JPH02292801A - Thick film resistor paste and thick film resistor - Google Patents

Thick film resistor paste and thick film resistor

Info

Publication number
JPH02292801A
JPH02292801A JP1113726A JP11372689A JPH02292801A JP H02292801 A JPH02292801 A JP H02292801A JP 1113726 A JP1113726 A JP 1113726A JP 11372689 A JP11372689 A JP 11372689A JP H02292801 A JPH02292801 A JP H02292801A
Authority
JP
Japan
Prior art keywords
glass powder
powder
thick film
paste
film resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1113726A
Other languages
Japanese (ja)
Inventor
Ryoji Okada
亮二 岡田
Kiju Endo
喜重 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1113726A priority Critical patent/JPH02292801A/en
Publication of JPH02292801A publication Critical patent/JPH02292801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To obtain the title resistor paste having easily controllable resistance value, uniformity of resistor and excellent reproducibility using RuO2 fine powder having the grain diameter of 0.1mum or smaller by a method wherein glass powder the surface of which is coated with RuO2 fine powder, and another glass powder, having the softening temperature lower than that of the above- mentioned glass powder, are contained in the title resistor paste. CONSTITUTION:The paste for a thick film resistor contains glass powder Al coated with ruthenium oxide fine powder of the surface, and another glass powder having the softening temperature lower than that of the glass powder Al. Also, after the above-mentioned paste for thick film resistor has been coated on a substrate 3, a baking operation is conducted thereon in the range of temperature at which the glass powder Al is not softened and the glass powder B2 is softened. Pertaining to the above-mentioned glass powder Al, the spherical SiO2 powder 5g of average grain diameter 3mum is suspended in an RuCl2 aqueous solution formed by dissolving 8.4g of RuCl2.nH2O into pure water of 34cc, the suspension is baked in an electric furnace at 600 deg.C for two hours in an oxygen atmosphere, and the SiO2 powder, on which RuO2 fine grains of average grain diameter of 0/1mum or smaller are dispersingly adhered, can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は厚膜用材料に係り,特に熱転写プリンタ用感熱
ヘッドに好適な厚膜抵抗体ペースト及び厚膜抵抗体に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to thick film materials, and particularly to a thick film resistor paste and a thick film resistor suitable for a thermal head for a thermal transfer printer.

(従来の技術〕 厚膜抵抗体に用いられる抵抗体ペーストは、一般に導電
微粉末,ガラス粉末,有機樹脂溶媒等からなる。導電微
粉末としては、Ru○2.BizRuzO7,Mo○3
,LaBe、などの微粉末が用いられる。特にRuOz
(酸化ルテニウム)微粉末を用いた抵抗体ペーストは抵
抗値の温度変化が小さく、ノイズの発生も少ないことか
ら、感熱ヘッドに好適な材料として注目されている。
(Prior art) Resistor paste used for thick film resistors generally consists of conductive fine powder, glass powder, organic resin solvent, etc. As conductive fine powder, Ru○2, BizRuzO7, Mo○3 are used.
, LaBe, etc. are used. Especially RuOz
A resistor paste using fine (ruthenium oxide) powder is attracting attention as a material suitable for thermal heads because its resistance value changes little with temperature and generates little noise.

抵抗体ペーストを焼成すると、RuO2微粉末がガラス
の粒界に集まり、接触或いはトンネル電流によって通電
路を形成する。従って、ガラス粒界面におけるR u 
O 2微粉末の密度及び分散度が抵抗値を決め、通常は
ガラス粉末に対するR 11 0 2微粉末の含有量を
変えて、抵抗値を制御している。
When the resistor paste is fired, the RuO2 fine powder gathers at the grain boundaries of the glass and forms a current conducting path by contact or tunnel current. Therefore, R u at the glass grain interface
The density and dispersion of the O 2 fine powder determine the resistance value, and the resistance value is usually controlled by changing the content of the R 11 0 2 fine powder relative to the glass powder.

この際、含有量を変えて抵抗値を制御するための適当な
粒径があり、Ru○2微粉末は大きすぎても小さすぎて
も抵抗値の制御が難しくなる。用途によっても異なるが
,通常は0.数μm〜数μmのR u O 2微粉末が
用いられる。特に抵抗体の均一性、再現性を重視する用
途においては、R u O n微粉末を分級して適当な
粒径の微粉末だけを選別して用いる場合が多い。
At this time, there is an appropriate particle size for controlling the resistance value by changing the content, and if the Ru○2 fine powder is too large or too small, it will be difficult to control the resistance value. Although it varies depending on the application, it is usually 0. R u O 2 fine powder of several μm to several μm is used. Particularly in applications where uniformity and reproducibility of resistors are important, R u O n fine powder is often classified and only fine powder with an appropriate particle size is selected and used.

なお、この種の装置として関連するものには、例えば特
公昭61− 31960号公報等が挙げられる。
Note that related devices of this type include, for example, Japanese Patent Publication No. 31960/1983.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のごとく、R u O 2微粉末の粒径は抵抗値に
大きく影響する。例えば、ガラス粉末の平均粒径を約1
μm一定としてRuO2微粉末の粒径を変えた場合、膜
厚10μm,RuOz含有量30vt%のとき、平均粒
径0.5μmのRuOz微粉末を用いると表面抵抗は約
LookΩ/口、0.05μmのRuOz微粉末を用い
ると約1kΩ/口となる。すなわち、同量のRu○2を
混入しても粒径が小さい程、抵抗値が小さくなる。Ru
は貴金属で高価格のため,粒径の小さいRuOz微粉末
を用いてその使用量を減らすことはコストの上で重要で
ある。
As mentioned above, the particle size of the R u O 2 fine powder greatly affects the resistance value. For example, the average particle size of glass powder is approximately 1
When the particle size of the RuO2 fine powder is changed with μm constant, when the film thickness is 10 μm and the RuOz content is 30 vt%, the surface resistance is approximately LookΩ/hole, 0.05 μm when using RuOz fine powder with an average particle size of 0.5 μm. When RuOz fine powder is used, the resistance becomes about 1 kΩ/mouth. That is, even if the same amount of Ru2 is mixed, the smaller the particle size, the smaller the resistance value. Ru
Since RuOz is a precious metal and is expensive, it is important to reduce the amount of RuOz used by using fine RuOz powder with a small particle size.

一方、前記のとと< R u O z微粉末の粒径が小
さい程抵抗値の制御が雅しくなる。例えば平均粒径約1
μmのガラス粉末に対し、平均粒径約0.04μmのR
uOx微粉末を用いた場合、膜厚約10μm.Ruoz
含有量50wt%のとき、表面抵抗が数Ω/口となり、
RuOz含有量20wt%の時数+KΩ/口と大きく変
化する。Ru○2微粉末の粒径がより小さくなると、R
uO2含有量に対する抵抗値の変化はより急激になる。
On the other hand, the smaller the particle size of the fine powder, the more elegant the control of the resistance value becomes. For example, the average particle size is about 1
R with an average particle size of about 0.04 μm for glass powder of μm
When uOx fine powder is used, the film thickness is approximately 10 μm. Ruoz
When the content is 50wt%, the surface resistance is several Ω/mouth,
The number of hours when the RuOz content is 20 wt% + KΩ/mouth varies greatly. As the particle size of the Ru○2 fine powder becomes smaller, R
The change in resistance value with uO2 content becomes more rapid.

また粒径のばらつきの影響も顕著に現われてくる。さら
に、粒径が小さくなるとRu○2微粉末間の凝集が生じ
、抵抗体の均一性,再現性に問題が生しやすくなる。
Furthermore, the influence of variation in particle size becomes noticeable. Furthermore, as the particle size becomes smaller, agglomeration occurs between the Ru○2 fine powders, which tends to cause problems in the uniformity and reproducibility of the resistor.

上記の理由のため、従来技術は、粒径のより小さいR 
u O x微粉末を用いる方がコストの上で有利である
にもかかわらず、抵抗値の制御、抵抗体の均一性,再現
性を重視し、0.数μm〜数μmのRuOz微粉末を分
級して用いていた。従って、従来技術では分級の工程が
あり、さらにR u O 2の使用量が増すためにコス
ト高になってしまう問題があった。
For the above reasons, the prior art uses R with smaller particle size.
Although it is more advantageous in terms of cost to use uOx fine powder, we place emphasis on resistance control, uniformity of the resistor, and reproducibility. RuOz fine powder of several μm to several μm was classified and used. Therefore, in the conventional technology, there is a step of classification, and the amount of R u O 2 used increases, resulting in an increase in cost.

本発明の目的は、0.1μm以下の粒径のRuOz微粉
末を用いて,抵抗値の制御がしやすく、抵抗体の均一性
,再現性に優れた厚膜抵抗体ペースト及び厚膜抵抗体を
低コストで形成することにある。
The purpose of the present invention is to provide a thick film resistor paste and a thick film resistor that use RuOz fine powder with a particle size of 0.1 μm or less to easily control the resistance value and have excellent uniformity and reproducibility of the resistor. The objective is to form the system at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、R u O z微粉末を用いる代わりに表
面にR u O 2微粉末を均一に分散,固着させたガ
ラス粉末を混合すること及び上記のガラス粉末表面のR
uOz微粉末がペースト焼成中に凝集しないように高温
軟化性のガラスを選定しかつ、その他に低温軟化性ガラ
スを加えることにより、達成される。
The above purpose is to mix glass powder with R u O 2 fine powder uniformly dispersed and fixed on the surface instead of using R u O z fine powder, and to reduce the R on the surface of the glass powder.
This is achieved by selecting a glass that softens at high temperatures so that the uOz fine powder does not aggregate during paste firing, and by adding glass that softens at low temperatures.

〔作用〕[Effect]

表面にRuOz微粉末を分散,固着させたガラス粉末(
以後、ガラス粉末Aと記す)を用いて厚膜抵抗体ペース
トを形成すれば、R u O z微粉末はいくら小さく
とも、R u O z微粉末間で凝集を生じることはな
い。平均粒径がほぼ等しいガラス粉末を用いれば、ガラ
ス粉末Aと何もコーティングしていないガラス粉末(以
後、ガラス粉末Bと記す)とは容易に混合し、それに伴
ってRuOz微粉末も凝集を起こすことなく分散する。
Glass powder with RuOz fine powder dispersed and fixed on the surface (
If a thick film resistor paste is formed using glass powder (hereinafter referred to as glass powder A), no agglomeration will occur between the R u O z fine powders, no matter how small they are. If glass powder with approximately the same average particle size is used, glass powder A and uncoated glass powder (hereinafter referred to as glass powder B) will easily mix, and the RuOz fine powder will also agglomerate accordingly. Disperse without any problem.

また、ガラス粉末Aの表面が通電路となるため、ガラス
粉末A表面に固着させるRuOzftを一定にしておけ
ば、全体のRu○2含有量を変化させても通電路におけ
るRuOz微粒子密度は大幅に変化することはない。従
って抵抗値もRuO2含有量によって急激に変化するこ
とはない。
In addition, since the surface of glass powder A becomes a current-carrying path, if the amount of RuOzft fixed to the surface of glass powder A is kept constant, the RuOz fine particle density in the current-carrying path can be significantly reduced even if the overall Ru○2 content is changed. It never changes. Therefore, the resistance value does not change rapidly depending on the RuO2 content.

さらに、ガラス粉末Bに、ガラス粉末Aよりも低温で軟
化する材料を用いれば、焼成の際ガラス粉末Bが軟化し
て基板と接着しても、ガラス粉末Aは軟化せず,その表
面のRuOz微粉末の分散ぐあいも大幅に変化すること
はない。従って、焼成によって抵抗体の均一性は変化す
ることはない。
Furthermore, if a material that softens at a lower temperature than glass powder A is used for glass powder B, even if glass powder B softens during firing and adheres to the substrate, glass powder A will not soften, and the RuOz on its surface will not soften. The dispersion of the fine powder also does not change significantly. Therefore, the uniformity of the resistor does not change due to firing.

〔実施例〕〔Example〕

以下、本発明の一実旅例を第1〜3図により説明する。 Hereinafter, a practical example of the present invention will be explained with reference to FIGS. 1 to 3.

まず、表面にRuOlz微粒子を分散,固着させたガラ
ス粉末Aの製法について説明する。
First, a method for producing glass powder A having RuOlz fine particles dispersed and fixed on its surface will be described.

RuCflx・nHzo (7n化ルテニウム)8.4
gを室温の純水34cc中に溶解し、R u C Q 
z水溶液を作る。なお、RuCQz・nHzO中のRu
含有量は約45wt%である。次に平均粒径3μmの球
状のS i 02粉末5gを、上記のR u C Q 
x水溶液中に懸濁する。この際、水溶液の超音波等で振
動を加えるとSi○2粉末の懸濁が容易となる。
RuCflx・nHzo (ruthenium 7n) 8.4
Dissolve g in 34 cc of pure water at room temperature, R u C Q
zMake an aqueous solution. In addition, Ru in RuCQz・nHzO
The content is approximately 45 wt%. Next, 5 g of spherical S i 02 powder with an average particle size of 3 μm was added to the above R u C Q
x Suspend in aqueous solution. At this time, if the aqueous solution is vibrated by ultrasonic waves or the like, the Si○2 powder can be easily suspended.

次にSiOz粉末をyI!4濁したR u C.Ω2水
溶液を電気炉で600℃,2時間加熱する。焼成中は電
気炉中に0 . 2 Q /minの純酸素を流し、酸
素雰囲気とした。
Next, add SiOz powder to yI! 4 Cloudy R u C. Heat the Ω2 aqueous solution at 600°C for 2 hours in an electric furnace. During firing, 0.0% was placed in the electric furnace. Pure oxygen was flowed at 2 Q/min to create an oxygen atmosphere.

焼成後のSiOz粉末は(ガラス粉末A)、粉末表面に
,平均粒程0.1μm以下のRuOz′#粒子が分散,
付着した状態となる。焼成後のSiOz粉末のSEM写
真を第1図に示す。なお、同試料はSEM(走査型電子
顕著鏡)による電子線回折により、球状のS iO z
粉末表面の微粒子がルチル構造のRu○2であることを
確認した。
After firing, the SiOz powder (glass powder A) has RuOz′# particles with an average particle size of 0.1 μm or less dispersed on the powder surface.
It becomes attached. FIG. 1 shows a SEM photograph of the SiOz powder after firing. The same sample was found to be spherical SiO z by electron diffraction using an SEM (scanning electron conspicuous mirror).
It was confirmed that the fine particles on the powder surface were Ru2 having a rutile structure.

次に上記方法で形成したガラス粉末Aに,pbo−S 
ioz −B20sを主成分とするガラス粉末B(平均
粒径2μm)をLog加え、■型混合器により均一時間
混合し、均一な混合粉とする。ガラス粉末Aの破壊を防
ぐため、この混合にはボールミルよりもV型混合器の方
が望ましい。
Next, pbo-S was added to the glass powder A formed by the above method.
Log of glass powder B (average particle size 2 μm) containing Ioz-B20s as a main component was added and mixed for a uniform time using a ■ type mixer to obtain a uniform mixed powder. To prevent glass powder A from breaking, a V-type mixer is preferable to a ball mill for this mixing.

均一に混合したガラス粉末に、有機樹脂溶媒を加え、3
本ロールミルにより均一時間混練して厚膜抵抗体ペース
トとする。ペースト状1ふではRun2/ (RuOz
+ガラス)が約25wt%となる。なお、P b O 
− S i○2−B203を主成分とするガラス粉末巳
の軟化点は約600℃,ガラス粉末Aの軟化点は約15
00℃である。
Add an organic resin solvent to the uniformly mixed glass powder,
This roll mill is used to knead for a uniform time to form a thick film resistor paste. Run 2/ (RuOz
+ glass) is approximately 25 wt%. In addition, P b O
- The softening point of Glass Powder A whose main component is Si○2-B203 is approximately 600°C, and the softening point of Glass Powder A is approximately 15
It is 00℃.

上記方法で形成した厚膜抵抗体ペーストを、アルミナ基
板上に印刷し、乾燥後、大気中で約800℃,1時間加
熱して焼成する。焼成前後の印刷膜のf′r面の概略を
、第2図,第3図に示す。イ1機樹脂成分が分解,蒸発
後、ガラス粉末B2が軟化しアルミナ基板3に強固に固
着する。また、この際、有機樹脂成分の分解,蒸発によ
って生じたガラス粉末間の隙間は、軟化したガラス粉末
B2が変形して埋める。800℃,1時間の加熱では、
ガラス粉末A1及びその表面のRu○2微粒子lま軟イ
ヒ,焼結など生じず、緻密化したガラスB2中番こ均一
に混在する状態となる。このガラス粉末A1同志が接触
し、通電路を形成する。全体の抵抗値&ま、ガラス粉末
A1表面のRuO2微粒子密度及び全体におけるガラス
粉末A1の密度で決まる。本条件のもとでは、膜厚約1
0μmLこ対して、表面抵抗約500Ω/口となる。
The thick film resistor paste formed by the above method is printed on an alumina substrate, dried, and then heated and fired at about 800° C. for 1 hour in the air. The outline of the f'r plane of the printed film before and after firing is shown in FIGS. 2 and 3. After the resin component decomposes and evaporates, the glass powder B2 softens and firmly adheres to the alumina substrate 3. Further, at this time, the softened glass powder B2 deforms and fills the gaps between the glass powders caused by the decomposition and evaporation of the organic resin component. When heated at 800℃ for 1 hour,
The glass powder A1 and the Ru2 fine particles on its surface do not become soft or sintered, and the densified glass B2 is uniformly mixed. This glass powder A1 comes into contact with each other to form a current conducting path. The overall resistance value is determined by the RuO2 fine particle density on the surface of the glass powder A1 and the overall density of the glass powder A1. Under these conditions, the film thickness is approximately 1
For 0 μmL, the surface resistance is approximately 500Ω/mouth.

なお、ガラス粉末AIの製法に関して番よ、R u C
 Q 2水溶液をSi○2粉末上レこ噴嚇して、これを
熱風と接触させ乾燥し(スプレードライング法),その
後電気炉で焼成しRuOz{ヒしてもよい.或いは、S
iOz粉末を基板、RuOz圧粉体をターゲットとして
、レーザ蒸着法、或−1まスパッタリング法、或いはE
−ガンレこよる真空蒸着法等によって形成してもよく、
製法を稈艮定するものではない。また、ガラス粉末Al
tま、SiOz+こ限らず、ガラスとなじみのよb)高
隔材料、例えifA fl xOa, Z r Ox等
であってもよ%N。
Regarding the manufacturing method of glass powder AI, R u C
Q2 aqueous solution may be sprayed onto Si○2 powder, dried by contacting with hot air (spray drying method), and then fired in an electric furnace to form RuOz. Or S
Using iOz powder as a substrate and RuOz compact as a target, laser evaporation method, -1 sputtering method, or E
- May be formed by Ganley vacuum deposition method etc.
It is not intended to determine the manufacturing method. In addition, glass powder Al
Not only SiOz+, but also high barrier materials that are compatible with glass, such as ifAflxOa, ZrOx, etc.%N.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来使用の雅しかった0.1μm以下
のRuOz微粉末を容易に分散することができるため、
抵抗値の制御性、抵抗体の均一性に優れる。また、分級
の工程が省略でき、Ru02の使用量も削減できるため
、大幅なコスト低減の効果がある。
According to the present invention, it is possible to easily disperse RuOz fine powder of 0.1 μm or less, which has been used in the past.
Excellent controllability of resistance value and uniformity of resistor. Furthermore, the classification process can be omitted and the amount of Ru02 used can be reduced, resulting in a significant cost reduction effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るRu○2微粒子を表面
に分散,固着したSiOz微粒子の状態を撮影した粒子
構造の走査型電子顕微鏡写真、第2図は本発明の一実施
例の厚膜抵抗体ペーストの焼成前の*El8を示す模式
図、第3図は焼成後の概略を各々示す模式図である。 1・・・ガラス粉末A、2・・・ガラス粉末B、3・・
・アルミナ基板。 茶 l 図 第 図 冨 図 アルミ六導引艮
FIG. 1 is a scanning electron micrograph of the particle structure of SiOz fine particles on which Ru○2 fine particles are dispersed and fixed on the surface according to an embodiment of the present invention, and FIG. 2 is a scanning electron micrograph of the particle structure according to an embodiment of the present invention. FIG. 3 is a schematic diagram showing *El8 before firing the thick film resistor paste, and FIG. 3 is a schematic diagram showing the outline after firing. 1...Glass powder A, 2...Glass powder B, 3...
・Alumina substrate. Tea Al Diagram Tomizu Aluminum Six-Lead Drawer

Claims (2)

【特許請求の範囲】[Claims] 1.厚膜抵抗体に用いるペーストにおいて、表面に酸化
ルテニウム微粉末をコーティングしたガラス粉末Aと、
該ガラス粉末Aの軟化温度よりも低い温度で軟化するガ
ラス粉末Bとを含むことを特徴とする厚膜抵抗体ペース
ト。
1. In the paste used for thick film resistors, glass powder A whose surface is coated with fine ruthenium oxide powder,
A thick film resistor paste comprising a glass powder B that softens at a temperature lower than the softening temperature of the glass powder A.
2.厚膜抵抗体において、表面に酸化ルテニウム微粉末
をコーティングしたガラス粉末Aと、該ガラス粉末Aの
軟化温度よりも低い温度で軟化するガラス粉末Bとを含
むペーストを基板に塗付後、ガラス粉末Aが軟化に致ら
ず、かつガラス粉末Bが軟化する温度範囲で焼成したこ
とを特徴とする厚膜抵抗体。
2. In a thick film resistor, after applying a paste containing a glass powder A whose surface is coated with fine ruthenium oxide powder and a glass powder B that softens at a temperature lower than the softening temperature of the glass powder A to a substrate, the glass powder is applied to the substrate. A thick film resistor characterized in that A is fired in a temperature range in which glass powder B does not soften and glass powder B softens.
JP1113726A 1989-05-08 1989-05-08 Thick film resistor paste and thick film resistor Pending JPH02292801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1113726A JPH02292801A (en) 1989-05-08 1989-05-08 Thick film resistor paste and thick film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1113726A JPH02292801A (en) 1989-05-08 1989-05-08 Thick film resistor paste and thick film resistor

Publications (1)

Publication Number Publication Date
JPH02292801A true JPH02292801A (en) 1990-12-04

Family

ID=14619583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1113726A Pending JPH02292801A (en) 1989-05-08 1989-05-08 Thick film resistor paste and thick film resistor

Country Status (1)

Country Link
JP (1) JPH02292801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105263A (en) * 2007-10-24 2009-05-14 Panasonic Corp Resistive paste and its production method
JP2014040661A (en) * 2006-07-21 2014-03-06 Valtion Teknillinen Tutkimuskeskus Method for manufacturing conductor and semiconductor
CN111247607A (en) * 2018-01-17 2020-06-05 三菱综合材料株式会社 Thermistor element and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040661A (en) * 2006-07-21 2014-03-06 Valtion Teknillinen Tutkimuskeskus Method for manufacturing conductor and semiconductor
US9011762B2 (en) 2006-07-21 2015-04-21 Valtion Teknillinen Tutkimuskeskus Method for manufacturing conductors and semiconductors
JP2009105263A (en) * 2007-10-24 2009-05-14 Panasonic Corp Resistive paste and its production method
CN111247607A (en) * 2018-01-17 2020-06-05 三菱综合材料株式会社 Thermistor element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3393093B2 (en) Manufacturing method of piezoelectric / electrostrictive ceramic microactuator using photolithography method
US5110384A (en) Process for making electrically conductive patterns
JP4090778B2 (en) Silver oxide fine particle composition and method for producing the same, conductive composition, conductive film and method for forming the same
JPH02292801A (en) Thick film resistor paste and thick film resistor
CA1159122A (en) Thick film resistor circuits
US4452726A (en) Self-sealing thermally sensitive resistor and method of making same
JP4046785B2 (en) Non-conductive carbonaceous powder and method for producing the same
JPS5855204B2 (en) Method for producing platinum powder for printing paste
JPH0331485A (en) Enameled substrate and thermal head or circuit parts using the same
JPH11241103A (en) Production of spherical platinum powder to be used for platinum paste
JP2511767B2 (en) Coloring agent containing ultrafine particles and method for producing the same
US5296259A (en) Process for making electrically conductive patterns
JPH11242913A (en) Manufacture of platinum paste
JP2000001707A (en) Silver particle, its production and conductor paste consisting of silver particle
JP2683568B2 (en) Coloring agent for frosted tinted glass
JP2000196161A (en) Forming method of piezoelectric/electrostrictive thin film by use of seeding layer
JPS635881B2 (en)
JPS63246801A (en) Resistor paste compound
JP2002309181A (en) Coating material and coating method
JPH04359069A (en) Silver powder for electro conductive coating and electro conductive coating using the same
JPS5918841B2 (en) Ceramic semiconductor and forming method
JPH08259843A (en) Double coated inorganic powder and its production
JP3094683B2 (en) Composition for forming thick film resistor
JP2644017B2 (en) Resistance paste
JPH0913102A (en) Metallic particle sintered compact with diffusion preventing film and its production