JPS60213894A - High-temperature cobalt adsorbing filtering medium - Google Patents
High-temperature cobalt adsorbing filtering mediumInfo
- Publication number
- JPS60213894A JPS60213894A JP6899384A JP6899384A JPS60213894A JP S60213894 A JPS60213894 A JP S60213894A JP 6899384 A JP6899384 A JP 6899384A JP 6899384 A JP6899384 A JP 6899384A JP S60213894 A JPS60213894 A JP S60213894A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- metal
- resistant
- temperature
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Water Treatment By Sorption (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、原子炉−次冷却材(以下炉水と称す)を対象
に、高温;バルト除去に適する金属を用いた高温コバル
ト吸着材に関するものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a high-temperature cobalt adsorbent using a metal suitable for high-temperature balt removal from a nuclear reactor secondary coolant (hereinafter referred to as reactor water). It is.
C゛発明技術的背景とその問題点〕
被曝の要−である炉水中溶存コバルトイオンを除去する
場合、イオン交換樹脂を用いる従来法は、イオン交換樹
脂の熱分解を避けるため、炉水(28゜’C、70Ql
ad )を熱交換器および冷却器を通して耐熱温度(約
60℃)以下まで冷却する必要がある。。C゛Technical background of the invention and its problems] When removing cobalt ions dissolved in reactor water, which is the key to radiation exposure, the conventional method using ion exchange resin is to avoid thermal decomposition of the ion exchange resin.゜'C, 70Ql
ad) must be cooled down to below the heat-resistant temperature (approximately 60°C) through a heat exchanger and a cooler. .
このため熱交換器による熱損失が生ずる。従って被曝低
減のため、コバルト除去の向上、つまり縄。This results in heat loss through the heat exchanger. Therefore, to reduce exposure, improve cobalt removal, i.e. rope.
理流量を増加させると、これに比例して熱損が増 □大
するので、プランドの熱効率が低下してしまう。When the flow rate is increased, the heat loss increases in proportion to this, resulting in a decrease in the thermal efficiency of the plan.
このため炉水を冷却することなく高温高圧下で溶存コバ
ルトを除去できる熱損失のない高温コバルト除去システ
ムが要望されている。Therefore, there is a need for a high-temperature cobalt removal system with no heat loss that can remove dissolved cobalt under high temperature and high pressure without cooling the reactor water.
高温コバルト除去については、前記イオン交換樹脂に代
り、高温高圧下でコバルトを吸着できる無機吸着材が適
用される。例えば酸化チタン−酸化鉄(フェライトなど
)、酸化ジル−ニウムなどの金属酸化物系が最適とされ
、その他リン酸ジルコニウム、タングステン酸錫などの
金属酸性塩も有望である。For high-temperature cobalt removal, an inorganic adsorbent that can adsorb cobalt under high temperature and high pressure is used instead of the ion exchange resin. For example, metal oxide systems such as titanium oxide-iron oxide (ferrite, etc.) and zirconium oxide are considered optimal, and other metal acid salts such as zirconium phosphate and tin tungstate are also promising.
無機吸着材の高温コバルト除去への集用には、炉材化が
不可欠である。炉材化には次の方法が挙げられる。In order to utilize inorganic adsorbents for high-temperature cobalt removal, it is essential to use them as furnace materials. The following methods can be used to make furnace materials.
(1) 無機吸着材単体を焼結などによって粒状、ブロ
ック状等の炉材に成形する。(1) A single inorganic adsorbent is formed into a granular or block-like furnace material by sintering or the like.
(2)粒状、ポーラスブロック状などの耐熱・耐食性担
体を用い、その表面へ無機吸着材を担持させる。(2) Using a heat-resistant and corrosion-resistant carrier in the form of granules or porous blocks, the inorganic adsorbent is supported on its surface.
(3)粒状、繊維状、網状などに成形した耐熱・耐食性
金属を用い表面に該金属の酸化皮膜(無機吸着材)を生
成させる。(3) Using a heat-resistant and corrosion-resistant metal formed into granules, fibers, nets, etc., an oxide film (inorganic adsorbent) of the metal is generated on the surface.
(1)および(2)の方法によって得られる炉材は、高
温高圧下の長期にわたる使用において、破損あるいは剥
離が生じ易く、無機吸着材の一部が懸濁物としてカラム
から流出し、原子炉内に持込まれる欠点がある。Reactor materials obtained by methods (1) and (2) tend to break or peel off during long-term use under high temperature and high pressure, and part of the inorganic adsorbent flows out of the column as a suspension, causing the reactor There are drawbacks that are brought into the world.
これに対しく3)によって得られる炉材は、無機吸着材
である表面金属酸化物が緻密で、母材と強固に結合して
いるため、前記(1)および(2)によって得られるも
ののごとく、無機吸着材が流出することはほとんどなく
、吸着炉材として優れた実用性をもっている。On the other hand, the furnace material obtained by method 3) has a dense surface metal oxide, which is an inorganic adsorbent, and is strongly bonded to the base material, so it is similar to that obtained by method (1) and (2) above. , the inorganic adsorbent hardly flows out, and has excellent practicality as an adsorption furnace material.
しかし金属を用いた炉材は、炉水を対象とする吸着材と
しては金属材料に由来する次の欠点をもっている。すな
わち、金属材料は原料とその精工程からコバルト不純物
の含有は避けられず、この不純物コバルトが金属炉材の
コバルト浄化性能に悪影響を与える。これは対象となる
炉水中の溶存コバルト濃度が10〜50 p、p、t
の極微量領域であり、金属材料の不純物コバルト(50
〜1s000p、p1m程度)による溶出コバルト濃度
もp、p、tオーダーになるためである。例えば溶存コ
バルト濃度20p、p、tの炉水を吸着処理する場合、
金属炉材の不純物コバルトからの溶出コバルトが5p、
p、tあれば、溶存コバルトの除去率が99%であって
も溶出コバルトによって実質コバルト除去率は2O−(
20X(1−0,99)+5)/20X100=74%
に低下してしまう。However, reactor materials using metal have the following drawbacks as adsorbents for reactor water due to the metal material. That is, metal materials inevitably contain cobalt impurities due to their raw materials and their refining processes, and this impurity cobalt adversely affects the cobalt purification performance of metal furnace materials. This means that the dissolved cobalt concentration in the target reactor water is 10 to 50 p, p, t.
Cobalt is an extremely small amount of impurity in metal materials (50
This is because the elution cobalt concentration due to 1s000p, p1m or so) is also on the order of p, p, and t. For example, when adsorbing reactor water with a dissolved cobalt concentration of 20 p, p, t,
Cobalt eluted from impurity cobalt in metal furnace material is 5p,
If p and t exist, even if the removal rate of dissolved cobalt is 99%, the actual cobalt removal rate will be 2O-(
20X(1-0,99)+5)/20X100=74%
It will drop to .
高温炉水吸着に適用される金属炉材は、耐熱耐食性のス
テンレス鋼、耐熱鋼、ジルカロイなどの合金系材料ある
いはニッケル、チタニウム、ジルコニウム、アルミニウ
ムなどの純金属系材料を対象とするが、これら金属材料
にもコバルトが不純物として含まれ、前記のコバルト浄
化性能への障害は避けられない。The metal reactor materials used for high-temperature reactor water adsorption are heat-resistant and corrosion-resistant alloy materials such as stainless steel, heat-resistant steel, and Zircaloy, or pure metal materials such as nickel, titanium, zirconium, and aluminum. The material also contains cobalt as an impurity, and the above-mentioned impediment to the cobalt purification performance is unavoidable.
本発明の目的は、゛コバルトの溶出□をなくシ、コバル
ト除去性能を飛躍的に向上させた金属を用いた高温コバ
ルト吸着炉材を提供することにある。An object of the present invention is to provide a high-temperature cobalt adsorption furnace material using metal that eliminates cobalt elution and dramatically improves cobalt removal performance.
本発明は耐熱耐食性金属をカラム炉材に適した粒状、繊
維状、網状、あるいはポーラス状等の形状に成形し、該
惑形金属の表面に酸化物被膜層を生成させた吸着炉材に
関するもので、上記酸化物被膜層から不純物コバルFを
抽出除去し、金属素材中の不純物コバルト濃度より酸化
物被膜層中のコバルト濃度を低減させたことにより被処
理へのコバルトの溶出を防ぎ、被処理水からのコバルト
除去性能を向上させたものである。The present invention relates to an adsorption furnace material in which a heat-resistant and corrosion-resistant metal is formed into a granular, fibrous, net-like, or porous shape suitable for a column furnace material, and an oxide film layer is formed on the surface of the shaped metal. By extracting and removing the impurity cobalt F from the oxide film layer and reducing the cobalt concentration in the oxide film layer from the impurity cobalt concentration in the metal material, the elution of cobalt to the treated object is prevented, and the This product has improved cobalt removal performance from water.
以下図面に示す一実施例を参照して本発明金属炉材を詳
細に説明する。第1図は、従来金属炉材と本発明金属炉
材のミクロ状態と効果を示した図である。The metal furnace material of the present invention will be described in detail below with reference to an embodiment shown in the drawings. FIG. 1 is a diagram showing the microstate and effects of a conventional metal furnace material and a metal furnace material of the present invention.
図において、1は金属素材(コバルト不純物ヲ50〜1
1000pp含有)で、ステンレス鋼、耐熱鋼。In the figure, 1 is a metal material (cobalt impurity is 50 to 1
1000pp), stainless steel, heat-resistant steel.
ジルカロイ等の合金系あるいはニッケル、チタニウム、
ジルコニウム、アルミニウム等の純金属系から選ばれる
炉水中で安定な耐熱耐食性金属を、カラム操作に適した
粒状、繊維状、網状、′あるいはポーラス状等の形状に
成形して得られる。この金属素材1に対し酸化処理2を
施し、これによって該金属の酸化物被膜3を金属素材1
の表面に生成させる。これが従来の金属炉材で、そのミ
クロ状態を第1図に示した。なお金属素材への酸化処理
には、薬品を用いる化学酸化処理、電解lこよる陽極酸
化処理、あるいは高温炉処理や高温水溶存酸素による水
熱酸化処理などの方法があるが、いずれの方法でもよい
。上記生成酸化物被jla中のコバルト不純物は金属素
材1と同一濃度(50〜1.000p、pom )であ
るため、炉水中へのコバルト<+の溶出(5〜20p、
p、t )があり、前述の障害を与える。Alloys such as Zircaloy, nickel, titanium,
It is obtained by molding a heat-resistant and corrosion-resistant metal selected from pure metals such as zirconium and aluminum into a granular, fibrous, net, or porous shape suitable for column operation. This metal material 1 is subjected to oxidation treatment 2, whereby the metal oxide film 3 is removed from the metal material 1.
generated on the surface of This is a conventional metal furnace material, and its microstate is shown in Figure 1. There are several methods for oxidizing metal materials, such as chemical oxidation treatment using chemicals, anodic oxidation treatment using electrolysis, high-temperature furnace treatment, and hydrothermal oxidation treatment using high-temperature water dissolved oxygen. good. Since the cobalt impurity in the produced oxide JLA has the same concentration as the metal material 1 (50 to 1.000 p, pom), cobalt <+ elutes into the reactor water (5 to 20 p, pom).
p, t ), giving the aforementioned obstacles.
本発明金属炉材は炉水への溶出コバル) C14をなく
するため上記生成酸化物被膜中の不純物コバルトを除去
したことを特徴とする。すなわち、図のごと〈従来の金
属炉材に精製処理5を行ない、生成酸化物被膜3から不
純物コバルトを抽出除去し、コバルト不合酸化物被膜3
’ (1p、p、m以下)とする。か\る精製処理によ
って得られる本発明金属炉材は、コバルト吸着にかかわ
る酸化物被膜中の不純物コバルトを金属素材のそれより
大幅に低減したもので、炉水中へのコバルト<+の溶出
は充分少ない(ip 、p、 を以下)。従って従来金
属炉材では困難であったコバルト除去率の飛躍的向上が
可能になる。なお金属炉材への精製処理5としては、鉱
酸あるいは有機酸を用いる抽出液で不純物コバルトを溶
出除去する化学精製処理あるいは高温高圧水下で不純物
コバルトを溶出除去する熱水精製処理などの方法がある
。The metal reactor material of the present invention is characterized in that the impurity cobalt in the produced oxide film is removed in order to eliminate cobalt (C14) eluted into the reactor water. That is, as shown in the figure, the conventional metal furnace material is subjected to a refining treatment 5 to extract and remove impurity cobalt from the generated oxide film 3, and to form a cobalt unmixed oxide film 3.
' (1p, p, m or less). The metal reactor material of the present invention obtained through such refining treatment has a significantly lower cobalt impurity in the oxide film involved in cobalt adsorption than that of the metal material, and the elution of cobalt <+ into the reactor water is sufficient. Less (less than or equal to ip, p, ). Therefore, it becomes possible to dramatically improve the cobalt removal rate, which has been difficult with conventional metal furnace materials. In addition, as the purification treatment 5 for metal furnace materials, methods such as chemical purification treatment in which impurity cobalt is eluted and removed with an extraction solution using a mineral acid or organic acid, or hot water purification treatment in which impurity cobalt is eluted and removed under high-temperature and high-pressure water. There is.
第1図は本発明による金属を用いた高温コバルト吸着炉
材の一実施例におけるミクロ状態とその効果を示す図で
ある。
1・・・金属素材 2・・・酸化処理
3・・・酸化物被膜
3′・・・不純物コバルトを除去した酸化物被膜5・・
・精製処理
(7317) 代理人弁理士 則 近 憲 佑 0!E
か1名)第FIG. 1 is a diagram showing the microstate and its effects in an example of a high-temperature cobalt adsorption furnace material using metal according to the present invention. 1... Metal material 2... Oxidation treatment 3... Oxide coating 3'... Oxide coating 5 from which impurity cobalt has been removed...
・Refining treatment (7317) Representative Patent Attorney Noriyuki Chika 0! E
or 1 person) No.
Claims (2)
形し、該成形金属の表面に酸化物被膜層を生成させた吸
着炉材において、酸化物被膜層から不純物コバルトを抽
出除去し、金属素材中の不純物コ一(ルト濃度より酸化
物被膜層中のコバルト濃度を低減させたことを特徴とす
る金属を用いた高温コバルト吸着炉材。(1) In an adsorption furnace material in which a heat-resistant and corrosion-resistant metal is formed into a shape suitable for a column furnace material and an oxide film layer is formed on the surface of the formed metal, impurity cobalt is extracted and removed from the oxide film layer, and the metal A high-temperature cobalt adsorption furnace material using metal, characterized in that the cobalt concentration in the oxide film layer is lower than the impurity concentration in the material.
ジルコニウム、アルミニウム等の純金属系から選ばれる
。金属材料を用いたことを特徴とする特許請求の範囲第
1項記載の高温コバルト吸着炉材。(2) Heat-resistant and corrosion-resistant metals include stainless steel and heat-resistant steel. Alloys such as Zircaloy or nickel, titanium
Selected from pure metals such as zirconium and aluminum. The high-temperature cobalt adsorption furnace material according to claim 1, characterized in that a metal material is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6899384A JPS60213894A (en) | 1984-04-09 | 1984-04-09 | High-temperature cobalt adsorbing filtering medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6899384A JPS60213894A (en) | 1984-04-09 | 1984-04-09 | High-temperature cobalt adsorbing filtering medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60213894A true JPS60213894A (en) | 1985-10-26 |
Family
ID=13389690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6899384A Pending JPS60213894A (en) | 1984-04-09 | 1984-04-09 | High-temperature cobalt adsorbing filtering medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60213894A (en) |
-
1984
- 1984-04-09 JP JP6899384A patent/JPS60213894A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003529517A (en) | Inorganic adsorbent for extracting molybdenum-99 from irradiated uranium solution and method of using the same | |
US4587232A (en) | Inorganic adsorbent and process for production thereof | |
US4282092A (en) | Process for preparing inorganic particulate adsorbent and process for treating nuclear reactor core-circulating water | |
JPS60213894A (en) | High-temperature cobalt adsorbing filtering medium | |
JP2021094521A (en) | High temperature water purification device and high temperature water purification method | |
US3804939A (en) | Method of precipitating americium oxide from a mixture of americium and plutonium metals in a fused salt bath containing puo2 | |
JP2679726B2 (en) | Reactor cooling water cleaning agent and cleaning method | |
JPS61210997A (en) | Manganese ferrite carrying high-temperature adsorption filter medium | |
JPH0324995B2 (en) | ||
JPH0218871A (en) | High temperature adsorptive filtrating material for water cooling system of fuel cell | |
JPS62233796A (en) | Method of reducing radioactivity of nuclear power plant | |
EP3417461B1 (en) | A process for the removal of 99tc from liquid intermediate level waste of spent fuel reprocessing | |
RU2248405C2 (en) | Method of recovering palladium from solutions | |
JPS60158392A (en) | High-temperature filter element for light-water reactor | |
JPS6184598A (en) | Method of carrying high-temperature cobalt adsorbent | |
JPS6145198B2 (en) | ||
JPS61188865A (en) | High temperature filtering device for cooling water of fuel cell | |
JPH0116778B2 (en) | ||
JPH0221940A (en) | High-temperature adsorption filter medium and its production | |
US5221325A (en) | Process for recovering silver oxide and metals from spent silver oxide button cells | |
JPH0217941A (en) | High-temperature adsorbing filter material of cooling system of fuel cell water | |
JPS61149239A (en) | High temperature cobalt adsorbing apparatus | |
JPS60113199A (en) | Inorganic adsorbent | |
SU1125045A1 (en) | Method of desoption of chlorine from anion exchanger | |
JPS58176590A (en) | High temperature coolant cleanup device |