JPH0468212A - Burner combustion control device - Google Patents

Burner combustion control device

Info

Publication number
JPH0468212A
JPH0468212A JP17781590A JP17781590A JPH0468212A JP H0468212 A JPH0468212 A JP H0468212A JP 17781590 A JP17781590 A JP 17781590A JP 17781590 A JP17781590 A JP 17781590A JP H0468212 A JPH0468212 A JP H0468212A
Authority
JP
Japan
Prior art keywords
amplifier
burner
integrator
optical sensor
divider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17781590A
Other languages
Japanese (ja)
Other versions
JP2540990B2 (en
Inventor
Kazunari Hosome
細目 一成
Shuji Iida
修司 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2177815A priority Critical patent/JP2540990B2/en
Publication of JPH0468212A publication Critical patent/JPH0468212A/en
Application granted granted Critical
Publication of JP2540990B2 publication Critical patent/JP2540990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To enable a burner combustion control device to be applied to a wide range of combustion facility without having any relation with the kind of fuel or the kind of burner by a method wherein an optical sensor is connected to an amplifier, a capacitor, an amplifier, a flow regulator and an integrator are connected to one line of its output side, and an integrator and a multiplier are connected to the other line, and further a divider, a flow rate adjusting meter and a damper driving device are connected to an output side of these lines. CONSTITUTION:An optical sensor 13 at an extreme end of a furnace 1 monitors a state of a flame 3 being ignited. An amplifier 14 is connected to the optical sensor 13 so as to amplify an output signal of the optical sensor 13. An outside of the amplifier 14 is divided into two branches, wherein a capacitor 15, an amplifier 16, a flow regulator 17 and an integrator 18 are connected to one line, a vibrating power voltage value of a flame 3 is got and then inputted to a divider 19. An integrator 20 and a multiplier 21 are connected to the other line, an absolute optical amount voltage value is got and added to the divider 19. The divider 19 divides the vibration power voltage value from the integrator 18 with an absolute optical amount voltage value got from the multiplier 21. The divider 19 and a flow meter 7 are connected to an air flow meter adjusting meter 22 to receive both output signals, processes them to control a modutrol motor 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ボイラ等の燃焼設備に使用するバーナの燃焼
制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a combustion control device for a burner used in combustion equipment such as a boiler.

(従来の技術) 液体または気体の燃料を燃焼させるバーナにおいては、
燃焼中その燃焼状態を最適に維持することが望ましい、
このための従来技術としては、バーナの火炎が発生する
光強度信号をフォトトランジスタ、フォトダイオードあ
るいは太陽電池等の半導体を使用して電気信号として捉
え、あるいは光センサに代えて火炎中に挿入した電極棒
を用いてイオン電流として捉え、これらの出力fiから
火炎中の振動波形の周波数解析の結果得たパワースペク
トルの積分値を利用して、燃焼制御を行なうものがある
。そしてこのうちの光センサを用いる方法と装置とが、
すでに提案されている(特願昭63−306310号公
報等参照)。
(Prior art) In a burner that burns liquid or gaseous fuel,
It is desirable to maintain the combustion state optimally during combustion.
Conventional techniques for this purpose include capturing the light intensity signal generated by the burner flame as an electrical signal using a semiconductor such as a phototransistor, photodiode, or solar cell, or using an electrode inserted into the flame instead of a light sensor. There is a method in which the ion current is captured using a rod, and combustion control is performed using the integrated value of the power spectrum obtained as a result of frequency analysis of the vibration waveform in the flame from the output fi. Of these, the method and device using the optical sensor are:
This has already been proposed (see Japanese Patent Application No. 63-306310, etc.).

以上従来技術として述べたうちの前者のもの、すなわち
火炎から発生する光を電気信号として捉え、これを電気
回路によって処理する方法では、火炎が発生する光信号
をフォトトランジスタ、フォトダイオード等の半導体に
よる光センサで捉えることになるが、この先センサを設
ける位置としては、従来特別の定めがなく、単に火炎が
監視できるところであればよいと認識されていた。しか
しながら実際にバーナを燃焼させて炉の温度管理を行な
って見ると、光センサの設置位置はきわめて重要な要素
であり、その位置如何によっては、光センサの出力側に
接続する電気回路の精度をどのように上げても、十分な
制御特性が得られないことがあることが判明した。
The former of the conventional techniques described above, that is, a method in which the light generated from a flame is captured as an electrical signal and processed by an electric circuit, is a method in which the light signal generated by the flame is processed by a semiconductor such as a phototransistor or photodiode. This will be detected by an optical sensor, but until now there has been no particular rule regarding the location where the sensor should be installed, and it has been recognized that it is sufficient as long as the flame can be monitored. However, when actually controlling the temperature of the furnace by burning the burner, the installation position of the optical sensor is an extremely important element, and depending on its position, the accuracy of the electric circuit connected to the output side of the optical sensor can be affected. It has been found that no matter how high the temperature is increased, sufficient control characteristics may not be obtained.

そこで光センサの設置位置を一定範囲内に設定すること
によって、光センサの持てる機能を十二分に発揮させれ
ば、これに接続される電気回路の簡略化が図れ、調整も
簡単になるとの見識で発明されたバーナの燃焼制御装置
が既に提案されている(特願平1−312132号)。
Therefore, by setting the installation position of the optical sensor within a certain range and making full use of its functions, the electric circuit connected to it can be simplified and adjustments can be made easier. A burner combustion control device invented based on insight has already been proposed (Japanese Patent Application No. 1-312132).

この出願のものの内容は、バーナの発する火炎を光セン
サにより電気信号として捉え、該光センサの捉えた信号
を電気的に処理して、前記バーナに供給する燃料と空気
の量の制御をするバーナ燃焼装置において、前記光セン
サの設置位置を、その受光範囲内に少なくとも前記火炎
中の拡散炎域の一部が入る位置に設定した構成としたも
のである。
The contents of this application include a burner that captures the flame emitted by a burner as an electrical signal by an optical sensor, electrically processes the signal captured by the optical sensor, and controls the amount of fuel and air supplied to the burner. In the combustion apparatus, the optical sensor is installed at a position where at least a part of the diffusion flame area of the flame falls within the light receiving range of the optical sensor.

上記のように構成すれば、光センサの受光効率が著しく
向上する上に、その出力特性も安定することになるので
、この光センサの後段に接続される電気回路の簡略化も
図れることになる。この装置のものは、乱流燃焼火炎の
揺らぎに起因する放射光の振動信号をフォトダイオード
等の光センサで検出し、電気信号に変換の後、整流積分
した振動パワーが空気比との間に第3図に示すような比
例相関があることを利用したものであり、空気比のフィ
ードバック制御を行なうようにしたものである。しかし
ながら第3図の振動パワー特性は長炎バーナの場合であ
って、燃料と燃焼用空気とをバーナノズルの噴出部で急
激に混合させるような短炎バーナの振動特性ではない。
With the above configuration, the light-receiving efficiency of the optical sensor will be significantly improved, and its output characteristics will also be stable, so the electrical circuit connected to the subsequent stage of the optical sensor can be simplified. . This device detects the vibration signal of synchrotron radiation caused by the fluctuations of a turbulent combustion flame with an optical sensor such as a photodiode, converts it into an electrical signal, and then converts the rectified and integrated vibration power between the air ratio and the air ratio. This method takes advantage of the proportional correlation shown in FIG. 3, and performs feedback control of the air ratio. However, the vibration power characteristics shown in FIG. 3 are for a long-flame burner, and are not the vibration characteristics for a short-flame burner in which fuel and combustion air are rapidly mixed at the ejection part of the burner nozzle.

短炎バーナの振動パワー特性は第4図に示すように空気
比に対して山形の特性となり、1点の振動パワーに対し
て2点の空気比が存在するため、判別が不可能で燃焼制
御が実施できないことになる。なお、第3図はA重油焚
きで蒸発ff15 T/Hの炉筒煙管ボイラの燃焼@ 
24(1476時の測定例である。第4図に示すように
振動パワーが山形の特性となる理由は、アルニウスの反
応速度別による乱流燃焼速度と当量比(空気比の逆数)
の関係で、プロパンガスと空気混合気の場合を第5図に
示す。なお、この第5図は機械工学便覧A6−79より
の引用である。この第5図と都市ガス焚き+2T/H炉
筒煙管ボイラの燃焼1i624i1./H時の場合の振
動パワー特性(第6図)とを比へると、両者の変化パタ
ーンは非常によく似ていることがわかる。振動パワーは
乱流の振動周波数成分の総和であり、乱流の強さを表わ
しているものと考えることができる。
As shown in Figure 4, the vibration power characteristic of a short flame burner has a chevron-shaped characteristic with respect to the air ratio, and since there are two air ratios for one vibration power, it is impossible to distinguish and combustion control is difficult. will not be possible. In addition, Figure 3 shows the combustion of a smoke tube boiler with evaporation ff15 T/H fired by heavy oil A.
24 (This is an example of measurement at 1476. The reason why the vibration power has a chevron-shaped characteristic as shown in Figure 4 is due to the turbulent combustion rate and equivalence ratio (reciprocal of the air ratio) according to Arnius reaction rate.
Figure 5 shows the case of a mixture of propane gas and air. Note that this FIG. 5 is quoted from Mechanical Engineering Handbook A6-79. This Fig. 5 and city gas-fired +2T/H furnace tube smoke tube boiler combustion 1i624i1. Comparing the vibration power characteristics in the case of /H (Fig. 6), it can be seen that the change patterns of the two are very similar. The vibration power is the sum of the vibration frequency components of the turbulent flow, and can be considered to represent the strength of the turbulent flow.

般的に乱流燃焼速度と乱流レイノルズ数は比例関係にあ
り、第6図の空気比=第5図の当量比、第6図のパワー
=第5図の乱流燃焼速度であり、振動パワーが空気比に
対して山形の特性となるのは一般的な傾向である。第3
図に示す振動パワー特性を得た長炎バーナで空気比をさ
らに高くすると第4図と同様の山形特性となることを確
認した。
In general, the turbulent combustion velocity and the turbulent Reynolds number are in a proportional relationship, the air ratio in Figure 6 = the equivalence ratio in Figure 5, the power in Figure 6 = the turbulent combustion velocity in Figure 5, and vibration It is a general tendency for power to have a chevron-shaped characteristic with respect to air ratio. Third
It was confirmed that when the air ratio was further increased using a long-flame burner that obtained the vibration power characteristics shown in the figure, a chevron-shaped characteristic similar to that shown in FIG. 4 was obtained.

(発明が解決しようとする課題) 本発明は、以上説明したような知見にもとすいて成され
たものであり、気体、液体等の燃料の種類や、長炎バー
ナ、短炎バーナ等のバーナの種類に関わりなく、幅広い
燃焼設備に適用することができる、バーナの燃焼制御装
置を得ることを目的とする。
(Problems to be Solved by the Invention) The present invention has been made based on the knowledge explained above, and it is possible to improve the types of fuel such as gas and liquid, and the types of fuels such as long flame burners and short flame burners. The object of the present invention is to obtain a burner combustion control device that can be applied to a wide range of combustion equipment regardless of the type of burner.

(課題を解決するための手段) 本発明は、上記課題を解決するための手段として、第1
図に示すように、バーナ2の発する火炎3を光センサ1
3により電気信号として捉え、この光センサ]3の捉え
た信号を電気的に処理して、前記バーナ2に供給する空
気の量の制御をするバーナ燃焼装置において、前記光セ
ンサ13を増幅器14に接続し、この増幅器14の出力
側を二つの系路に分岐して、一方の系路にはカップリン
グコンデンサ15、増幅器16、整流器17および積分
器18を順次接続し、他方の系路には積分器20と乗算
器21とを順次接続して、これら二つの系路の出力側に
はこれら二つの系路の出力値を除算する除算器19を接
続し、この除算器19の出力側に空気流ffl調節計2
2を接続して、この空気流量HB計22に空気供給系路
中のダンパ駆動装置(モジュトロールモータ10)を接
続した構成としたものである。
(Means for Solving the Problems) The present invention provides a first method for solving the problems described above.
As shown in the figure, the flame 3 emitted by the burner 2 is detected by the optical sensor 1.
In a burner combustion apparatus that controls the amount of air supplied to the burner 2 by electrically processing the signal captured by the optical sensor 3 and controlling the amount of air supplied to the burner 2, the optical sensor 13 is connected to an amplifier 14. The output side of this amplifier 14 is branched into two paths, and a coupling capacitor 15, an amplifier 16, a rectifier 17, and an integrator 18 are sequentially connected to one path, and the other path is connected to An integrator 20 and a multiplier 21 are connected in sequence, and a divider 19 for dividing the output values of these two systems is connected to the output sides of these two systems. Air flow ffl controller 2
2 is connected, and a damper drive device (Modutrol motor 10) in the air supply system is connected to this air flow rate HB meter 22.

(作用) 上記のように構成したことにより、火炎の光振動は光セ
ンサで検出されて電気信号となり、これが増幅5整流、
積分処理されて振動パワー値となる。そしてこの振動パ
ワー値は、この振動パワー値と同時に検出された絶対光
量と数値演算されて制御パラメータとなり、この制御パ
ラメータによってバーナに供給される燃焼用空気が制御
されることになる。
(Function) With the above configuration, the optical vibration of the flame is detected by the optical sensor and becomes an electrical signal, which is amplified and rectified.
Integration processing is performed to obtain a vibration power value. This vibration power value is then numerically calculated with the absolute light amount detected at the same time as this vibration power value to become a control parameter, and the combustion air supplied to the burner is controlled by this control parameter.

(寅施例) 次に、本発明の一実施例を図について説明する。第1図
において1は炉であり、2はその基部に取付けられたバ
ーナ、3はこのバーナ2が発生する火炎である。バーナ
2には燃料供給管4および燃焼用空気供給管5が接続さ
れている。そして燃料供給管4には流量調節弁6および
流量計7が設けられ、燃焼用空気供給管5にはダンパ弁
である流II調節弁8が設けられている。燃料供給管4
には図示しないポンプを介して燃料が送られるようにな
っており、燃焼用空気供給管5には送風機9から燃焼用
の空気が送られるようになっている。lOは流量調節弁
8の開度調節をするモジュトロールモータである。
(Tora Embodiment) Next, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, 1 is a furnace, 2 is a burner attached to its base, and 3 is a flame generated by this burner 2. A fuel supply pipe 4 and a combustion air supply pipe 5 are connected to the burner 2 . The fuel supply pipe 4 is provided with a flow control valve 6 and a flow meter 7, and the combustion air supply pipe 5 is provided with a flow II control valve 8, which is a damper valve. Fuel supply pipe 4
Fuel is fed through a pump (not shown), and combustion air is fed from a blower 9 to the combustion air supply pipe 5. IO is a modutrol motor that adjusts the opening degree of the flow rate control valve 8.

符号11で示すものは温度調節計であり、炉lの側壁に
取付けられた温度計12の出力信号を受け、これをあら
かじめ設定された温度値と比較して出力信号を発するも
のである。この出力信号は流量調節弁6に与えられ、燃
料供給管4内を流れる燃atを制御する。炉lの先端近
傍部位にはフォトダイオードあるいはフォトトランジス
タ等からなる光センサ13が取付けられており、燃焼中
の火炎3の状態を監視するようになっている。この先セ
ンサ13には増幅器14が接続され、光センサ13の出
力信号を所定レベルまで振幅増幅するようになっている
Reference numeral 11 designates a temperature controller that receives an output signal from a thermometer 12 attached to the side wall of the furnace 1, compares it with a preset temperature value, and issues an output signal. This output signal is given to the flow control valve 6 to control the amount of fuel flowing through the fuel supply pipe 4. An optical sensor 13 made of a photodiode, a phototransistor, or the like is attached to a portion near the tip of the furnace 1 to monitor the state of the flame 3 during combustion. An amplifier 14 is connected to the sensor 13 in order to amplify the amplitude of the output signal of the optical sensor 13 to a predetermined level.

増幅器14の出力側は二つに分岐されており、方の系路
にはカップリングコンデンサ15.増幅器16、整流器
17および積分器18が順次接続されて、火炎3の振動
パワー電圧値を得るようになっている。この振動パワー
電圧値は次段の除算器19に入力するよう接続されてい
る。増幅器14の出力側の分岐された他の系路には積分
器20と乗算器21が順次接続され、絶対光量電圧値を
得ることになる。
The output side of the amplifier 14 is branched into two, and one path has a coupling capacitor 15. An amplifier 16, a rectifier 17 and an integrator 18 are connected in sequence to obtain the oscillating power voltage value of the flame 3. This vibration power voltage value is connected to be input to a divider 19 at the next stage. An integrator 20 and a multiplier 21 are sequentially connected to another branched path on the output side of the amplifier 14 to obtain an absolute light amount voltage value.

この絶対光量電圧値は除算器19に加えられる。これに
より、除算器19は、積分器18からの出力信号である
振動パワー電圧値を乗算器21からの出力信号である絶
対光itt圧値で除算することになる。
This absolute light amount voltage value is added to the divider 19. As a result, the divider 19 divides the vibration power voltage value, which is the output signal from the integrator 18, by the absolute optical itt pressure value, which is the output signal from the multiplier 21.

除算器19の出力側には空気流量調節計22が接続され
ている。この空気流量調節計22には、除算器19と前
述した流量計7とが接続されて両川力信号を受けるよう
になっており、これを処理してその結果によってモジュ
トロールモータ10の制御をするようになっている。
An air flow rate controller 22 is connected to the output side of the divider 19. A divider 19 and the aforementioned flow meter 7 are connected to this air flow rate controller 22 so as to receive the Ryokawa force signal, process this, and control the Modutrol motor 10 based on the result. It looks like this.

このような構成からなるこの燃焼制御装置の作動を説明
する。光センサ13が検出し、電気信号に変換された火
炎信号は、増幅器14によって所定レベルまで増幅され
る。この増幅後の信号は二つの系路に流れることになる
。一方の系路においては、まずカップリングコンデンサ
15で直流成分がカットされて、交流成分のみが増幅器
16に入力して増幅され、増幅後、整流器17で整流さ
れる。整流された信号は積分器18で積分処理されて振
動パワー電圧値となり、除算器19に入力する。一方、
他の系路においては増幅器14で増幅された直流振動成
分を積分器20で平滑化し、乗算器21で乗算しくこの
芙施例においては積分器20の出力値を3乗した)、除
算器19に出力する。除算器19では積分器18から入
力された振動パワー電圧値を乗算器21から入力された
絶対光jl電圧埴で除算し、空気流量調節計22に出力
する。
The operation of this combustion control device having such a configuration will be explained. The flame signal detected by the optical sensor 13 and converted into an electrical signal is amplified to a predetermined level by the amplifier 14. This amplified signal flows into two paths. In one system, the DC component is first cut off by the coupling capacitor 15, only the AC component is input to the amplifier 16 and amplified, and after the amplification, is rectified by the rectifier 17. The rectified signal is subjected to integration processing by an integrator 18 to obtain a vibration power voltage value, which is input to a divider 19 . on the other hand,
In other systems, the DC vibration component amplified by the amplifier 14 is smoothed by the integrator 20 and multiplied by the multiplier 21 (in this embodiment, the output value of the integrator 20 is raised to the third power), and the divider 19 Output to. The divider 19 divides the vibration power voltage value input from the integrator 18 by the absolute light jl voltage value input from the multiplier 21 and outputs the result to the air flow rate controller 22.

ここで本回路により第4図のパワー値を絶対光量の3乗
で除算した結果を第2図に示す。従来の2次特性が1次
特性に変換され、振動パワーを制御パラメータとして利
用することが可能となる。
Here, FIG. 2 shows the result of dividing the power value in FIG. 4 by the cube of the absolute light amount using this circuit. Conventional secondary characteristics are converted to primary characteristics, making it possible to use vibration power as a control parameter.

なお、各増幅器14.16の増幅倍数、および乗算器2
1の次数は、制御を行なう炉に合せて第2図のように1
次化できる範囲に合せて調整する。空気流量調節計22
では、燃料流量計7より入力される流量信号に対してあ
らかじめ適正な空気比となるように設定された振動パワ
ーテーブル値と除算器19より入力される測定値とを比
較し、その偏差に対してPID?jr算を行ない、その
結果によってモジュトロールモータ31を制御する。こ
れにより、送風機9によりバーナ2に供給される燃焼用
空気を導く燃焼用空気供給管5中に設けられた流量調節
弁8の開度調節(フィードバック制御)が行なわれる。
In addition, the amplification multiple of each amplifier 14 and 16, and the multiplier 2
The order of 1 is 1 as shown in Figure 2, depending on the furnace to be controlled.
Adjust to the extent possible. Air flow controller 22
Now, compare the vibration power table value, which has been set in advance to provide an appropriate air ratio for the flow rate signal input from the fuel flow meter 7, and the measured value input from the divider 19, and calculate the deviation. PID? jr calculation is performed, and the modutrol motor 31 is controlled based on the result. Thereby, the opening degree of the flow control valve 8 provided in the combustion air supply pipe 5 that guides the combustion air supplied to the burner 2 by the blower 9 is adjusted (feedback control).

以上説明した実施例においては信号処理回路としてアナ
ログ回路を用いたが、本発明はこれに限られるものでは
ない。信号処理回路にマイクロコンピュータ等を用いて
ディジタル方式で処理することも可能である。
Although analog circuits are used as signal processing circuits in the embodiments described above, the present invention is not limited to this. It is also possible to perform digital processing using a microcomputer or the like in the signal processing circuit.

(発明の効果) 本発明は以上説明したように、バーナの発する火炎を光
センサにより電気信号として捉え、この先センサの捉え
た信号を電気的に処理して5前記バーナに供給する空気
の量の制御をするバーナ燃焼装置において、前記光セン
サを増幅器に接続し、この増幅器の出力側を二つの系路
に分岐して、一方の系路にはカップリングコンデンサ、
増幅器、整流器および積分器を順次接続し、他方の系路
には積分器と乗算器とを順次接続して、これら二つの系
路の出力側にはこれら二つの系路の出力値を除算する除
算器を接続し、この除算器の出力側に空気流量調節計を
接続して、この空気流量調節計に空気供給系路中のダン
パ駆動装置を接続した構成としたものであるから、気体
、液体等の燃料の種類や、長炎バーナ、短炎バーナ等の
バーナの種類に関わりなく、幅広い燃焼設備に通用する
ことができることになる効果がある。
(Effects of the Invention) As explained above, the present invention captures the flame emitted by the burner as an electrical signal using an optical sensor, and then electrically processes the signal captured by the sensor to control the amount of air supplied to the burner. In the burner combustion device to be controlled, the optical sensor is connected to an amplifier, the output side of this amplifier is branched into two paths, and one path is equipped with a coupling capacitor,
An amplifier, a rectifier, and an integrator are connected in sequence, an integrator and a multiplier are connected in sequence in the other system, and the output values of these two systems are divided on the output side of these two systems. A divider is connected, an air flow controller is connected to the output side of the divider, and a damper drive device in the air supply system is connected to the air flow controller. This has the effect of being applicable to a wide range of combustion equipment, regardless of the type of fuel such as liquid or the type of burner such as a long flame burner or a short flame burner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図ないし第6
図は本発明および従来技術を説明するためのグラフであ
る。 1・−炉 2−バーナ 3−火炎 4・−燃料供給管 5・−燃焼用空気供給管 6.8・−流1i調節弁 7−・流量計 9−送風機 10−・モジュトロールモータ 13−光センサ 14、16−増幅器 15−・カップリングコンデンサ 17−整流器 18、20−積分器 19−除算器 21−乗算器 22−空気流量調節計 ″r!!気上ヒ 第3図 第 図 第 図 第 図 パワー
FIG. 1 is a system diagram of an embodiment of the present invention, and FIGS.
The figure is a graph for explaining the present invention and the prior art. 1 - Furnace 2 - Burner 3 - Flame 4 - Fuel supply pipe 5 - Combustion air supply pipe 6.8 - Flow 1i control valve 7 - Flow meter 9 - Blower 10 - Modutrol motor 13 - Light Sensors 14, 16 - Amplifier 15 - Coupling capacitor 17 - Rectifier 18, 20 - Integrator 19 - Divider 21 - Multiplier 22 - Air flow rate controller "r!! figure power

Claims (1)

【特許請求の範囲】[Claims] (1)バーナの発する火炎を光センサにより電気信号と
して捉え、該光センサの捉えた信号を電気的に処理して
、前記バーナに供給する燃焼用空気の量の制御をするバ
ーナ燃焼装置において、前記光センサを増幅器に接続し
、該増幅器の出力側を二つの系路に分岐して、一方の系
路にはカップリングコンデンサ、増幅器、整流器および
積分器を順次接続し、他方の系路には積分器と乗算器と
を順次接続して、これら二つの系路の出力側にはこれら
二つの系路の出力値を除算する除算器を接続し、該除算
器の出力側に空気流量調節計を接続して、該空気流量調
節計に空気供給系路中のダンパ駆動装置を接続したこと
を特徴とするバーナの燃焼制御装置。
(1) A burner combustion device in which a flame emitted by a burner is captured as an electrical signal by an optical sensor, and the signal captured by the optical sensor is electrically processed to control the amount of combustion air supplied to the burner, The optical sensor is connected to an amplifier, the output side of the amplifier is branched into two paths, a coupling capacitor, an amplifier, a rectifier, and an integrator are sequentially connected to one path, and the other path is connected to a coupling capacitor, an amplifier, a rectifier, and an integrator. connects an integrator and a multiplier in sequence, connects a divider to the output side of these two systems to divide the output values of these two systems, and connects an air flow rate adjustment device to the output side of the divider. 1. A combustion control device for a burner, characterized in that a damper drive device in an air supply system is connected to the air flow rate regulator.
JP2177815A 1990-07-05 1990-07-05 Burner combustion control device Expired - Fee Related JP2540990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2177815A JP2540990B2 (en) 1990-07-05 1990-07-05 Burner combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177815A JP2540990B2 (en) 1990-07-05 1990-07-05 Burner combustion control device

Publications (2)

Publication Number Publication Date
JPH0468212A true JPH0468212A (en) 1992-03-04
JP2540990B2 JP2540990B2 (en) 1996-10-09

Family

ID=16037581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177815A Expired - Fee Related JP2540990B2 (en) 1990-07-05 1990-07-05 Burner combustion control device

Country Status (1)

Country Link
JP (1) JP2540990B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581451A1 (en) * 1992-07-01 1994-02-02 Toyota Jidosha Kabushiki Kaisha Combustion control method
JPH072746U (en) * 1993-06-01 1995-01-17 株式会社神戸製鋼所 Ignition detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101340952B1 (en) * 2011-12-22 2013-12-13 한국생산기술연구원 An air-fuel ratio controller including photodiode sensor and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852439U (en) * 1981-10-01 1983-04-09 石川島播磨重工業株式会社 flame detection device
JPS60213725A (en) * 1984-04-10 1985-10-26 Yamatake Honeywell Co Ltd Air-fuel ratio detecting device
JPS63306310A (en) * 1987-06-03 1988-12-14 Toyota Motor Corp Combustion control method and combustion control device using said method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852439U (en) * 1981-10-01 1983-04-09 石川島播磨重工業株式会社 flame detection device
JPS60213725A (en) * 1984-04-10 1985-10-26 Yamatake Honeywell Co Ltd Air-fuel ratio detecting device
JPS63306310A (en) * 1987-06-03 1988-12-14 Toyota Motor Corp Combustion control method and combustion control device using said method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581451A1 (en) * 1992-07-01 1994-02-02 Toyota Jidosha Kabushiki Kaisha Combustion control method
US5332386A (en) * 1992-07-01 1994-07-26 Toyota Jidosha Kabushiki Kaisha Combustion control method
JPH072746U (en) * 1993-06-01 1995-01-17 株式会社神戸製鋼所 Ignition detection device

Also Published As

Publication number Publication date
JP2540990B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
AU710622B2 (en) Flame ionization control apparatus and method
RU2397408C2 (en) Method and equipment to monitor and control furnace heater torch stability
US7241135B2 (en) Feedback control for modulating gas burner
US4039844A (en) Flame monitoring system
JPH01244214A (en) Method and device for monitoring and controlling air ratio of burner in operation
JPH04335915A (en) Burner flame detecting device
US6700495B2 (en) Flame monitor for an oil- and gas-operated burner
JPH0468212A (en) Burner combustion control device
US20230090905A1 (en) Flame monitoring device for a gas burner appliance and gas burner appliance
JPH02302520A (en) Combustion controller for burner
JPH0826988B2 (en) Combustion control method and combustion control device using the method
JP2550688B2 (en) Burner combustion controller
JP3127668B2 (en) Combustion control method
CN104075325A (en) Intelligent burning flame pre-restoration system and flame detection device
JP6413415B2 (en) Boiler equipment
JPS5913050B2 (en) flow control device
JPH03137420A (en) Combustion control device for burner
JPH03170718A (en) Combustion control device for burner
RU2440536C2 (en) Device to measure intensive flame
JPH03170717A (en) Combustion control device for burner
JPH03294721A (en) Combustion control method for burner
SU566074A1 (en) Method of automatically regulating the combustion process in the furnace of a boiler plant
KR100541745B1 (en) Burner system
JP2540383B2 (en) Combustion control device
JPH06331131A (en) Fuel calorie control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees