JPS60214976A - Manufacture of thermal head - Google Patents

Manufacture of thermal head

Info

Publication number
JPS60214976A
JPS60214976A JP59072412A JP7241284A JPS60214976A JP S60214976 A JPS60214976 A JP S60214976A JP 59072412 A JP59072412 A JP 59072412A JP 7241284 A JP7241284 A JP 7241284A JP S60214976 A JPS60214976 A JP S60214976A
Authority
JP
Japan
Prior art keywords
glass powder
bubbles
thermal head
heat storage
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59072412A
Other languages
Japanese (ja)
Other versions
JPH0464864B2 (en
Inventor
Makoto Nagaoka
誠 長岡
Tetsuya Sugiyama
杉山 哲哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP59072412A priority Critical patent/JPS60214976A/en
Priority to US06/686,245 priority patent/US4612433A/en
Priority to FR8420020A priority patent/FR2557506B1/en
Priority to DE19843447581 priority patent/DE3447581A1/en
Priority to GB08432697A priority patent/GB2151989B/en
Publication of JPS60214976A publication Critical patent/JPS60214976A/en
Publication of JPH0464864B2 publication Critical patent/JPH0464864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N97/00Electric solid-state thin-film or thick-film devices, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electronic Switches (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To efficiently obtain a thermal head with favorable heat response characteristics, by incorporating a fine glass powder into a glass powder in an amount not smaller than a specified amount. CONSTITUTION:In a glass paste for forming a heat-accumulating element 2 therefrom, a fine glass powder having an average particle diameter of not larger than about 5mum is incorporated in an amount of not smaller than 20wt% to the total amount of a glass powder. Since the amount of water content and gas component adsorbed on the particles of the fine glass powder are extremely small, bubbles formed upon firing are small, so that even when the bubbles are exposed to the surface of the heat-accumulating element 2, the surface roughness can be reduced to such a degree that is does not adversely affect the printing quality. Further, versatility is created in various controls for restricting the generation of bubbles upon firing and the exposure of the bubbles to the surface of the element 2, and a thermal head with favorable heat response characteristics can be efficiently obtained. The average particle diameter of the fine glass powder is preferably 0.5-1.0mum.

Description

【発明の詳細な説明】 本発明はサーマルヘッドの製造方法に関し。[Detailed description of the invention] The present invention relates to a method for manufacturing a thermal head.

更に詳しくは熱応答性の良好なサーマルヘッドを効率良
く得るための製造方法に関するものである。
More specifically, the present invention relates to a manufacturing method for efficiently obtaining a thermal head with good thermal responsiveness.

ノンインパクト方式の代表である感熱記録方式は騒音が
無いなどの利点を有することから広く一般に利用される
に至っているが、これに用いられるサーマルヘッドの発
熱部下部に位置すている。
Thermal recording method, which is a typical non-impact method, has become widely used because it has advantages such as no noise, but the thermal recording method is located at the lower part of the heat generating part of the thermal head used for this method.

一般にサーマルヘッドにおける蓄熱体としては、電極を
介して抵抗体の発熱部に電力が印加されたとき、基材側
へ逃げる熱量を少なくすることで印字に必要な熱量を効
率的に確保せしめるため熱伝導率の小さなものを使用す
ることが好ましいと考えられるが、実際上印字の際の熱
量として必要且つ十分たちしめるためには蓄熱体の層厚
をある程度以上大きくせねばならず。
In general, the heat storage element in a thermal head is used to efficiently secure the amount of heat necessary for printing by reducing the amount of heat that escapes to the base material when power is applied to the heat generating part of the resistor through the electrode. Although it is considered preferable to use a material with low conductivity, in practice the layer thickness of the heat storage material must be increased to a certain extent in order to provide the necessary and sufficient amount of heat during printing.

逆に層厚が太きすぎると蓄熱量が多くなることよシ、非
通電時、即ち冷却時の放熱聞−が相対的に不十分となっ
て速やかな降温か得られなくな9、その結果不要な印字
をしてしまうことなどからサーマルヘッドにおける蓄熱
体に対しては相反する特性を具有せしめることが望まれ
ている。
On the other hand, if the layer thickness is too thick, the amount of heat stored will increase, and the heat dissipation area will be relatively insufficient when electricity is not applied, that is, during cooling, making it impossible to quickly cool down the temperature9. To prevent unnecessary printing, it is desired that the heat storage body in the thermal head has contradictory characteristics.

近年このような要望に答えるべくして、サーマルヘッド
における発熱部の下部の蓄熱体を多数の気泡を有するガ
ラスより構成したものが知られている。
In recent years, in order to meet such demands, it has become known that the heat storage body below the heat generating part of the thermal head is made of glass having a large number of bubbles.

このものは、蓄熱体として熱伝導率の小さなガラスを用
いている点と共に、蓄熱体内部には多数の孔(気泡)が
存在しているため、孔を有さないものに比べて孔の分だ
け全体としての熱伝導率は小さくなっておシ、捷たある
温度における蓄熱量も少くなっている。即ち蓄熱体とし
て孔を有するものと孔を有さないものを外観等しくして
形成すれば、孔を有するものは孔を有さないものよシ熱
伝導率が小さく、また、蓄熱量が少く、従って、電力印
加時、印字温度の確保、速やかな降温かその分だけ改善
されており。
This type uses glass with low thermal conductivity as the heat storage body, and there are many pores (bubbles) inside the heat storage body, so the number of pores is larger than that of a type without pores. However, the overall thermal conductivity has decreased, and the amount of heat stored at a certain temperature has also decreased. That is, if heat storage bodies with holes and those without holes are formed with the same appearance, those with holes have lower thermal conductivity than those without holes, and also have a smaller amount of heat storage. Therefore, when applying power, the printing temperature is secured and the temperature is quickly lowered, which is improved accordingly.

このような良好な熱応答性を有する点から前記蓄熱体は
有用視されている。
The heat storage body is considered useful because it has such good thermal responsiveness.

しかし乍ら、このようなサーマルヘッドにおける蓄熱体
を実際に得るに際しては種々の問題が付随してくること
になる。
However, various problems arise when actually obtaining a heat storage body for such a thermal head.

即ち、一般的に、多数の気泡を有するガラスを得る場合
は、平均粒径約10μ笹〜sopm 程度のガラス粉の
ペースト状物を一定条件のもとて焼成し、ガラス粉内部
よシの気泡発生を利用して得ることが考えられるが、こ
れをサーマルヘッドの蓄熱体の製造に利用するとなると
、その焼成時の制御に際して9例えば焼成温度を12〜
6℃の範囲内に維持せねばならなりなど。
That is, in order to obtain glass having a large number of bubbles, generally, a paste of glass powder with an average particle size of about 10 μm to sopm is fired under certain conditions to eliminate the bubbles inside the glass powder. It is conceivable that this can be obtained by utilizing the generation of heat, but if this is to be used in the manufacture of a heat storage body for a thermal head, the firing temperature must be adjusted to 9 to 12 for example.
It must be maintained within a range of 6°C.

焼成条件の制御が技術的に高度且つ困難になるという問
題を生じ、また適確な焼成条件が設定できないと、ガラ
ス粉内部より発生した気泡が蓄熱体内部のみにとどまら
ずその表面に1で露出し1表面が凹凸状を呈することに
よって印字品質に悪影響を及ぼし、熱応答性は良好であ
るも商品としての価値を有するサーマルヘッドが実質的
に得られないという問題を生じるものとなる。
This creates the problem that controlling the firing conditions is technically sophisticated and difficult, and if the appropriate firing conditions cannot be set, the bubbles generated from inside the glass powder will not only be inside the heat storage body but will be exposed on its surface. However, the unevenness of the surface adversely affects printing quality, and although the thermal response is good, it is practically impossible to obtain a thermal head that has commercial value.

本発明はこのような事情に鑑みなされたものであり、熱
応答性の良好なサーマルヘッドを効率良く得るための製
造方法について鋭意研究を重ねた結果、遂に完成された
ものであって、その要旨を1発熱部の下部に、ガラス粉
より々るガラスペーストを印刷、焼成することによって
多数の気泡を有する蓄熱体を形成せしめてなるサーマル
ヘッドの製造方法において、前記ガラス粉に微粉砕ガラ
ス粉が少なくとも20重量%以上含有されていることを
特徴とするサーマルヘッドの製造方法とするものである
The present invention was made in view of these circumstances, and was finally completed as a result of intensive research into a manufacturing method for efficiently obtaining a thermal head with good thermal response. 1. A method for manufacturing a thermal head in which a heat storage body having a large number of bubbles is formed by printing and firing a glass paste containing glass powder on the lower part of a heat generating part, wherein the glass powder includes finely pulverized glass powder. The present invention provides a method for manufacturing a thermal head characterized in that the content is at least 20% by weight.

本発明において特に賞賛なのは、蓄熱体を形成するもと
となるガラスペーストに、ガラス粉全量に対して少なく
とも20重量%以上の微粉砕ガラス粉、具体的にはその
平均粒径として約5 pm 程度以下のガラス粉を含有
せしめたことにおって、これにより本発明においては、
ガラスペーストを印刷、焼成しても、微粉砕ガラス粉に
吸着している水分やガス成分が極めて小さいものである
ことより、焼成時これら水分やガス成分が気泡となって
も、その気泡は小さなものとなシ、従ってその気泡が蓄
熱体の表面にまで仮に露出しても、その表面の荒れは印
字品質に悪影響を与えない程度に極力軽減せしめること
ができるもので、更にはこれに起因して、焼成時の気泡
発生並びに表面への気泡の露出を規制するための種々の
制御に融通性が生じ、結果的に効率良く熱応答性の良好
なサーマルヘッド矩得られるものと思われる。尚、前記
微粉砕ガラス粉の含有量がガラス粉全量に対して20重
重量上シ少ないと、蓄熱体表面は凹凸状を呈し。
What is particularly commendable about the present invention is that the glass paste from which the heat storage body is formed contains at least 20% by weight of finely ground glass powder based on the total amount of glass powder, specifically, the average particle size thereof is about 5 pm. By containing the following glass powder, in the present invention,
Even when glass paste is printed and fired, the moisture and gas components adsorbed to the finely ground glass powder are extremely small, so even if these moisture and gas components form bubbles during firing, the bubbles are small. Therefore, even if the bubbles are exposed to the surface of the heat storage element, the roughness of the surface can be minimized to the extent that it does not adversely affect the printing quality, and furthermore, the roughness caused by this can be minimized. It is believed that this allows flexibility in various controls for controlling the generation of bubbles during firing and the exposure of bubbles to the surface, and as a result, a thermal head with good efficiency and thermal response can be obtained. Incidentally, if the content of the finely ground glass powder is 20 weight or more less than the total amount of glass powder, the surface of the heat storage body becomes uneven.

所期の目的である蓄熱体表面の平滑性を得ることが難し
くなシ、好ましくないものとなる。
This makes it difficult to obtain the desired smoothness of the surface of the heat storage body, which is undesirable.

本発明に使用される微粉砕ガラス粉は、その平均粒径と
して約5pm程度以下のものが使用されるが、印刷、焼
成時に蓄熱体表面に露出する気泡の低減や、気泡の大き
さく孔径)、或いは気泡の気孔率等を考慮すれば1%に
その平均粒径としては05μrrL〜1.0μmである
ことが好ましい。何故ならば、得られる気泡の大きさが
あまシにも大きかったシ、また気泡の気孔率が高過ぎた
りすると蓄熱体としての機械的強度に欠ける恐れがある
からである。従って平均粒径が05μrIL〜1.0μ
mの微粉砕ガラス粉を用いれば。
The finely pulverized glass powder used in the present invention has an average particle size of about 5 pm or less, but it can be used to reduce the number of air bubbles exposed on the surface of the heat storage element during printing and firing, and to increase the size of the air bubbles (pore diameter). Alternatively, considering the porosity of the bubbles, etc., it is preferable that the average particle size is 05 μrrL to 1.0 μm at 1%. This is because the size of the resulting bubbles is too large, and if the porosity of the bubbles is too high, there is a risk that the heat storage body will lack mechanical strength. Therefore, the average particle size is 05μrIL~1.0μ
If m finely ground glass powder is used.

最も好ましい特性を有する蓄熱体が得られることになる
。因みに1本発明者等の実験によれば。
A heat storage body having the most favorable properties will be obtained. Incidentally, according to experiments conducted by the present inventors.

気泡の孔径は蓄熱体の層厚の10%以下であることが特
に好ましくlまた気泡の気孔率は10%〜30%の範囲
内が特に好ましいものであることが判明している。
It has been found that the pore diameter of the bubbles is particularly preferably 10% or less of the layer thickness of the heat storage body, and the porosity of the bubbles is particularly preferably within the range of 10% to 30%.

前記せる微粉砕ガラス粉は9例えば、エチルセルロース
、ニトロセルロース等ヲテルヒネオール等の溶剤に溶か
した溶液に添加され、混練されてガラスペーストとなる
が、(のガラスペーストを所定の寸法に製版されたスク
リーン印刷機によシ、アルミナなどよシなる基材に印刷
し、乾燥後、使用したガラスの軟化点よシも50℃〜1
50℃程度高い温度で焼成すれば。
The finely pulverized glass powder described above is added to a solution of ethyl cellulose, nitrocellulose, etc. dissolved in a solvent such as terhineol and kneaded to form a glass paste. Printed on a machine or on a hard substrate such as alumina, and after drying, the softening point of the glass used is 50℃~1
If fired at a temperature about 50°C higher.

所望の多数の気泡を有するガラスよりなる蓄熱体が容易
に得られる。
A heat storage body made of glass having a desired large number of bubbles can be easily obtained.

以下1本発明を実施例によシ詳細に説明する。The present invention will be explained in detail below using examples.

実施例1 軟化点630℃、平均粒径05μBの微粉砕ガラス粉5
0重量係に軟化点630℃、平均粒径10μmのガラス
粉50重量係を混合し、これをa−テルピネオールにエ
チルセルロースを5%溶解したビヒクルに混練し、ガラ
スペーストを作成した。このガラスペーストをスクリー
ン印刷によシアルミナ基材1上に、巾0.5 mb 、
長さ1Q、Qm、厚さ65μの大きさで印刷を行ない。
Example 1 Finely ground glass powder 5 with a softening point of 630°C and an average particle size of 05 μB
Glass powder having a softening point of 630 DEG C. and an average particle diameter of 10 .mu.m was mixed with 50 weight percent of glass powder, and this was kneaded in a vehicle containing 5% ethyl cellulose dissolved in a-terpineol to prepare a glass paste. This glass paste was screen printed onto the sialumina base material 1 in a width of 0.5 mb.
Printing was performed with a length of 1Q, Qm and a thickness of 65μ.

100°Cで乾燥後、740℃で15分間焼成を行ない
、冷却して基材1上に蓄熱体2を得た。
After drying at 100°C, it was fired at 740°C for 15 minutes and cooled to obtain a heat storage body 2 on the base material 1.

この蓄熱体2上にスパッタリングによJSi −02膜
2発熱抵抗体6としてTiSi2層、電極4としてアル
ミニウム合金層を順次積層し、)くターニングした後保
護膜5としてチッ素添加の71ノコン層を形成し、サー
マルヘッドを得た。(添付図面参照) 実施例2 実施例1における微粉砕ガラス粉を22重量%とし1才
だ他のガラス粉を78重量%とした以外は全て実施例1
と同様になしたものを実施例2とした。
On this heat storage body 2, a JSi-02 film 2, 2 TiSi layers as a heating resistor 6, and an aluminum alloy layer as an electrode 4 were sequentially laminated by sputtering, and after turning, a nitrogen-added 71 layer was formed as a protective film 5. A thermal head was obtained. (Refer to the attached drawings) Example 2 Everything is Example 1 except that the finely ground glass powder in Example 1 was 22% by weight and the other glass powder was 78% by weight.
Example 2 was prepared in the same manner as above.

実施例6 実施例1における微粉砕ガラス粉を80重量%とし、捷
だ他のガラス粉を20重量%とした以外は全て実施例1
と同様になしたものを実施例3とした。
Example 6 All examples were the same as in Example 1 except that the finely ground glass powder in Example 1 was 80% by weight and the other crushed glass powder was 20% by weight.
Example 3 was prepared in the same manner as above.

実施例4 実施例1における微粉砕ガラス粉の平均粒径を04胛、
他のガラス粉の平均粒径を20μみとした以外は全て実
施例1と同様になしたものを実施例4とした。
Example 4 The average particle size of the finely ground glass powder in Example 1 was
Example 4 was prepared in the same manner as in Example 1 except that the average particle size of the other glass powder was changed to 20 μm.

実施例5 実施例1における微粉砕ガラス粉の平均粒径を1.5μ
mとした以外は全て実施例1と同様になしたものを実施
例5とした。
Example 5 The average particle size of the finely ground glass powder in Example 1 was set to 1.5μ.
Example 5 was prepared in the same manner as in Example 1 except that m was used.

比較例1 実施例1において、微粉砕ガラス粉を使用せとした。Comparative example 1 In Example 1, finely ground glass powder was used.

比較例2 実施例1において、微粉砕ガラス粉を10重量係、他の
ガラス粉を90重量係m−た以外は全て実施例1と同様
になしたものを比較fll 2とした。
Comparative Example 2 Comparative Example 2 was prepared in the same manner as in Example 1 except that the finely pulverized glass powder was 10% by weight and the other glass powder was 90% by weight.

以上実施例1〜5.比較例1,2でq<tられ、た蓄熱
体、およびこの蓄熱体をもとにしてイ′「らね。
Above are Examples 1 to 5. In Comparative Examples 1 and 2, q < t, and based on this heat storage body,

たサーマルヘッドについて、以下の点を調べてみた。結
果は表−1のとお9である。
I investigated the following points regarding the thermal head. The results are 9 in Table 1.

表−1 ※ 走査型電子顕微鏡によシ蓄熱体の表面および断面に
ついて観察した結果。
Table 1 *Results of observation of the surface and cross section of the heat storage body using a scanning electron microscope.

以上、詳細に述べた如く1本発明によれば多数の気泡を
有するガラスよシなる蓄熱体を得るに際し、そのもとと
なるガラス粉に特定量の微粉砕ガラス粉を含有せしめで
あるので、これらガラスペーストの基材に対しての印刷
、焼成時。
As described above in detail, according to the present invention, when obtaining a heat storage body made of glass having a large number of bubbles, the base glass powder contains a specific amount of finely pulverized glass powder. During printing and firing of these glass paste base materials.

その制御に高度の技術を必要としたり、或いは困難性が
伴ったシすることが無く、従って発生する気泡が蓄熱体
表面に露出することによりその表面が凹凸状を呈して、
後の印字品質に悪影響を及ぼしたシすることが極力無い
もので、当然乍らこの蓄熱体をもとにして得られるサー
マルヘッドの熱応答性については、速やかな昇温。
The control does not require advanced technology or is difficult, and the generated bubbles are exposed on the surface of the heat storage body, making the surface uneven.
The thermal response of the thermal head based on this heat storage element is of course minimized to the extent that it has a negative effect on the subsequent printing quality, and the temperature rises rapidly.

降温が得られ非常に優れたものとなる。The temperature can be lowered, which is very good.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明によって得られたサーマルヘッドの一実施
例を示す要部断面図である。 1・・・・・基材 2・・・・・蓄熱体6・・・・・発
熱抵抗体 4・・・・・電極5・・・・・・保護膜 特許出願人 べんてる株式会社 手続補正書(自発) 昭和60年 5月 7日 特許庁長官 志 賀 学 殿 昭和59年特許願第72412号 2、発明の名称 サーマルヘッドの製造方法 3、補正をする者 事件との関係 特許出願人 ツユウオつ2 ニホン?リ フ1ミツヨウ〒103 住
 所 東京都中央区日*橘小網町7番2号発明の詳細な
説明の欄 6、補正の内容 とした、」と補正する。
The drawing is a sectional view of a main part showing an embodiment of a thermal head obtained by the present invention. 1...Base material 2...Heat storage body 6...Heating resistor 4...Electrode 5...Protective film Patent applicant Bentel Co., Ltd. Procedures Written amendment (spontaneous) May 7, 1985 Manabu Shiga, Commissioner of the Patent Office, 1988 Patent Application No. 72412 2, Title of invention: Process for manufacturing a thermal head 3, Person making the amendment Relationship with the case Patent applicant Tsuyuotsu 2 Japanese? Lif 1 Mitsuyo 103 Address: 7-2 Tachibana Koami-cho, Chuo-ku, Tokyo Column 6 of the detailed description of the invention, the content of the amendment has been set.''

Claims (2)

【特許請求の範囲】[Claims] (1)発熱部の下部に、ガラス粉よシなるガラスペース
トを印刷、焼成することによって多数の気泡を有する蓄
熱体を形成せしめてなるサーマルヘッドの製造方法にお
いて、前記ガラス粉に微粉砕ガラス粉が少なくとも20
重量%以上含有されていることを特徴とするサーマルヘ
ッドの製造方法。
(1) In a method for manufacturing a thermal head, in which a heat storage body having a large number of bubbles is formed by printing and firing a glass paste such as glass powder on the lower part of a heat generating part, the glass powder is mixed with finely pulverized glass powder. is at least 20
A method for manufacturing a thermal head, characterized in that the content is at least % by weight.
(2)前記微粉砕ガラス粉の平均粒径がo5μ雇〜10
μ乳であることを特徴とする特許請求の範囲第1項記載
のサーマルヘッドの製造方法。
(2) The average particle size of the finely pulverized glass powder is o5μ~10
2. The method for manufacturing a thermal head according to claim 1, wherein μ milk is used.
JP59072412A 1983-12-28 1984-04-11 Manufacture of thermal head Granted JPS60214976A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59072412A JPS60214976A (en) 1984-04-11 1984-04-11 Manufacture of thermal head
US06/686,245 US4612433A (en) 1983-12-28 1984-12-26 Thermal head and manufacturing method thereof
FR8420020A FR2557506B1 (en) 1983-12-28 1984-12-28 THERMAL HEAD AND MANUFACTURING METHOD THEREOF
DE19843447581 DE3447581A1 (en) 1983-12-28 1984-12-28 THERMAL PRINTER AND METHOD FOR THE PRODUCTION THEREOF
GB08432697A GB2151989B (en) 1983-12-28 1984-12-28 Thermal printing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59072412A JPS60214976A (en) 1984-04-11 1984-04-11 Manufacture of thermal head

Publications (2)

Publication Number Publication Date
JPS60214976A true JPS60214976A (en) 1985-10-28
JPH0464864B2 JPH0464864B2 (en) 1992-10-16

Family

ID=13488540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59072412A Granted JPS60214976A (en) 1983-12-28 1984-04-11 Manufacture of thermal head

Country Status (1)

Country Link
JP (1) JPS60214976A (en)

Also Published As

Publication number Publication date
JPH0464864B2 (en) 1992-10-16

Similar Documents

Publication Publication Date Title
KR101420051B1 (en) manufaturing method of carbon nano ink for heat dissipation, and surface activation of coating layer thereof
CN105695786A (en) Method for preparing titanium-based graphene composite material through 3D printing technology
JP3917650B2 (en) Multilayer coating electrode wire for electric discharge machining and method for producing the same
JPS6062598A (en) Manufacture of heat exchanging element
CN108358646A (en) A kind of boronation zirconia-based ceramic and preparation method thereof
CN110922213A (en) Surface modification layer of ceramic substrate, preparation method of surface modification layer, ceramic heating element and electronic atomization device
JP2004051644A5 (en)
JPS60214976A (en) Manufacture of thermal head
KR20180039004A (en) Complex-thermal conducting sheet and manufacturing method thereof
CN1075378A (en) Thick film copper paste composition
JP2001026801A (en) Metal foil powder, and its production
JPH0582824B2 (en)
US3799891A (en) Gold composition for bonding gold to a ceramic substrate utilizing copper oxide and cadmium oxide
CN109321874A (en) A kind of preparation method of pure tungsten surface sial permeation anti-oxidation composite coating
JPS6082393A (en) Recording paper and its preparation
JP2551752B2 (en) Method of manufacturing thermal head
JP2006302525A (en) Conductive paste composition
US3139682A (en) Strength recovery of dispersion hardened alloys
JPH0480493B2 (en)
JPS6319270A (en) Thermal head and manufacture thereof
JP2001355008A (en) Method for producing metal foil powder
JP2007076962A (en) Carbon nanotube with aluminum-containing coating film and method for producing the same
CN118268561B (en) Titanium alloy powder for additive manufacturing and preparation method thereof
CN109234724A (en) A kind of method that laser melting prepares porous silica glass-film
JP2001181060A (en) Method for producing particle dispersion type ceramic