JPS60213725A - Air-fuel ratio detecting device - Google Patents

Air-fuel ratio detecting device

Info

Publication number
JPS60213725A
JPS60213725A JP59070143A JP7014384A JPS60213725A JP S60213725 A JPS60213725 A JP S60213725A JP 59070143 A JP59070143 A JP 59070143A JP 7014384 A JP7014384 A JP 7014384A JP S60213725 A JPS60213725 A JP S60213725A
Authority
JP
Japan
Prior art keywords
air
power spectrum
fuel ratio
combustion
photoelectric sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59070143A
Other languages
Japanese (ja)
Other versions
JPH0331969B2 (en
Inventor
Satoshi Imamura
聡 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP59070143A priority Critical patent/JPS60213725A/en
Publication of JPS60213725A publication Critical patent/JPS60213725A/en
Publication of JPH0331969B2 publication Critical patent/JPH0331969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/08Flame sensors detecting flame flicker

Abstract

PURPOSE:To enable easy detection of air fuel ratio, by detecting a value of a ratio between the power spectrum of a band-pass filter within the frequency range of primary natural vibration and the power spectrum of a full frequency range. CONSTITUTION:A titled device comprises a photoelectric sensor 11, which outputs an electric signal responding to a change in a light volume of flame, a first power spectrum detecting means 13 which detects a power spectrum of a part or all of the frequency band width of an output signal from the photoelectric sensor 11, and a second power spectrum detecting means 14 which detects the power spectrum, within the frequency band width of the output signal of the photoelectric sensor 11, of a component having a frequency within the frequency band of natural vibration of a combustion device. This causes a dividing circuit 20 to divide the output values of an integrating circuit 16 and an integrating circuit 19. A relation between the value and an air-fuel ratio A/F of flame enables detection of the air-fuel ratio A/F.

Description

【発明の詳細な説明】 本発明は、燃焼装置に用いる空燃比検出装置に関する。[Detailed description of the invention] The present invention relates to an air-fuel ratio detection device used in a combustion device.

ボイラの燃焼の運転効率の向上や自動車の排ガス規制に
対応して、燃焼の空燃比を制御するという要求がある。
There is a demand for controlling the air-fuel ratio of combustion in order to improve the operating efficiency of boiler combustion and to comply with automobile exhaust gas regulations.

この要求に対して、従来は、燃焼状態における燃料過剰
から空気過剰への酸素量の変化に着目し、ジルコニア酸
素濃度計等の酸素濃度計によりこの酸素量を検出するこ
とで、空燃比を検知するという方法が一般的にとられて
いる。
In response to this demand, conventional methods have focused on the change in oxygen amount from excess fuel to excess air in the combustion state, and detected this oxygen amount with an oxygen concentration meter such as a zirconia oxygen concentration meter to detect the air-fuel ratio. The commonly used method is to do so.

しかしながらこの方法は、燃焼という過酷な使用雰囲気
中にセンサ素子をそう入させることから、センサ素子の
故障の発生も多く、寿命も短いものであった。また、セ
ンサ素子として特殊な材料を使用するため、価格面でも
高くなり、一般的なものとはいえないものであった。更
に応答性も十分なものではなかった。
However, since this method requires the sensor element to be placed in a harsh atmosphere of combustion, the sensor element frequently fails and has a short lifespan. Furthermore, since a special material is used for the sensor element, it is expensive and cannot be said to be of general use. Furthermore, the responsiveness was not sufficient.

本発明は、このような事情に鑑みてなされたものであり
、火炎の振動燃焼と空燃比との間に一定の関係があるこ
とを見出し、この関係を用いて空燃比を確実に検出でき
るようにした空燃比検出装置を提供するものである。
The present invention was made in view of the above circumstances, and it has been discovered that there is a certain relationship between the oscillatory combustion of flame and the air-fuel ratio, and it is an object of the present invention to make it possible to reliably detect the air-fuel ratio using this relationship. The present invention provides an air-fuel ratio detection device that has the following features.

火炎の燃焼は、火炎がいわゆる正常燃焼の状態であって
も、局所的にみてみるならば、圧力、速度などの変動を
ともなった乱流状態にあり、たえず発熱速度が時間的に
変動しているという特性を有している。一方、燃焼装置
は燃焼室をはじめ燃料や空気、或は燃焼ガスの流路など
必ず有限の空間を形成し、それら゛が個別的及び全体と
して一つの音響学的振動やヘルムホルツ振動といった振
動系を構成しており、無数の固有振動のモードをもって
いるものである。火炎の正常燃焼′め状態では、たとえ
発熱速度の変動があるにしても、これらの固有振動とは
無関係に燃焼が行われている。ところが、ある特定の条
件のもとでは、燃焼反応の何らかの過程が固有振動と結
びつき共鳴することによって、きわめて明確な周期性を
もった自動振動が発生する。これが振動燃焼であり、古
くから知られている現象である。この振動燃焼は一度振
動を発生すると音エネルギーとなって騒音を1発生する
ばかりでなく、ときKは燃焼装置の機械的或は熱的破壊
をもたらすこともあることから、近年、発生のメカニズ
ムなどについて多くの研究がなされているものである。
Even if the flame is in a so-called normal combustion state, when viewed locally, the combustion of a flame is in a turbulent state with fluctuations in pressure, speed, etc., and the heat generation rate constantly fluctuates over time. It has the characteristic of being On the other hand, a combustion device necessarily forms a finite space such as a combustion chamber and a flow path for fuel, air, or combustion gas, and these spaces individually and as a whole generate a vibration system such as acoustic vibration or Helmholtz vibration. It has countless natural vibration modes. When the flame is in a state of normal combustion, even if there are fluctuations in the rate of heat generation, combustion occurs regardless of these natural vibrations. However, under certain specific conditions, some process in the combustion reaction connects with the natural vibration and resonates, resulting in automatic oscillations with extremely clear periodicity. This is oscillatory combustion, a phenomenon that has been known for a long time. Once this vibration combustion generates vibrations, it becomes sound energy and not only generates noise, but also causes mechanical or thermal damage to the combustion equipment. Many studies have been conducted on this topic.

振動燃焼は、その発生のメカニズムから、ヘルムホルツ
振動と音響学的共鳴振動とに大きく分けられている。ヘ
ルムホルツ振動は、閉じた容器にその大きさに比べて小
さな孔がおいている場合に発生する気体の固有振動であ
り、周波数が低い点と燃料供給系も振動する点にその特
徴がある。一方、音響学的共鳴振動は、燃焼室の有する
音響学的固有振動に起因する振動であって、この音響学
的固有振動のいずれか一つのモードが燃焼忙よる発熱速
度の変動と共鳴して発生する固有振動であり、周波数が
高い点にその特徴がある。
Vibratory combustion is broadly classified into Helmholtz vibration and acoustic resonance vibration based on the mechanism of its occurrence. Helmholtz vibration is a natural vibration of gas that occurs when a closed container has holes that are small compared to the size of the container, and its characteristics are that the frequency is low and that the fuel supply system also vibrates. On the other hand, acoustic resonance vibrations are vibrations caused by acoustic natural vibrations of the combustion chamber, and any one mode of these acoustic natural vibrations resonates with fluctuations in heat generation rate due to combustion activity. It is a natural vibration that occurs, and its characteristic is that it has a high frequency.

振動燃焼の研究によれば、振動燃焼は常に発生するもの
ではなく、装置の作動条件がある範囲内に入ったときに
発生するものであるということがいわれている。これら
の研究結果を検討すべく、本発明者は空燃比と振動燃焼
の発生について基礎実験を行い調査したところ、空燃比
が理想の燃焼状態である1の値から大きくはずれたエア
ーリッチあるいは燃料リッチの状態において、この振動
燃焼が明確に発生すると、とを認めたものである。
Research on oscillatory combustion has shown that oscillatory combustion does not always occur, but occurs when the operating conditions of the device fall within a certain range. In order to examine these research results, the present inventor conducted basic experiments and investigated the air-fuel ratio and the occurrence of oscillatory combustion, and found that if the air-fuel ratio deviates significantly from the ideal combustion state, which is 1, the air-rich or fuel-rich It is recognized that this oscillatory combustion clearly occurs under these conditions.

本発明は、この空燃比の変化によって発生する振動燃焼
の現象を使い、従来とは全く異なる空燃比検出装置を開
示するものである。すなわち本発明は、エアーリッチあ
るいは燃料リッチの状態において発生する振動燃焼によ
り生ずる火炎の光信号の自励振動の周波数成分を使うこ
とで、空燃比検出装置を構成するものである。
The present invention uses the phenomenon of oscillatory combustion that occurs due to changes in the air-fuel ratio to disclose an air-fuel ratio detection device that is completely different from conventional ones. That is, the present invention constitutes an air-fuel ratio detection device by using the frequency component of self-excited vibration of a flame optical signal generated by oscillatory combustion that occurs in an air-rich or fuel-rich state.

次k、本発明者が行った基礎実験のデータ結果に基づい
て本発明の詳細な説明する。第1図に基礎実験のブロッ
ク構成図を示す。燃焼室1で燃焼している火炎2はレン
ズ3を介して光電センサ4上に結像され、電気信号に変
換される。この光電気信号はアンプ5により増巾された
のち、スペクトルアナライザ6により周波数分析が行わ
れ、結果はレコーダ7にデータアウトされる。空燃比は
、バーナー傍忙供給される空気量を変化させることで、
変えることができる。なお、この実験において燃料は都
市ガスを用い、その圧力はガス圧力制御弁8によって一
定値に制御された。第2図(a)〜(f)にレコーダに
よりデータアウトされたこの実験のデータ結果の一例を
示す。横軸は火炎の光信号の周波数であり、縦軸はこの
光信号の振巾のlog値に対応するものである。A/F
は空燃比を示し、第2図(a)はA/F= 0.68、
第2図(b)はA/F=0.83、第2図(C)はA/
F = 0.94、第2図(d)はA/F=1.07、
第2図(e)はA/F=1−26、第2図(f)はA/
F=1.42、のデータである。
Next, the present invention will be explained in detail based on the data results of basic experiments conducted by the present inventor. Figure 1 shows a block diagram of the basic experiment. Flame 2 burning in combustion chamber 1 is imaged on photoelectric sensor 4 via lens 3 and converted into an electrical signal. After this photoelectric signal is amplified by an amplifier 5, frequency analysis is performed by a spectrum analyzer 6, and the results are data-outed to a recorder 7. The air-fuel ratio can be adjusted by changing the amount of air supplied to the burner.
It can be changed. In this experiment, city gas was used as the fuel, and its pressure was controlled to a constant value by a gas pressure control valve 8. FIGS. 2(a) to 2(f) show an example of the data results of this experiment, data output by a recorder. The horizontal axis is the frequency of the flame optical signal, and the vertical axis corresponds to the log value of the amplitude of this optical signal. A/F
indicates the air-fuel ratio, and Fig. 2 (a) shows A/F = 0.68,
Figure 2 (b) shows A/F=0.83, Figure 2 (C) shows A/F=0.83, and Figure 2 (C) shows A/F=0.83.
F = 0.94, A/F = 1.07 in Fig. 2(d),
Fig. 2(e) shows A/F=1-26, Fig. 2(f) shows A/F=1-26, and Fig. 2(f) shows A/F=1-26.
The data is F=1.42.

このデータ結果から、第2図(a)では、約30 H2
From this data result, in Figure 2 (a), approximately 30 H2
.

約60 H2、約90H2の固有振動が、第2図(f)
では約30 H2の固有振動が発生していることがわか
る。すなわち、空燃比が理想の燃焼状態であるlの値か
らはずれるとき、振動燃焼が発生し固有振動が励起され
ることが明らかとなる。本実験のこの固有振動は周波数
が低いことからヘルムホルツ振動に基づくものと推定さ
れるが、後述する本発明の構成から、励起される固有振
動はへルムホルツ振動に限られることなく音、響学的共
鳴振動であってもよ(、要するに空燃比の変化によって
振動燃焼が発生するという点が、重要な実験結果である
ものである。
The natural vibrations of about 60 H2 and about 90 H2 are shown in Fig. 2 (f).
It can be seen that a natural vibration of approximately 30 H2 is generated. That is, it is clear that when the air-fuel ratio deviates from the value of l that is the ideal combustion state, oscillatory combustion occurs and natural vibrations are excited. Since this natural vibration in this experiment has a low frequency, it is presumed to be based on Helmholtz vibration, but from the configuration of the present invention described later, the excited natural vibration is not limited to Helmholtz vibration, but is It may also be resonance vibration (in short, an important experimental result is that oscillatory combustion occurs due to changes in the air-fuel ratio).

更に第3図には、第2図(a) 、 (f)にみられる
1次の固有振動の周波数領域である3 0 H2のバン
ドパスフィルタのパワースペクトルと、全周波数領域の
パワースペクトルの比の値であるαと、空燃比A/Fと
の関係を図示する。データが縦長の棒で記録されている
のは実験のバラツキを示している。このデータかられか
るように固有振動の領域の周波数成分の割合がA/Fの
値の減少とともに増大していることがわかる。αがA/
p=1.4 近傍で再び大きくなるのは、励起される1
次の固有振動によるものと考えられる。
Furthermore, Figure 3 shows the ratio of the power spectrum of the 30 H2 bandpass filter, which is the frequency domain of the first-order natural vibration seen in Figures 2 (a) and (f), and the power spectrum of the entire frequency domain. The relationship between α, which is the value of α, and the air-fuel ratio A/F is illustrated. The data are recorded as vertical bars indicating the variation in the experiment. As can be seen from this data, the proportion of frequency components in the natural vibration region increases as the A/F value decreases. α is A/
The excited 1 becomes larger again near p=1.4.
This is thought to be due to the following natural vibration.

この第3図から明らかとなるように、αの値を検出すれ
ば、一義的に空燃比を検出することができることになる
のである。第4図にこのαの値をめるための一実施例を
示す。光電センサ11により電気信号に変換された火炎
の元信号はアンプ12で増巾された後、バイパスフィル
タ13で火炎の直流成分光を除去され、ついで固有振動
用バンドパスフィルタ14に入力される。このバンドパ
スフィルタ14の通過周波数帯域は、振動燃焼の発生す
る固有振動の周波数領域に合わせられている。ここで固
有振動は1次に限られることなく、最も発生し易いもの
であればよい。パントノくスフイ′ルタ14の出力は整
流回路15で整流され、積分回路16で直流化された後
、割算回路20に入力する。第3図のデータの例でみる
ならば、この入力値がαの分子となるパワースペクトル
となる。
As is clear from FIG. 3, if the value of α is detected, the air-fuel ratio can be uniquely detected. FIG. 4 shows an embodiment for calculating the value of α. The original signal of the flame converted into an electric signal by the photoelectric sensor 11 is amplified by the amplifier 12, then the direct current component light of the flame is removed by the bypass filter 13, and then input to the bandpass filter 14 for natural vibration. The pass frequency band of this bandpass filter 14 is adjusted to the frequency region of natural vibration where oscillatory combustion occurs. Here, the natural vibration is not limited to the first order, but may be of any type that is most likely to occur. The output of the pantone filter 14 is rectified by a rectifier circuit 15, converted to direct current by an integrator circuit 16, and then input to a divider circuit 20. In the example of the data in FIG. 3, this input value becomes the power spectrum that is the numerator of α.

一方、ノ・イパスフィルタ13の出力は、フィルタ17
にも入力される。このフィルタ17は必ずしも必要なも
のではなく、たとえば第3図の例におけるように、この
フィルタ17を通らない全周波数領域のパワースペクト
ルが次段の整流回路1Bに入力される。要するに空燃比
A/Fと、パワースペクトルの比αに一義的な関係がで
きるようにフィルタ17のフィルタ特性は選択されるも
のである。なおフィルタ17としてノーイパスフィルタ
を用いると、低い周波数成分をカットすることになるの
で、積分回路190時定数を小さくでき、高速“′応答
性を実現できるという利点はある。フィルタ17の出力
は、同様に整流回路18で整流され積分回路19で直流
化された後、割算回路20に入力する。第3図のデータ
の例でみるならば、この入力値がαの分銀となるパワー
スペクトルである。割算回路20は積分回路16と積分
回路19の出力値の除算を行い、その演算結果を出力す
る。
On the other hand, the output of the no-pass filter 13 is
is also entered. This filter 17 is not necessarily necessary; for example, as in the example shown in FIG. 3, the power spectrum in the entire frequency range that does not pass through this filter 17 is input to the next stage rectifier circuit 1B. In short, the filter characteristics of the filter 17 are selected so that there is a unique relationship between the air-fuel ratio A/F and the power spectrum ratio α. Note that when a no-pass filter is used as the filter 17, low frequency components are cut, so there is an advantage that the time constant of the integrating circuit 190 can be made small and high-speed response can be achieved.The output of the filter 17 is Similarly, after being rectified by the rectifier circuit 18 and converted to direct current by the integrating circuit 19, it is input to the divider circuit 20.If we look at the data example in Figure 3, the power spectrum where this input value is the division factor of α The division circuit 20 divides the output values of the integration circuits 16 and 19, and outputs the result of the calculation.

第3図のデータの例でみるならば、この除算の出力値が
αに対応するものであることから、この値から火炎の空
燃比A/Fが検出できることになるのである。また、割
算回路20に代えて、減算回路を用いることもできる。
In the example of the data in FIG. 3, since the output value of this division corresponds to α, the air-fuel ratio A/F of the flame can be detected from this value. Furthermore, instead of the division circuit 20, a subtraction circuit may be used.

一般に、振動燃焼の固有振動は燃焼装置によって異なる
ものである。これから固有振動の周波数に合わせるべく
、固有振動用バンドパスフィルタは周波数可変なもの、
あるいは複数のものから選択可能なものとなるようにす
れば、更に実用的なものとなる。また光電センサも第4
図に示す1個に限られることなく、第5図に示すような
2個の光電センサ21,22と差動アンプ23を組合わ
せたものを適用することも可能である。この差動構成を
用いれば外乱光の影響を受けることなく空燃比を検出す
ることができる。
Generally, the natural vibration of oscillatory combustion differs depending on the combustion device. From now on, in order to match the frequency of the natural vibration, the bandpass filter for natural vibration will be a frequency variable one.
Alternatively, it would be even more practical if it could be selected from a plurality of options. There is also a fourth photoelectric sensor.
The sensor is not limited to the one shown in the figure, but it is also possible to use a combination of two photoelectric sensors 21, 22 and a differential amplifier 23 as shown in FIG. By using this differential configuration, the air-fuel ratio can be detected without being affected by disturbance light.

以上のようにこの発明によれば、非接触で空燃比を検出
できるので、ジルコニア酸素濃度計のような接触形のセ
ンサを用いる場合と比較して安定性が高く、寿命も長い
。また火炎の振動を光学的に検出し・ているので応答性
が速いという効果もある。
As described above, according to the present invention, the air-fuel ratio can be detected in a non-contact manner, resulting in higher stability and longer life than when using a contact type sensor such as a zirconia oxygen concentration meter. Additionally, since the vibrations of the flame are detected optically, the response is fast.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のための基礎実験装置のブロック構成図
、第2図は第1図の装置による実験で得られた光信号の
振巾のlog値とA/Fとの関係を示すグラフ、第3図
はαと空燃比との関係を示すグラフ、第4図は本発明の
一実施例による空燃比検出装置の構成を示すプル2ク図
、第5図は本発明の他の実施例の一部を示すプロラグ図
である。 11・・・光電センサ、12・・・アンプ、13・・・
バイパスフィルタ、14・・・バンドパスフィルタ、1
5・・・整流回路、16・・・積分回路、17・・・フ
ィルタ、18・・・整流回路、19・・・積分回路、2
0・・・割算回路、21.22・・・光電センサ、23
・・・差動アンプ。 OH2f200H2 2回 OH2f200H2 el
Figure 1 is a block configuration diagram of the basic experimental equipment for the present invention, and Figure 2 is a graph showing the relationship between the log value of the amplitude of the optical signal and A/F obtained in experiments using the equipment shown in Figure 1. , FIG. 3 is a graph showing the relationship between α and the air-fuel ratio, FIG. 4 is a pull diagram showing the configuration of an air-fuel ratio detection device according to one embodiment of the present invention, and FIG. 5 is a graph showing another embodiment of the present invention. FIG. 3 is a prolag diagram showing a portion of an example. 11... Photoelectric sensor, 12... Amplifier, 13...
Bypass filter, 14...Band pass filter, 1
5... Rectifier circuit, 16... Integrating circuit, 17... Filter, 18... Rectifying circuit, 19... Integrating circuit, 2
0...Division circuit, 21.22...Photoelectric sensor, 23
...Differential amplifier. OH2f200H2 2 times OH2f200H2 el

Claims (1)

【特許請求の範囲】[Claims] 火炎の光量の変化に対応する電気信号を出力する光電セ
ンサと、この光電センサの出力信号の周波数帯域巾の一
部もしくは全部のパワースペクトルを検出する第1のパ
ワースペクトル検出手段と、上記光電センサの出力信号
の周波数帯域巾のうち、燃焼装置の固有振動の周波数帯
棒内の周波数を有する成分のパワースペクトルを検出す
る第2のパワースペクトル検出手段と、上記第1および
第2のパワースペクトル検出手段の各出力の比または差
を演算する演算手段とを備えた空燃比検出装置。
a photoelectric sensor that outputs an electrical signal corresponding to a change in the amount of light of a flame; a first power spectrum detection means that detects a power spectrum of part or all of the frequency band of the output signal of the photoelectric sensor; and the photoelectric sensor. a second power spectrum detection means for detecting a power spectrum of a component having a frequency within the frequency band of the natural vibration of the combustion device among the frequency band width of the output signal of the output signal; and the first and second power spectrum detection means. An air-fuel ratio detection device comprising calculation means for calculating a ratio or a difference between outputs of the means.
JP59070143A 1984-04-10 1984-04-10 Air-fuel ratio detecting device Granted JPS60213725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070143A JPS60213725A (en) 1984-04-10 1984-04-10 Air-fuel ratio detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070143A JPS60213725A (en) 1984-04-10 1984-04-10 Air-fuel ratio detecting device

Publications (2)

Publication Number Publication Date
JPS60213725A true JPS60213725A (en) 1985-10-26
JPH0331969B2 JPH0331969B2 (en) 1991-05-09

Family

ID=13423052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070143A Granted JPS60213725A (en) 1984-04-10 1984-04-10 Air-fuel ratio detecting device

Country Status (1)

Country Link
JP (1) JPS60213725A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306310A (en) * 1987-06-03 1988-12-14 Toyota Motor Corp Combustion control method and combustion control device using said method
JPH02302520A (en) * 1989-05-17 1990-12-14 Toyota Motor Corp Combustion controller for burner
JPH0468212A (en) * 1990-07-05 1992-03-04 Toyota Motor Corp Burner combustion control device
EP0581451A1 (en) * 1992-07-01 1994-02-02 Toyota Jidosha Kabushiki Kaisha Combustion control method
US8070482B2 (en) * 2007-06-14 2011-12-06 Universidad de Concepción Combustion control system of detection and analysis of gas or fuel oil flames using optical devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144829A (en) * 1976-05-17 1977-12-02 Environmental Data Corp Automatic burner monitoring controller for furnace
JPS5835323A (en) * 1981-08-26 1983-03-02 Ebara Corp Air ratio measuring device for burner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144829A (en) * 1976-05-17 1977-12-02 Environmental Data Corp Automatic burner monitoring controller for furnace
JPS5835323A (en) * 1981-08-26 1983-03-02 Ebara Corp Air ratio measuring device for burner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306310A (en) * 1987-06-03 1988-12-14 Toyota Motor Corp Combustion control method and combustion control device using said method
JPH02302520A (en) * 1989-05-17 1990-12-14 Toyota Motor Corp Combustion controller for burner
JPH0468212A (en) * 1990-07-05 1992-03-04 Toyota Motor Corp Burner combustion control device
EP0581451A1 (en) * 1992-07-01 1994-02-02 Toyota Jidosha Kabushiki Kaisha Combustion control method
US5332386A (en) * 1992-07-01 1994-07-26 Toyota Jidosha Kabushiki Kaisha Combustion control method
US8070482B2 (en) * 2007-06-14 2011-12-06 Universidad de Concepción Combustion control system of detection and analysis of gas or fuel oil flames using optical devices

Also Published As

Publication number Publication date
JPH0331969B2 (en) 1991-05-09

Similar Documents

Publication Publication Date Title
Schindler et al. A photoacoustic sensor system for time resolved quantification of diesel soot emissions
JP2010286487A (en) Optical sensor for controlling combustion
JPH04283644A (en) Method for monitoring emission of nitrogen oxide from internal combustion engine
US20030093246A1 (en) Application of symbol sequence analysis and temporal irreversibility to monitoring and controlling boiler flames
US9989253B2 (en) Combustion instability control method
JP2001355840A (en) Measuring instrument for flame
CN101535794A (en) Photoacoustic gas sensor
JP3852051B2 (en) Combustion diagnostic method and combustion diagnostic apparatus
US20070251221A1 (en) System and method for monitoring a filter
JPS60213725A (en) Air-fuel ratio detecting device
US4644783A (en) Active control of acoustic instability in combustion chambers
WO1993010438A1 (en) Spark-excited fluorescence sensor
US8324905B2 (en) Automatic variable gain amplifier
US4538979A (en) Method of controlling a combustion flame
US10072843B2 (en) Combustion resonance suppression
US3123295A (en) Means for analysing combustion products
JP5295742B2 (en) Judging device and judging method
JP5137511B2 (en) Explosion-proof gas sensor
JPH02302520A (en) Combustion controller for burner
KR20130046879A (en) Apparatus for monitoring of combustion instability
JPH0251091B2 (en)
Ratner et al. Phase-resolved no planar laser-induced fluorescence of a jet flame in an acoustic chamber with excitation at frequencies< 60 Hz
JP2005274108A (en) System and method of analyzing combustion condition
JPS6151138B2 (en)
Tran Influence of inlet acoustic boundary condition on large amplitude combustion instabilities: design of a robust impedance control system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term