JPS60213793A - Heat transfer device - Google Patents

Heat transfer device

Info

Publication number
JPS60213793A
JPS60213793A JP59068899A JP6889984A JPS60213793A JP S60213793 A JPS60213793 A JP S60213793A JP 59068899 A JP59068899 A JP 59068899A JP 6889984 A JP6889984 A JP 6889984A JP S60213793 A JPS60213793 A JP S60213793A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
heat
condenser
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59068899A
Other languages
Japanese (ja)
Other versions
JPH0120358B2 (en
Inventor
Shigeo Yokota
横田 繁夫
Aritaka Tatsumi
辰巳 有孝
Yasuhiko Ito
靖彦 伊藤
Kenichi Kikuchi
賢一 菊地
Hideo Kawamura
川村 英雄
Michiaki Hiramoto
美智明 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Cable Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Cable Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Cable Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP59068899A priority Critical patent/JPS60213793A/en
Publication of JPS60213793A publication Critical patent/JPS60213793A/en
Publication of JPH0120358B2 publication Critical patent/JPH0120358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To make the evaporating temperature of working medium variable and permit to operate the device in the optimum condition of the system at all times by a method wherein one end of a tubular vessel is connected to a liquid receiving vessel while the other end of the tubular vessel is provided with a pressure control valve and is connected to the liquid receiving vessel by a recirculating pipe through a condenser. CONSTITUTION:When liquid refrigerant, overflowed in the liquid receiving vessel 10, flows down through an inclined section 12A to a heating unit 14 and is heated by external room-cooling objectives in respective heat pipes 12, the liquid refrigerant evaporates under a pressure in the vessel 18 and a temperature determined by the kind of the refrigerant. The pressure in the vessel 18 is preset by the adjustment of the pressure control valve 24 at a value wherein the refrigerant can be evaporated and the heat transfer efficiency thereof becomes optimum. The evaporated refrigerant gas flows into the direction shown by an arrow sign A in the diagram and enters into a header 26 through the pressure control valve 24. Further, it is transferred into the condenser 30 through the recirculating pipe 28. The refrigerant gas, entered into the condenser 30, receives cooling effect and condensed into liquid condition. The refrigerant returns into the liquid receiving vessel 10 through the recirculating pipe 40 after being condensed and, thus, above-described operation is repeated.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は伝熱装置に係り、特に伝熱素子としてパイプ状
容器を用いた伝熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat transfer device, and particularly to a heat transfer device using a pipe-shaped container as a heat transfer element.

[背景技術] ヒートパイプは、作動熱媒体の気化及び液化に伴う潜熱
を利用して熱の伝達を行なうものであり、きわめて高い
熱伝導率を有していることから]ニ場などの廃熱回収や
空調、或いは電子部品の冷却などに近年盛んに利用され
ている伝熱素子である。
[Background technology] Heat pipes transfer heat by using the latent heat associated with vaporization and liquefaction of the working heat medium, and have extremely high thermal conductivity] It is a heat transfer element that has been widely used in recent years for recovery, air conditioning, and cooling of electronic components.

従来のヒートパイプは、容器(コンテナ)内を真空にし
その内壁に沿ってウィックと呼ばれる熱奴案内部分を設
け、この容器に作動熱媒体を封入した構造となっており
、容器の一端が加熱されると作動熱媒体が蒸発して冷え
た他端に移動しここで凝縮する。凝縮した作動熱媒体は
ウィック内部を毛細管現象によって移動し加熱部に戻り
再び蒸発することにより加熱部から凝縮部へ熱の輸送を
行なう。
Conventional heat pipes have a structure in which the inside of a container is evacuated, a heat guide part called a wick is installed along the inner wall, and an operating heat medium is sealed in this container, and one end of the container is heated. Then, the working heat transfer medium evaporates and moves to the other cooled end where it condenses. The condensed working heat medium moves inside the wick by capillary action, returns to the heating section, and evaporates again, thereby transporting heat from the heating section to the condensing section.

しかしながら、従来のヒートパイプにあっては熱効率が
限られたものであり、容器が密閉構造であるため作動熱
媒体の蒸発温度は容器内圧力と作動熱媒体の種類で一義
的に決まっている。このため加熱部の温度に対応して容
器内圧力を制御し、最適な蒸発温度となるように調節す
ることができず、特に複数の加熱部がある場合は個別に
最適な蒸発温度に調節することができないので各加熱部
を有効に利用した伝熱効果を発揮できない事態が発生す
る恐れがあった。
However, conventional heat pipes have limited thermal efficiency, and because the container has a closed structure, the evaporation temperature of the working heat medium is uniquely determined by the pressure inside the container and the type of the working heat medium. For this reason, it is not possible to control the pressure inside the container in response to the temperature of the heating section and adjust it to the optimum evaporation temperature. Especially when there are multiple heating sections, it is not possible to adjust the pressure inside the container to the optimum evaporation temperature individually. Therefore, there was a risk that a situation would occur in which the heat transfer effect by effectively utilizing each heating section could not be achieved.

[発明の目的] 本発明は上記事実を考慮し、作動熱媒体の蒸発温度を5
(変にして常にシステムの最適状態で装置を稼動でき、
熱の長距離搬送に対する設計上の制約がなく、寿命の長
い伝熱装置を得ることが目的である。
[Object of the invention] Taking the above facts into consideration, the present invention has been developed to reduce the evaporation temperature of the working heat medium to 5.
(The equipment can always be operated in the optimum state of the system,
The objective is to obtain a heat transfer device with a long lifespan without design constraints on long-distance heat transfer.

[発明の概要] 本発明に係る伝熱装置は、パイプ状容器の一端を作動熱
媒体を貯蔵した受液器に接続すると共に受液器よりも次
第に低くした傾斜部を設け、熱媒体の表面積を増大して
効率を向上しパイプ状容器の他端に圧力制御弁を装備し
、環流管により凝縮器を介して前記受液器に接続し、圧
力制御弁の操作で任意の圧力を得るようになっている。
[Summary of the Invention] A heat transfer device according to the present invention connects one end of a pipe-shaped container to a liquid receiver storing a working heat medium, and is provided with an inclined portion that is gradually lower than the liquid receiver, so that the surface area of the heat medium is reduced. Equipped with a pressure control valve at the other end of the pipe-shaped container, which is connected to the liquid receiver via a condenser through a reflux pipe, so that the desired pressure can be obtained by operating the pressure control valve. It has become.

[発明の実施例] 第1図には本発明に係る伝熱装置の一実施例が示されて
おり、第1図において、作動熱媒体としての冷奴が液体
状態で所定レベルまで貯蔵された貯蔵器としての受液器
lOに、複数本(未実施例では2本)のヒートパイプ1
2が並列に分岐して接続されている。各ヒートパイプ1
2を構成するパイプ状容器は、図に示すように、受液器
10から例えば被冷房対象などの加熱部14まで延長さ
れたのち曲折されて凝縮器30近くまで延長されている
[Embodiment of the Invention] Fig. 1 shows an embodiment of the heat transfer device according to the present invention. A plurality of heat pipes (two in the unimplemented example) 1 are placed in the liquid receiver lO as a container.
2 are branched and connected in parallel. Each heat pipe 1
As shown in the figure, the pipe-shaped container 2 is extended from the liquid receiver 10 to a heating section 14 for, for example, an object to be cooled, and then bent and extended to near the condenser 30.

ヒートバイブ12のパイプ状容器18は内壁へ容器18
の長手軸線回りに多数の山形突起である環状リブ22が
突出されて毛細管現象により液表面を大きくするように
なっている。平担な内壁へ同様形状の溝を刻設すること
により、実質的に山形突起を形成させることもできる。
The pipe-shaped container 18 of the heat vibrator 12 is attached to the inner wall of the container 18.
A large number of annular ribs 22, which are chevron-shaped protrusions, are protruded around the longitudinal axis of the tube to increase the liquid surface by capillary action. A substantially chevron-shaped protrusion can also be formed by carving a similarly shaped groove into a flat inner wall.

このヒートバイブプ12の受液器lOへの接続部伺近は
、受液器lOから次第に低くされる傾斜部12Aとされ
ている。従って受液器10でオーバーフローした液状冷
媒は、重力で傾斜部12A内を流れるが、内部には環状
リブ22が多数突出されているので、冷媒はこれらのリ
ブ22間の溝部分へ滞留すると共に、リブ22を乗り越
えて次ぐ の溝へ至る。さらに溝部分に滞留した冷媒は
毛細管作用で溝に沿って壁面を上昇するために表面積が
大きく、気化し易い、また平担部においても同様に冷媒
の表面積が大き゛く、気化し易い、矢印入方向に進行す
る間に加熱部14で冷媒が被冷房対象から熱を奪い蒸発
する。この蒸発は傾斜部12Aで行なわれることもある
。容器18の傾斜部12A以外の平坦部を傾斜させるこ
ともでき、垂直以外の配置であればよい。
The connecting portion of the heat vibrator 12 to the liquid receiver 1O is formed as an inclined portion 12A that is gradually lowered from the liquid receiver 1O. Therefore, the liquid refrigerant that overflows in the liquid receiver 10 flows in the inclined part 12A by gravity, but since there are many annular ribs 22 protruding inside, the refrigerant stays in the grooves between these ribs 22 and , it climbs over the rib 22 and reaches the next groove. Furthermore, the refrigerant that remains in the grooves rises along the wall surface along the grooves due to capillary action, so it has a large surface area and is easily vaporized. While traveling in the direction, the refrigerant absorbs heat from the object to be cooled and evaporates in the heating section 14. This evaporation may also be performed at the inclined portion 12A. The flat portion of the container 18 other than the inclined portion 12A may be inclined, and any arrangement other than vertical may be sufficient.

なお、リブ22は図示のような環状に限らず、螺旋状と
したり、容器18の軸方向に形成してもよく、また断面
も山形に限らない、さらに、これらのリブ22に替えて
、一般的な毛細管作用を果すための繊維状等であっても
よい。
Note that the ribs 22 are not limited to the annular shape shown in the drawings, but may be spiral or formed in the axial direction of the container 18, and the cross section is not limited to the chevron shape. It may also be in the form of a fiber to achieve a capillary action.

前記ヒートパイプ12の戻り側端部には、各ヒートパイ
プ12毎に圧力制御弁・24が装備されており、この圧
力制御弁24の出口側が集1合器としてのヘッダ26に
共通接続されている。ヒートバイブ12の圧力制御弁2
4側には、各ヒートパイプ12毎に圧力検出器27及び
室内温度(又は湿度)検出器28が設けられている。圧
力検出器27及び/又は室内温度(又は湿度)検出器2
8の検出信号を制御器29に入れ、前記圧力制御j「2
4の開度を制御することにより、ヒートパイプ12毎に
独立して容器18内を任意の圧力とすることができるよ
うになっている。
Each heat pipe 12 is equipped with a pressure control valve 24 at the return end of the heat pipe 12, and the outlet side of the pressure control valve 24 is commonly connected to a header 26 as a collector. There is. Pressure control valve 2 of heat vibrator 12
On the 4th side, a pressure detector 27 and an indoor temperature (or humidity) detector 28 are provided for each heat pipe 12. Pressure detector 27 and/or indoor temperature (or humidity) detector 2
The detection signal of 8 is input to the controller 29, and the pressure control j "2
By controlling the opening degrees of the heat pipes 4, it is possible to independently set the pressure inside the container 18 to a desired value for each heat pipe 12.

前記ヘッダ26へは、環流管28を介して凝縮器30が
接続されている。この凝縮器30は多数の放熱フィン3
2をセ11えた本体34と、この本体34に冷風を送る
ファン36とからなり、このファン36がモータ38で
回転駆動されるようになっている。
A condenser 30 is connected to the header 26 via a reflux pipe 28. This condenser 30 has a large number of radiation fins 3.
It consists of a main body 34 which has two sides 11, and a fan 36 that sends cold air to the main body 34, and this fan 36 is rotationally driven by a motor 38.

凝縮器30の出口側は環流管40を介して再び前記受液
器10の底面近くに接続されており、これにより、受液
器lO、ヒートパイプ12、類1iiJ器30が閉ルー
プを構成する。前記受液器lOは、図示しない密閉型の
注入口からリークした冷奴の補充を簡単に行なえるよう
になっている。
The outlet side of the condenser 30 is connected again to the bottom surface of the liquid receiver 10 via the reflux pipe 40, so that the liquid receiver IO, the heat pipe 12, and the class 1iiJ device 30 form a closed loop. The liquid receiver 1O is designed so that it can be easily replenished with cold tofu that has leaked from a closed type inlet (not shown).

なお、環流管28の途中には配管42、真空ヘッダ44
を介して真空ポンプ46が接続され、この作動により、
環流管28内の真空度を所定値に保持できるようになっ
ている。配管42の途中には電磁弁48が介在し、装置
系内の気密が保持できるようになっている。この真空ポ
ンプ46は加熱部14イ1近へ接続してもよい。
Note that there is a pipe 42 and a vacuum header 44 in the middle of the circulation pipe 28.
A vacuum pump 46 is connected via the
The degree of vacuum within the reflux tube 28 can be maintained at a predetermined value. A solenoid valve 48 is interposed in the middle of the piping 42 to maintain airtightness within the device system. This vacuum pump 46 may be connected near the heating section 14-1.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

1 まず・ュータ38を回転さ1フアy 36 ′:よ
1 First, turn on the computer 38.

: て冷風を凝縮器30の本体34に送風し、am器、
1 30を冷却動作状態とする。凝縮器30内、環流管
28内、及びヘッダ26内が負圧となり、同時に凝縮し
た冷媒が受液器lOに戻る。次に前記圧力制御弁24を
調節し、ヒートパイプ12毎に各容器18内の圧力を適
当な任意の一定圧力に保持する。
: Blows cold air to the main body 34 of the condenser 30,
1 30 is in the cooling operation state. The inside of the condenser 30, the reflux pipe 28, and the header 26 become negative pressure, and at the same time, the condensed refrigerant returns to the liquid receiver IO. The pressure control valve 24 is then adjusted to maintain the pressure within each vessel 18 for each heat pipe 12 at any suitable constant pressure.

各ヒートパイプ12では、受液器10内でオーバーフロ
ーした液状冷媒が重力により傾斜部12Aを流下し加熱
部14へ至る。加熱部14に来た液状の冷媒は、外部の
被冷房対象から加熱されると、容器18内圧力と冷媒の
種類で定まる温度で蒸発する。ここで容器18内の圧力
は予め被冷房対象の温度などを考慮して冷媒が蒸発可能
でかつ伝熱効率が最適となる値に前記圧力制御弁24の
調節で設定される。冷媒は蒸発する際、外部から大量の
気化熱を吸収して被冷房対象の冷房を行なう、容器18
内にはリブ22が設けられており、冷媒表面積が大きく
、気化し易くなっているので吸収熱量が大きい。
In each heat pipe 12, the liquid refrigerant that overflows in the liquid receiver 10 flows down the inclined portion 12A due to gravity and reaches the heating portion 14. When the liquid refrigerant that has arrived at the heating unit 14 is heated by an external object to be cooled, it evaporates at a temperature determined by the pressure inside the container 18 and the type of refrigerant. Here, the pressure inside the container 18 is set in advance by adjusting the pressure control valve 24 to a value that allows the refrigerant to evaporate and optimizes heat transfer efficiency, taking into consideration the temperature of the object to be cooled. When the refrigerant evaporates, it absorbs a large amount of heat of vaporization from the outside and cools the object to be cooled.
Ribs 22 are provided inside, and the surface area of the refrigerant is large, making it easy to vaporize, so the amount of heat absorbed is large.

加熱部14で蒸気となった冷媒ガスは、矢印Aで示す方
向に流れヒートパイプ12の戻り部から圧力制御弁24
を経てヘッダ26に入る。このヘッダ26で各ヒートパ
イプ12から送られる冷媒ガスが集合されたのち、更に
、還流管28を介しする。放出された熱は放熱フィン3
2から大虱中に排気される。
The refrigerant gas that has become vapor in the heating section 14 flows in the direction shown by arrow A from the return section of the heat pipe 12 to the pressure control valve 24.
The header 26 is then entered. After the refrigerant gas sent from each heat pipe 12 is collected by this header 26, it is further passed through a reflux pipe 28. The released heat is transferred to the radiation fin 3
From 2 onwards, it is exhausted into a large locust.

凝縮後の冷媒は還流管40を通って受液器10へ戻り、
以上の動作がくり返される。
The refrigerant after condensation returns to the liquid receiver 10 through the reflux pipe 40,
The above operations are repeated.

このように本実施例では、ヒートパイプを複数本設け、
各ヒートパイプに個別に圧力制御弁を装備した。したが
って、複数の被冷房対象の環境条件に対応して、適宜簡
単な操作で各ヒートパイプ別に相互に影響を与えること
なく独立して各被冷房対象に所望の冷ツ効果、を効率よ
く施すことができる。
In this way, in this embodiment, a plurality of heat pipes are provided,
Each heat pipe was equipped with an individual pressure control valve. Therefore, in response to the environmental conditions of a plurality of objects to be cooled, it is possible to efficiently apply a desired cooling effect to each object to be cooled independently and without affecting each other for each heat pipe by appropriate and simple operations. I can do it.

なお、上記実施例におけるヒートパイプの本数は、2本
に限らず、3本或いは4本以上fあっ5てもよく、また
圧力制御弁の調節は被冷房対象の環境条件を検出し、圧
力検出器又は温度検出器とのフィードバック制御で自動
的に行なう他、作業者が圧力検出器又は室内温度(又は
湿度)検出器の指示値を見ながら手動で行なってもよい
Note that the number of heat pipes in the above embodiment is not limited to two, but may be three, four or more, and the pressure control valve is adjusted by detecting the environmental conditions of the object to be cooled and by detecting the pressure. This may be done automatically by feedback control with a pressure detector or a temperature sensor, or may be done manually by an operator while observing the indicated value of a pressure detector or room temperature (or humidity) detector.

また、凝縮器30は複数個並列又は直列に配設してもよ
い。この場合は熱負荷に応じて使用する台数を選ぶこと
ができるので、更に精度よく運転制御ができ、かつ省エ
ネルギー化を図ることができる。
Further, a plurality of condensers 30 may be arranged in parallel or in series. In this case, the number of units to be used can be selected depending on the heat load, so operation can be controlled more accurately and energy can be saved.

第3図は冷媒循環用のポンプを、第4図は冷媒循環用の
ファンを用いた場合の実施例を示す構亭図、第5図はヒ
ートパイプを4本用いた場合の実施例を示す構成図、第
6図は本発明の他の実施例を示す空気抜きjrの概略構
成図である。第1図と 、共通する部材には同一符号を
付し、重複する説明は省略する。
Fig. 3 shows an example of a structure in which a pump for refrigerant circulation is used, Fig. 4 shows an example in which a fan is used for refrigerant circulation, and Fig. 5 shows an example in which four heat pipes are used. FIG. 6 is a schematic diagram of an air vent jr showing another embodiment of the present invention. Components common to those in FIG. 1 are given the same reference numerals, and redundant explanations will be omitted.

第3図において、冷媒循環用のポンプ50は還流管40
の途中に設けられている。この場合、凝縮器30を通過
して液状となった冷媒がポンプ5 。
In FIG. 3, the pump 50 for refrigerant circulation is connected to the reflux pipe 40.
It is located in the middle of the. In this case, the refrigerant that has passed through the condenser 30 and has become liquid is sent to the pump 5.

0によって受液器lOに送り込まれる。したがって、ポ
ンプ50による強制的な液体輸送が行なわれることにな
り、高所に受液器lO1低所に加熱 ′部14を設置す
るレイアウトとすることができる。このため、設備の立
体化が可能となり、設置スペースを少なくすることがで
きる。また、受液器lOを出た液状冷媒が、高所から重
力の作用を受け加熱部14に送り込まれるので、加熱部
14に冷媒を安定して供給することができる。
0 into the receiver lO. Therefore, the liquid is forcibly transported by the pump 50, and the layout can be such that the liquid receiver 1O1 is placed at a high place and the heating section 14 is placed at a low place. Therefore, the equipment can be made three-dimensional, and the installation space can be reduced. Moreover, since the liquid refrigerant that has exited the liquid receiver IO is fed into the heating section 14 from a high place under the action of gravity, the refrigerant can be stably supplied to the heating section 14.

なお、ポンプ50で冷媒を強制循環させるので、第1図
の場合よりも長距離に亘る大量の熱搬送が可能となり、
加熱部14と凝縮器30を施設の構造に応じて離すなど
自由なレイアウトをすることができる。また容器18に
は途中に液溜り52を設け、配管54により自然落下で
還流管40・ へ戻してもよい。
In addition, since the refrigerant is forced to circulate with the pump 50, it is possible to transfer a large amount of heat over a longer distance than in the case of FIG.
The heating section 14 and the condenser 30 can be arranged freely depending on the structure of the facility, such as by separating them. Further, a liquid reservoir 52 may be provided in the middle of the container 18, and the liquid may be returned to the reflux pipe 40 by gravity through a pipe 54.

第4図では、冷媒循環用のファン56が還流管28の途
中に設けらている。この場合、ヘッダ26を通過してガ
ス状となった冷媒がファン56によって凝縮器30に送
り込まれる。し剣がって、ファン56による強制的な気
体輸送となるので、第3図に示す液体輸送の場合に比べ
て、更に長距離に亘り熱搬送することが可能となり、ま
た一度冷媒受液器lOに封入した冷媒が外部に漏れるよ
うな事態が発生した場合には、速かに対処することがで
きる。
In FIG. 4, a fan 56 for refrigerant circulation is provided in the middle of the reflux pipe 28. In this case, the refrigerant that has passed through the header 26 and has become gaseous is fed into the condenser 30 by the fan 56 . Therefore, since gas is forcibly transported by the fan 56, heat can be transported over a longer distance than in the case of liquid transport shown in FIG. If a situation occurs in which the refrigerant sealed in IO leaks to the outside, it can be quickly dealt with.

゛第5図において、受液器lOは2個設けられており、
各受液器lOには2木のヒートパイプ12が並列に分岐
して接続され、戻り側端部において合流し圧力制御弁2
4を介してヘッダ26に接続されている。
゛In Fig. 5, two liquid receivers IO are provided,
Two heat pipes 12 are branched in parallel and connected to each liquid receiver lO, and they merge at the return side end to the pressure control valve 2.
4 to the header 26.

ヒートパイプ12については、パイプ状容器18の内壁
に設けられたリブ22を加熱部14部近傍のみに設けて
いる。これは受液器lOを出た液体冷媒は下向きに傾斜
されたヒートパイプ12内を通過するので、特にリブ2
2等の冷媒案内部分による毛細管作用を受けなくとも加
熱部14に至ることができる。したがって第1図のよう
に受液器lOかも加熱部14に至る間のリブ22を省略
し、コスト低減を図ることが可能である。
Regarding the heat pipe 12, ribs 22 provided on the inner wall of the pipe-shaped container 18 are provided only in the vicinity of the heating section 14. This is because the liquid refrigerant leaving the liquid receiver IO passes through the heat pipe 12 which is inclined downward, so especially the rib 2
The refrigerant can reach the heating section 14 without being subjected to capillary action by the refrigerant guide portion such as the second refrigerant guide portion. Therefore, as shown in FIG. 1, it is possible to omit the rib 22 between the liquid receiver 10 and the heating section 14, thereby reducing costs.

凝縮器30は冷風を送るファンの代わりに冷却水を用い
るシェルエンドチューブ式熱交換器としている。凝縮器
30の出口には貯+1958を設け、ポンプ50により
、或いはポンプ50を用いず、自然循環方式により受液
器lOに液状冷媒を送るようにしている。
The condenser 30 is a shell end tube heat exchanger that uses cooling water instead of a fan that sends cold air. A reservoir 1958 is provided at the outlet of the condenser 30, and the liquid refrigerant is sent to the liquid receiver 10 by the pump 50 or by a natural circulation method without using the pump 50.

このポンプ50と受液器lOとの間の還流管40には制
御弁60が介在されており、熱負荷センサ、タイマ等の
信号により作動される制御装置162によって制御され
るようになっている。この制御装置62はポンプ50、
ポンプ−50のバイパス制御弁64辱をも制御できるよ
うにしても□よく、これらによって、草漆器lOへの冷
媒供給量を制御可能である。
A control valve 60 is interposed in the reflux pipe 40 between the pump 50 and the liquid receiver lO, and is controlled by a control device 162 operated by a signal from a heat load sensor, a timer, etc. . This control device 62 includes the pump 50,
The bypass control valve 64 of the pump 50 may also be controlled, and the amount of refrigerant supplied to the grass lacquerware IO can be controlled by these.

なお、前記実施例の伝熱装置において、装置系内に万一
空気が混入し、性能−下を生ずる恐れがある場合の対策
として、第6図に示すように空気抜き弁66を凝縮器3
0の入口付近に設けるとよ: い、或いは凝縮器30内
に設けてもよい、すなわち、空気は比重が冷媒ガスより
低く(例えばフロンの約176 ) 、冷媒ガスの流れ
に従って凝縮器31 0に集ってくるので、凝縮器30
内、又はその入り付近の最も高い位置に空気抜き弁66
を設ける・ ことが望ましい。なお、空気抜き弁′66
の下部に1: 空気溜り68を設けると更に効果的であ
る。空気i 抜きj「66は上記の目的の他に冷媒注入
前に行な□ う真空引き口及び冷媒注入口として利用す
ることもできる。
In the heat transfer device of the above embodiment, as a countermeasure in case air gets mixed into the device system and there is a possibility of deterioration of performance, the air vent valve 66 is connected to the condenser 3 as shown in FIG.
Alternatively, it may be provided in the condenser 30, i.e., air has a specific gravity lower than that of the refrigerant gas (for example, about 176 fluorocarbons) and flows into the condenser 310 according to the flow of the refrigerant gas. Since it collects, the condenser 30
An air vent valve 66 is installed inside or at the highest position near the entrance.
It is desirable to have a In addition, the air vent valve '66
It is even more effective to provide an air pocket 68 at the bottom of 1:. In addition to the above-mentioned purpose, the air vent 66 can also be used as a vacuum port and a refrigerant injection port, which is performed before refrigerant injection.

[発1jJの効果] 以上説明した如く本発明に係る伝熱装置では。[Effect of 1jJ] As explained above, in the heat transfer device according to the present invention.

冷媒を貯蔵した受液器を用いると共にパイプ状容器に傾
斜部を設けて受液器と連通するので、長距離に亘る大量
の°熱搬送が高効率で可能となり、加熱部と凝縮部を施
設の−造に応じて遠く離すなど自由なレイアウト”を行
なうことができ、また圧力制御弁によってパイプ状容器
内圧力を可変とするので常に対象の条件に合った最適な
□伝熱効率を得ることができ、更に、装置を解体するこ
となく画一にリークした冷媒の補充を行なえ□るので高
寿命化を図ることができる。
By using a liquid receiver that stores refrigerant and by providing a sloped part in the pipe-shaped container to communicate with the liquid receiver, it is possible to transfer large amounts of °C heat over long distances with high efficiency, and the heating and condensing parts can be easily It is possible to perform a flexible layout such as separating the pipes far apart according to the structure of the pipe, and since the pressure inside the pipe-shaped container can be varied using a pressure control valve, it is possible to always obtain the optimum heat transfer efficiency that matches the target conditions. Furthermore, since leaked refrigerant can be uniformly replenished without disassembling the device, a longer service life can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る伝熱装置の一実施例を示す構成図
で、第2図はヒートパイプの断面図、第3□−は゛循―
用ポンプを用いた場合の実施例を示す構成図、第4図は
循環用ファンを用いた場合の実□施例を示す構成図、第
5図はヒートパイプを4木用いた場合の実施例、第6図
は本発明の他の実施例を示す空気抜き弁の概略構造図で
ある。 10・・・、冷媒受液器、 12・・やヒートパイプ、 14・・・加熱部、 2 2 ・ ・ ・ リ ブ 、 24・・◆圧力制御弁、 26拳拳・ヘッダ“、 28.40・・・還流管、 30争・・凝縮器、 50・・・ポンプ、 56・・・ファン。 代理人 弁理士 中 島 淳 第5図 2p 第6図
FIG. 1 is a configuration diagram showing an embodiment of the heat transfer device according to the present invention, FIG. 2 is a cross-sectional view of a heat pipe, and 3rd
Fig. 4 is a block diagram showing an example in which a circulation fan is used, and Fig. 5 is an example in which a heat pipe is used in four pieces. , FIG. 6 is a schematic structural diagram of an air vent valve showing another embodiment of the present invention. 10... Refrigerant receiver, 12... Heat pipe, 14... Heating section, 2 2... Rib, 24...◆Pressure control valve, 26 Fist header, 28.40. ...reflux pipe, 30 points...condenser, 50...pump, 56...fan. Agent: Patent Attorney Atsushi Nakajima Figure 5 2p Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)パイプ状容器(18)の一端には作動熱媒体を貯
蔵した受液器(lO)を接続すると共に受・漆器(lO
)から次第に低くされる傾斜部(12A)を介して加熱
部(14)へ至る配置とし、前記パイプ状容器(18)
の受液器(lO)とは反対側には圧力制御弁(24)を
装備し、該圧力制御弁(24)と前記受液器(lO)と
の間には凝縮器(30)を介した状態で環流管(28)
、(40)を以って接続することにより閉ループ回路を
形成したことを特徴とする伝熱装置。
(1) A liquid receiver (lO) storing a working heat medium is connected to one end of the pipe-shaped container (18), and a receiver/lacquerware (lO) is connected to one end.
) to the heating part (14) via a gradually lowered slope part (12A), and the pipe-shaped container (18)
A pressure control valve (24) is provided on the opposite side of the liquid receiver (lO), and a condenser (30) is provided between the pressure control valve (24) and the liquid receiver (lO). With the reflux tube (28)
, (40) to form a closed loop circuit.
JP59068899A 1984-04-06 1984-04-06 Heat transfer device Granted JPS60213793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59068899A JPS60213793A (en) 1984-04-06 1984-04-06 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59068899A JPS60213793A (en) 1984-04-06 1984-04-06 Heat transfer device

Publications (2)

Publication Number Publication Date
JPS60213793A true JPS60213793A (en) 1985-10-26
JPH0120358B2 JPH0120358B2 (en) 1989-04-17

Family

ID=13386960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59068899A Granted JPS60213793A (en) 1984-04-06 1984-04-06 Heat transfer device

Country Status (1)

Country Link
JP (1) JPS60213793A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166472U (en) * 1986-04-07 1987-10-22
JPS63503475A (en) * 1986-06-11 1988-12-15 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ evaporative cooling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101640A (en) * 1972-04-05 1973-12-21
JPS48104139A (en) * 1972-04-13 1973-12-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101640A (en) * 1972-04-05 1973-12-21
JPS48104139A (en) * 1972-04-13 1973-12-27

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166472U (en) * 1986-04-07 1987-10-22
JPS63503475A (en) * 1986-06-11 1988-12-15 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ evaporative cooling device

Also Published As

Publication number Publication date
JPH0120358B2 (en) 1989-04-17

Similar Documents

Publication Publication Date Title
US5845702A (en) Serpentine heat pipe and dehumidification application in air conditioning systems
ES2913924T3 (en) Active/passive cooling system
JP4318567B2 (en) Cooling system
US6745830B2 (en) Heat pipe loop with pump assistance
US3440832A (en) Absorption refrigeration system with booster cooling
KR950003785B1 (en) Air conditioning system
US20070209782A1 (en) System and method for cooling a server-based data center with sub-ambient cooling
US12127380B2 (en) Active/passive cooling system
EP3607252B1 (en) Chiller system with an economizer module and method of operating such a system
EP1796447A2 (en) System and method for electronic chassis and rack mounted electronics with an integrated subambient cooling system
US4538423A (en) Cooling apparatus and cooling trap including such an apparatus
US4230173A (en) Closely coupled two phase heat exchanger
JPS60213793A (en) Heat transfer device
US5027616A (en) Air-cooled absorption type cooling and heating apparatus
US10767891B2 (en) Auxiliary heat exchanger
NO149789B (en) HEAT PUMP
JPH05118700A (en) Heat pump type air-conditioner
CN110274330A (en) A kind of solar energy economical air conditioner
JPH0440635B2 (en)
JPS58160774A (en) Hot-water supply device
JPH0755373A (en) Heat exchanging and transporting system
JPS62272042A (en) Heat pump type air conditioning equipments
KR20240037274A (en) Active/passive cooling system
KR0115194Y1 (en) Condensing apparatus for absorption type airconditioner
KR20240141743A (en) Active/passive cooling system using pumped refrigerant