.

[1tl] 前記制御用機構(3)としてダイナモを使
用する。 この場合、ダイナモ側の抵抗値を変更して駆
動軸(IA)の角速度を制御しても良く、1だ、このダ
イナモで発電された電力を利用して「l(動軸(IA)
の制御用電源に使用しても良い。
[1tl] A dynamo is used as the control mechanism (3). In this case, the angular velocity of the drive shaft (IA) may be controlled by changing the resistance value on the dynamo side.
It may also be used as a control power source.

uv〕:rr、 s図は上述の如く構成された流体圧揺
動モータ(A)の使用例を示し、これは、基台(4)と
こ1+、に11シて縦軸芯周りで旋回自在なアレーン、
(6)々らびに前記旋回フレーム(5)に対して横軸芯
周りで上下揺動自在なアーム(6)を備えた産業用ロボ
ツ) (B)の、前記旋回フレーム(6)の駆動源に使
用したものである。
uv]: rr, s The figure shows an example of the use of the fluid pressure swing motor (A) configured as described above, which is rotatable around the vertical axis on the base (4) and 1+ and 11. Arene,
(6) an industrial robot equipped with an arm (6) that can freely swing up and down about a horizontal axis with respect to the rotary frame (5); and (B), a drive source for the rotary frame (6). It was used in

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る流体圧揺動モータの制御装置の実施
例を示し、第1図は一部切欠側面図、第2図は第1図の
■−■線断面図、第8図は使用状態の一例を示す斜視図
である。 +11・・・・・・流体圧揺動モータ、(IA)・・・
・・・駆動軸、(18)・・・・・・出力部、(2)・
・・・・・増速機構、(3)・・・・・・制御用機構、
(8A)・・・・・・電磁ブレーキ、(8B)・・・・
・・パルスエンコーダ。
The drawings show an embodiment of the control device for a fluid pressure swing motor according to the present invention, and FIG. 1 is a partially cutaway side view, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, and FIG. It is a perspective view showing an example of a state. +11...Fluid pressure swing motor, (IA)...
... Drive shaft, (18) ... Output section, (2).
... speed increasing mechanism, (3) ... control mechanism,
(8A)... Electromagnetic brake, (8B)...
...Pulse encoder.

Claims (1)

【特許請求の範囲】 ■ 流体圧揺動モータfilの駆動軸(IA)でその出
力部(la)側とは反対側に、駆動軸(IA)角速度を
自動制御するための機構(3)が連係されている流体U
f、Wi動モータの制御装置であって、前記制御用機構
(3)が増速機構(2)を介して前記駆動軸(IA)に
連係されている流体圧揺動モータの制御装置。 rJA qiJ記制御用機構(8)がブレーキ(8A)
とパルスエンコーダ(8B)とから構成されたものであ
る特i’f’l請求のfltii囲第■項に記載の流体
圧゛揺動モータの制御装置。
[Claims] ■ A mechanism (3) for automatically controlling the angular velocity of the drive shaft (IA) is provided on the drive shaft (IA) of the fluid pressure swing motor fil on the side opposite to its output section (la) side. Associated fluid U
f. A control device for a hydraulic oscillating motor, wherein the control mechanism (3) is linked to the drive shaft (IA) via a speed increasing mechanism (2). rJA qiJ control mechanism (8) is brake (8A)
and a pulse encoder (8B).
JP14211183A 1983-08-02 1983-08-02 Controller of hydraulic pressure rocking motor Granted JPS6034503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14211183A JPS6034503A (en) 1983-08-02 1983-08-02 Controller of hydraulic pressure rocking motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14211183A JPS6034503A (en) 1983-08-02 1983-08-02 Controller of hydraulic pressure rocking motor

Publications (2)

Publication Number Publication Date
JPS6034503A true JPS6034503A (en) 1985-02-22
JPS624561B2 JPS624561B2 (en) 1987-01-30

Family

ID=15307671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14211183A Granted JPS6034503A (en) 1983-08-02 1983-08-02 Controller of hydraulic pressure rocking motor

Country Status (1)

Country Link
JP (1) JPS6034503A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338403U (en) * 1989-08-24 1991-04-15
JP2008200790A (en) * 2007-02-19 2008-09-04 Kobe Steel Ltd Joint mechanism
JP2010071442A (en) * 2008-09-22 2010-04-02 Yamatake Corp Valve opening control device
JP2014065124A (en) * 2012-09-26 2014-04-17 Canon Electronics Inc Parallel link robot

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538525A (en) * 1978-09-12 1980-03-18 Ricoh Co Ltd Transfer method of multicolor electrophotographic copier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538525A (en) * 1978-09-12 1980-03-18 Ricoh Co Ltd Transfer method of multicolor electrophotographic copier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338403U (en) * 1989-08-24 1991-04-15
JP2008200790A (en) * 2007-02-19 2008-09-04 Kobe Steel Ltd Joint mechanism
JP2010071442A (en) * 2008-09-22 2010-04-02 Yamatake Corp Valve opening control device
JP2014065124A (en) * 2012-09-26 2014-04-17 Canon Electronics Inc Parallel link robot

Also Published As

Publication number Publication date
JPS624561B2 (en) 1987-01-30

Similar Documents

Publication Publication Date Title
US4966043A (en) Crank drive
JP4626345B2 (en) Vehicle steering device
ITTO20001077A1 (en) ACTUATOR DEVICE FOR A BIKE FRONT DERAILLEUR, WITH CONNECTION JOINT TO THE DRIVEN SHAFT.
JPS5898666A (en) High torque low speed hydraulic motor
CA2397289A1 (en) Rotary damper
JP2000097254A (en) Shaft driver and control method of shaft driver
JPS6034503A (en) Controller of hydraulic pressure rocking motor
EP1020602A3 (en) Swinging door drive
TWI310443B (en) Electrical actuator
JPH0719276A (en) Hydraulic damper
JPS60164003A (en) Hydraulic servo-valve
JPS59209966A (en) Steering unit
JP2005098441A (en) Damping device
JPS6353340A (en) Electric actuator unit
JPS6117454Y2 (en)
JPH09209341A (en) Gate driving device
JPH071483Y2 (en) Pivot door closer
JPS60215141A (en) Cross-shaft type synclinal gear mechanism with speed increasing gear
JPH0350180U (en)
JPH05106603A (en) Rotary hydraulic actuator
JP4073659B2 (en) Rotary actuator
SU992367A1 (en) Tipper
JPS62297503A (en) Rotary actuator
JPH03153467A (en) Steering device for automobile
JPH01131779A (en) Winding driving device for winding type balance shutter