JP3852051B2 - Combustion diagnostic method and combustion diagnostic apparatus - Google Patents

Combustion diagnostic method and combustion diagnostic apparatus Download PDF

Info

Publication number
JP3852051B2
JP3852051B2 JP2004034391A JP2004034391A JP3852051B2 JP 3852051 B2 JP3852051 B2 JP 3852051B2 JP 2004034391 A JP2004034391 A JP 2004034391A JP 2004034391 A JP2004034391 A JP 2004034391A JP 3852051 B2 JP3852051 B2 JP 3852051B2
Authority
JP
Japan
Prior art keywords
combustion
self
radical
vibration
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004034391A
Other languages
Japanese (ja)
Other versions
JP2005226893A (en
Inventor
宏行 柏原
剛生 小田
康裕 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2004034391A priority Critical patent/JP3852051B2/en
Publication of JP2005226893A publication Critical patent/JP2005226893A/en
Application granted granted Critical
Publication of JP3852051B2 publication Critical patent/JP3852051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Control Of Combustion (AREA)

Description

本発明は、燃焼診断方法および燃焼診断装置に関する。さらに詳しくは、燃焼器の燃焼状態を簡素な構成により燃焼診断がなし得る燃焼診断方法および燃焼診断装置に関する。   The present invention relates to a combustion diagnostic method and a combustion diagnostic apparatus. More specifically, the present invention relates to a combustion diagnostic method and a combustion diagnostic apparatus that can perform combustion diagnosis with a simple configuration of the combustion state of the combustor.

従来より、例えばガスタービン燃焼器等の燃焼器の燃焼状態を診断する診断システムとして、燃焼器内の火炎発光を分光分析し、その情報から燃焼状態を推定する手法が知られている。   2. Description of the Related Art Conventionally, as a diagnostic system for diagnosing the combustion state of a combustor such as a gas turbine combustor, a method of spectroscopically analyzing flame emission in the combustor and estimating the combustion state from the information is known.

この手法においては、一般に、回折格子やプリズムなどの光学機器を用いて火炎発光を分光分析するものとされる。ところが、これらの光学機器は高価であるとともに、精密機器として取り扱いに特別の配慮が必要とされるため、設定および保守が容易ではないといった問題がある。   In this method, generally, the flame emission is spectroscopically analyzed using an optical instrument such as a diffraction grating or a prism. However, these optical instruments are expensive and require special considerations for handling as precision instruments, so that there is a problem that setting and maintenance are not easy.

また、前述したような光学機器を用いるため、装置の小型化が容易ではなく、これを大きさや重量に制限が課せられることが多く、しかも振動も多い航空機用のガスタービンエンジンやジェットエンジン等に適用する場合には困難を伴うことが多い、といった問題もある。
特開2001−343280号公報 特開2002−350235号公報
In addition, since the optical apparatus as described above is used, it is not easy to reduce the size of the apparatus, and the size and weight of the apparatus are often limited, and the vibration is often applied to an aircraft gas turbine engine, jet engine, etc. There is also a problem that it is often difficult to apply.
JP 2001-343280 A JP 2002-350235 A

本発明はかかる従来技術の課題に鑑みなされたものであって、構造が簡素で耐振動性を有しかつ小型化および取り扱いも容易で、しかも時間的な変動も把握できる燃焼診断方法および燃焼診断装置を提供することを目的としている。   The present invention has been made in view of the problems of the prior art, and has a simple structure, vibration resistance, easy size reduction and handling, and a combustion diagnosis method and combustion diagnosis capable of grasping temporal fluctuations. The object is to provide a device.

本発明の燃焼診断方法は、火炎の自発光に基づいて燃焼診断をなす燃焼診断方法であって、火炎の各自発光に対応させて設けられた各受光手段からの受光信号に基づいて、各自発光のパワースペクトルを検出する手順と、前記パワースペクトルのピーク値が閾値を超えているか否か判定する手順と、前記ピーク値の少なくとも一つが閾値を超えている場合、燃焼振動が発生しているとする手順とを含んでいることを特徴とする。 The combustion diagnosis method of the present invention is a combustion diagnosis method for making a combustion diagnosis based on the self-light emission of a flame, and each self-light emission based on a light reception signal from each light receiving means provided corresponding to each self-light emission of the flame. The procedure for detecting the power spectrum of, the procedure for determining whether or not the peak value of the power spectrum exceeds a threshold value , and if at least one of the peak values exceeds the threshold value, combustion vibration has occurred And the following procedure.

本発明の燃焼診断装置は、火炎の自発光に基づいて燃焼診断をなす燃焼診断装置であって、火炎の各自発光に対応させて設けられた各受光手段と、前記各受光手段からの受光信号に基づいて演算処理をなす演算処理装置と、燃焼データベースとを備え、前記演算処理装置が、前記各受光手段からの受光信号ごとにパワースペクトルを検出する分光分析部と、前記分光分析部からのパワースペクトルの少なくとも一つに基づいて、燃焼振動を判定する振動燃焼判定部とを有し、前記燃焼データベースが、パワースペクトルから燃焼振動を判定するのに必要なデータを有してなることを特徴する。
A combustion diagnostic apparatus according to the present invention is a combustion diagnostic apparatus that performs a combustion diagnosis based on self-light emission of a flame, each light-receiving means provided corresponding to each self-light-emission of a flame, and a light reception signal from each light-receiving means And a combustion database, the arithmetic processing unit detects a power spectrum for each received light signal from each light receiving means, and from the spectral analysis unit A vibration combustion determination unit for determining combustion vibration based on at least one of the power spectrum, and the combustion database includes data necessary for determining combustion vibration from the power spectrum. To do.

ここで、前記各自発光は、例えばOHラジカル、CHラジカルおよびCラジカルとされる。 Wherein said each light emission can be obtained, for example OH radicals, are CH radicals and C 2 radical.

本発明は、前記の如く構成されているので、振動に弱い光学機器を用いることなく、簡易に火炎の分光分析なし得、またその結果に基づいて燃焼診断がなし得るという優れた効果が得られる。そのため、燃焼診断装置の耐振動性の向上が図られるという優れた効果も得られる。   Since the present invention is configured as described above, it is possible to easily perform a flame spectral analysis without using a vibration-sensitive optical device, and to obtain an excellent effect that a combustion diagnosis can be performed based on the result. . Therefore, the excellent effect that the vibration resistance of the combustion diagnostic apparatus is improved is also obtained.

以下、添付図面を参照しながら本発明を実施形態に基づいて説明するが、本発明はかかる実施形態のみに限定されるものではない。   Hereinafter, although the present invention is explained based on an embodiment, referring to an accompanying drawing, the present invention is not limited only to this embodiment.

実施形態1
図1に、本発明の実施形態1に係る燃焼診断方法が適用された燃焼診断装置を模式的に示す。燃焼診断装置1は、例えばガスタービン燃焼器からなる燃焼器Kの火炎発光を受光し、それに応じた信号を出力する光電変換部2と、光電変換部2の出力信号を増幅する増幅器3と、増幅器3により増幅された光電変換部2からの信号に基づいて、燃焼器Kの燃焼状態を診断するための演算を行う演算処理装置4と、演算処理装置4による演算結果を出力する出力装置5と、演算処理装置4が燃焼器Kの燃焼状態を診断するに際して参照すべきデータを所定の形式で格納してなる燃焼データベース6とを主要構成要素として備えてなるものとされる。
Embodiment 1
FIG. 1 schematically shows a combustion diagnostic apparatus to which a combustion diagnostic method according to Embodiment 1 of the present invention is applied. The combustion diagnostic apparatus 1 receives, for example, a flame emission of a combustor K composed of a gas turbine combustor and outputs a signal corresponding thereto, an amplifier 3 that amplifies an output signal of the photoelectric conversion unit 2, and Based on the signal from the photoelectric conversion unit 2 amplified by the amplifier 3, the arithmetic processing device 4 that performs a calculation for diagnosing the combustion state of the combustor K, and the output device 5 that outputs a calculation result by the arithmetic processing device 4 And a combustion database 6 in which data to be referred to when the arithmetic processing unit 4 diagnoses the combustion state of the combustor K is stored in a predetermined format as a main component.

光電変換部2は、応答速度が比較的速く、感度波長範囲が互いに異なる複数の光センサ(受光手段)11,12,13を含み、それぞれの光センサ11,12,13に例えば光ファイバ7により燃焼器Kの火炎発光を導光するようにして構成されている。このようにするのは、ガスタービン燃焼器における火炎発光は、一般に、OHラジカル、CラジカルおよびCHラジカルといった3種類の分子が関係した自発光を含み、これらの自発光は連続スペクトルではなくある特定の波長範囲に限定されていることによる。 The photoelectric conversion unit 2 includes a plurality of optical sensors (light receiving means) 11, 12, and 13 having relatively high response speeds and different sensitivity wavelength ranges, and each of the optical sensors 11, 12, and 13 includes, for example, an optical fiber 7. It is configured to guide the flame emission of the combustor K. This is because flame emission in a gas turbine combustor generally includes self-emissions involving three types of molecules, such as OH radicals, C 2 radicals and CH radicals, which are not continuous spectra. This is because it is limited to a specific wavelength range.

ここで、OHラジカルからの主な自発光波長は約260nm(ナノ・メートル)〜315nm(紫外線領域)であり、CHラジカルからの主な自発光波長は約427nm〜432nm(可視光領域(青))であり、Cラジカルからの主な自発光波長は約512nm〜517nm(可視光領域(緑))である。 Here, the main light emission wavelength from the OH radical is about 260 nm (nanometers) to 315 nm (ultraviolet region), and the main light emission wavelength from the CH radical is about 427 nm to 432 nm (visible light region (blue)). ), And the main self-emission wavelength from the C 2 radical is about 512 nm to 517 nm (visible light region (green)).

これに対応して、第1の光センサ(以下、第1光センサという)11は、火炎中のOHラジカルからの主な自発光波長に対応する感度波長範囲を有する素子から構成され、第2の光センサ(以下、第2光センサという)12は、火炎中のCHラジカルからの主な自発光波長に対応する感度波長範囲を有する素子から構成され、第3の光センサ(以下、第3光センサという)13は、火炎中のCラジカルからの主な自発光波長に対応する感度波長範囲を有する素子から構成されるものとされる。 Correspondingly, the first optical sensor (hereinafter referred to as the first optical sensor) 11 is composed of an element having a sensitivity wavelength range corresponding to the main self-emission wavelength from the OH radical in the flame, and the second The optical sensor (hereinafter referred to as the second optical sensor) 12 is composed of an element having a sensitivity wavelength range corresponding to the main self-emission wavelength from the CH radical in the flame, and a third optical sensor (hereinafter referred to as the third optical sensor). (Referred to as an optical sensor) 13 is composed of an element having a sensitivity wavelength range corresponding to the main self-emission wavelength from the C 2 radical in the flame.

ここで、第1光センサ11としては、例えば炭化珪素(SiC)・フォトダイオード(感度波長範囲:200−390nm)が用いられる。第2光センサ12としては、前記領域に感度波長範囲が調整された例えばSiフォトダイオード(例えば浜松ホトニクス社製S6428−01(商品名)( 感度波長範囲:400−540nm))が用いられる。第3光センサ13としては、前記領域に感度波長範囲が調整された例えばSiフォトダイオード(例えば浜松ホトニクス社製S6429−01(商品名)( 感度波長範囲:480−600nm))が用いられる。   Here, as the first optical sensor 11, for example, a silicon carbide (SiC) photodiode (sensitivity wavelength range: 200 to 390 nm) is used. As the second optical sensor 12, for example, a Si photodiode (for example, S6428-01 (trade name) manufactured by Hamamatsu Photonics (sensitivity wavelength range: 400-540 nm)) having a sensitivity wavelength range adjusted in the above-described region is used. As the third optical sensor 13, for example, a Si photodiode (for example, S6429-01 (trade name) manufactured by Hamamatsu Photonics (sensitivity wavelength range: 480-600 nm)) having a sensitivity wavelength range adjusted in the above-described region is used.

図2に、一般的な紫外線センサの分光感度特性を参考のために示す。同図において、実線L1は、ダイアモンド受光素子の分光感度特性を示す。実線L2は、炭化珪素受光素子の分光感度特性を示す。実線L3は、窒化ガリウム受光素子の分光感度特性を示す。実線L4は、可視光波長抑制フィルタ付きリン化ガリウム受光素子の分光感度特性を示す。   FIG. 2 shows the spectral sensitivity characteristics of a general ultraviolet sensor for reference. In the figure, a solid line L1 indicates the spectral sensitivity characteristic of the diamond light receiving element. A solid line L2 indicates the spectral sensitivity characteristic of the silicon carbide light receiving element. A solid line L3 indicates the spectral sensitivity characteristic of the gallium nitride light receiving element. A solid line L4 indicates the spectral sensitivity characteristic of the gallium phosphide light receiving element with a visible light wavelength suppression filter.

増幅器3は、光電変換部2の各光センサ11,12,13の出力信号を必要十分なレベルまで増幅するものとされる。   The amplifier 3 amplifies the output signals of the optical sensors 11, 12 and 13 of the photoelectric conversion unit 2 to a necessary and sufficient level.

図3に演算処理装置の詳細を示す。   FIG. 3 shows details of the arithmetic processing unit.

演算処理装置4は、図示しないCPUおよびメモリを含むコンピュータとされ、後述する処理に対応するプログラムをCPUに実行させることにより、増幅器3により増幅された光電変換部2の光センサ11,12,13の出力に基づいて燃焼器Kの火炎発光を各センサ11,12,13ごとに分析し、つまり簡易に分光分析し、これにより前記火炎発光のスペクトル(発光強度)を各センサ11,12,13ごとに検出する簡易分光分析部21と、簡易分光分析部21の分析結果を燃焼データベース6と照合して燃焼器Kの空燃比を検出する空燃比検出部22と、空燃比検出部22による検出結果を燃焼データベース6と照合して、燃焼器Kにおける異常の有無を判断し、その判断結果を示す情報を出力装置5に出力する判断部23とを含むものとされる。   The arithmetic processing unit 4 is a computer including a CPU and a memory (not shown), and causes the CPU to execute a program corresponding to processing to be described later, whereby the optical sensors 11, 12, 13 of the photoelectric conversion unit 2 amplified by the amplifier 3 are used. The flame emission of the combustor K is analyzed for each of the sensors 11, 12, and 13 based on the output of the sensor 11, that is, simply spectrally analyzed, whereby the flame emission spectrum (emission intensity) is analyzed for each sensor 11, 12, 13. A simple spectroscopic analysis unit 21 that detects each time, an air-fuel ratio detection unit 22 that detects the air-fuel ratio of the combustor K by comparing the analysis result of the simple spectroscopic analysis unit 21 with the combustion database 6, and detection by the air-fuel ratio detection unit 22 A determination unit 23 that compares the result with the combustion database 6 to determine whether there is an abnormality in the combustor K and outputs information indicating the determination result to the output device 5; It is as.

以下、分光分析部21が、増幅器3により増幅された光電変換部2からの信号に基づき燃焼器Kの火炎発光を簡易的に分光分析する手法を説明する。   Hereinafter, a method in which the spectral analysis unit 21 simply spectrally analyzes the flame emission of the combustor K based on the signal from the photoelectric conversion unit 2 amplified by the amplifier 3 will be described.

分光分析部21は、光電変換部2の各光センサ11,12,13の出力(発光強度(DC成分))を用いて下記手順により前記各ラジカルの自発光強度を求める。   The spectroscopic analysis unit 21 obtains the self-emission intensity of each radical according to the following procedure using the outputs (emission intensity (DC component)) of the optical sensors 11, 12, and 13 of the photoelectric conversion unit 2.

例えば、前述のように第2光センサ12および第3光センサ13として感度波長範囲が480nm〜540nmで重複するものを選択したとする。このとき、CHラジカルの自発光(427nm〜432nm)については第2光センサ12だけが波長感度を有しているので、第2光センサ12のみが光を検出している場合、その出力値はCHラジカルの自発光強度を示すものとなる。   For example, as described above, it is assumed that the second optical sensor 12 and the third optical sensor 13 are selected with overlapping sensitivity wavelength ranges of 480 nm to 540 nm. At this time, since only the second photosensor 12 has wavelength sensitivity with respect to CH radical self-emission (427 nm to 432 nm), when only the second photosensor 12 detects light, its output value is It shows the self-emission intensity of the CH radical.

一方、Cラジカルからの自発光(512nm〜517nm)については両方のセンサ12,13が波長感度を有しているため、それらの出力値を用いてCラジカルの自発光強度が求められる。 Meanwhile, since both the sensors 12 and 13 has a wavelength sensitivity for self-emission from the C 2 radical (512nm~517nm), self-luminous intensity of C 2 radicals using those output values are determined.

また、CHラジカルとCラジカルの両方に自発光がある場合は、第2光センサ12の出力値は前記2つの自発光によるものを合計した値となる。したがって、第2光センサ12の出力値から第3光センサ13の出力値(Cラジカルによるもの)を減算することによって、CHラジカルの自発光強度を求めることができる。 Further, when both CH radicals and C 2 radicals are self-luminous, the output value of the second photosensor 12 is the sum of the two self-luminous emission values. Therefore, by the output value of the second optical sensor 12 output value from the third optical sensor 13 (C 2 by the radical) is subtracted, it is possible to obtain a self-emission intensity of the CH radical.

なお、OHラジカルの自発光強度は、光センサ11の出力値を用いて求められる。   In addition, the self-luminous intensity of the OH radical is obtained using the output value of the optical sensor 11.

次に、空燃比検出部22が、分光分析部21により求められた前記各ラジカルの自発光強度に基づき燃焼器Kの空燃比を検出する手法を説明する。   Next, a method in which the air-fuel ratio detection unit 22 detects the air-fuel ratio of the combustor K based on the self-luminous intensity of each radical obtained by the spectroscopic analysis unit 21 will be described.

図4に示すように、燃焼器Kの空燃比と、OHラジカル、CHラジカルおよびCラジカルの自発光強度(図中に、それぞれOH、CH、C2と示している)の比との間には一定の関係がある。燃焼データベース6は、図4に示されるような空燃比と各ラジカルの自発光強度の比との関係を表形式、あるいは関数として格納しており、空燃比検出部22は、分光分析部21の分析結果をそのような燃焼データベース6と照合することによって燃焼器Kの空燃比を検出する。 As shown in FIG. 4, between the air-fuel ratio of the combustor K and the ratio of the self-luminous intensity of OH radicals, CH radicals, and C 2 radicals (shown as OH, CH, and C2, respectively). Have a certain relationship. The combustion database 6 stores the relationship between the air-fuel ratio and the ratio of the self-luminous intensity of each radical as shown in FIG. 4 as a table or as a function. The air-fuel ratio of the combustor K is detected by comparing the analysis result with such a combustion database 6.

また、燃焼データベース6に、空燃比と各ラジカルの自発光強度の比との関係ではなく、空燃比と各光センサ11,12,13の出力(発光強度(DC成分))との関係についての情報を格納するようにしてもよい。この場合には、各光センサ11,12,13の出力(発光強度(DC成分))が、増幅器3を介して直接に空燃比検出部22に入力され、燃焼器Kの空燃比が検出される。しかしながら、この場合にも、図4により示した空燃比と各ラジカルの自発光強度の比との関係を用いて燃焼器Kの空燃比が検出されることに変わりはない。   Further, in the combustion database 6, not the relationship between the air-fuel ratio and the ratio of the self-luminous intensity of each radical, but the relationship between the air-fuel ratio and the output of each optical sensor 11, 12, 13 (luminescence intensity (DC component)). Information may be stored. In this case, the output (light emission intensity (DC component)) of each optical sensor 11, 12, 13 is directly input to the air-fuel ratio detection unit 22 via the amplifier 3, and the air-fuel ratio of the combustor K is detected. The However, in this case as well, the air-fuel ratio of the combustor K is still detected using the relationship between the air-fuel ratio shown in FIG. 4 and the ratio of the self-luminous intensity of each radical.

判断部23は、ガスタービンの制御装置(不図示である)から入力されるガスタービンの運転状態(回転数、負荷等)を示す運転状態信号を参照して、その運転状態に対応する目標空燃比を燃焼データベース6から検索し、前記検出された空燃比と前記目標空燃比とを比較することによって、燃焼器Kにおける異常の有無(異常の例:スワーラのスワールに破損が生じ、その部分の空気流量が多くなっている;燃料ノズルに詰まりが生じ、燃料流量が少なくなっている)を判断し、その判断結果を示す情報を出力装置5に出力する。すなわち、実施形態1においては、燃焼データベース6は、ガスタービンの運転状態と目標空燃比との対応関係についての情報を含むものとされる。   The determination unit 23 refers to an operation state signal indicating an operation state (rotation speed, load, etc.) of the gas turbine input from a gas turbine control device (not shown), and a target sky corresponding to the operation state. By retrieving the fuel ratio from the combustion database 6 and comparing the detected air-fuel ratio with the target air-fuel ratio, the presence or absence of an abnormality in the combustor K (example of abnormality: the swirl of the swirler is damaged, The air flow rate is increased; the fuel nozzle is clogged and the fuel flow rate is decreased), and information indicating the determination result is output to the output device 5. That is, in the first embodiment, the combustion database 6 includes information about the correspondence relationship between the operating state of the gas turbine and the target air-fuel ratio.

出力装置5は、モニタ、警報器などからなり、判断部23により燃焼器Kに異常があるものと判断されたときに、音、光などを用いて異常の発生を報知するとともに、異常の内容についての情報をモニタにより表示するものとされる。   The output device 5 includes a monitor, an alarm device, and the like. When the determination unit 23 determines that there is an abnormality in the combustor K, the output device 5 notifies the occurrence of the abnormality using sound, light, and the like, and details of the abnormality It is assumed that information about is displayed on a monitor.

しかして、実施形態1の燃焼診断装置1においては、応答速度が比較的速く、波長感度が互いに異なる複数の光センサ11,12,13からなる光電変換部2に燃焼器Kの火炎発光が導光され、それぞれの光センサ11,12,13において前記火炎発光が独自に光電変換され、その出力信号が増幅器3において適切なレベルまで増幅され、前記増幅された信号を用いて分光分析部21により、燃焼器Kの火炎発光が簡易的に分光分析され、その分析結果である前記火炎発光のスペクトル(発光強度(DC成分))に基づいて、空燃比検出部22により燃焼器Kの空燃比が検出され、その検出結果を用いて判断部23により、燃焼器Kにおける異常の有無が判断され、出力装置5によりその判断結果に応じた出力がリアルタイムになされる。   Therefore, in the combustion diagnostic apparatus 1 of the first embodiment, the flame emission of the combustor K is guided to the photoelectric conversion unit 2 including the plurality of optical sensors 11, 12, and 13 having a relatively fast response speed and different wavelength sensitivities. Each of the photosensors 11, 12, and 13 is photoelectrically converted to the flame emission, and its output signal is amplified to an appropriate level by the amplifier 3, and the spectrum analysis unit 21 uses the amplified signal. The flame emission of the combustor K is simply spectrally analyzed, and the air-fuel ratio detection unit 22 determines the air-fuel ratio of the combustor K based on the flame emission spectrum (emission intensity (DC component)) which is the analysis result. The detection unit 23 determines whether or not there is an abnormality in the combustor K using the detection result, and the output device 5 outputs in accordance with the determination result in real time.

したがって、燃焼器Kの空燃比を含む燃焼状態の変動をリアルタイムで検知し、異常の有無を即時に判断することが可能となる。これにより、燃焼器Kに異常が生じた場合にも、その異常に即座に対処することが可能となり、異常による悪影響を最小限に留めることが可能となる。   Therefore, it is possible to detect in real time the fluctuation of the combustion state including the air-fuel ratio of the combustor K, and to immediately determine whether there is an abnormality. As a result, even when an abnormality occurs in the combustor K, it is possible to immediately cope with the abnormality, and it is possible to minimize adverse effects due to the abnormality.

また、回折格子、プリズムといった高価にもかかわらず振動に弱く取り扱いに特別の配慮を要する精密機器を用いることなく、耐振動性を有するとともに感度波長範囲が互いに異なる複数の光センサ11,12,13を用いて、その出力に基づき演算により簡易的に分光分析が行われる。このため、コストを低く抑えることが可能となるとともに、振動に強いにもかかわらず構造が簡素化され、機器の調整、保守に要する労力を大幅に削減することが可能となる。   In addition, a plurality of optical sensors 11, 12, and 13 having vibration resistance and different sensitivity wavelength ranges can be used without using precision instruments such as diffraction gratings and prisms that are vulnerable to vibration and require special handling. Is used for simple spectral analysis by computation based on the output. As a result, the cost can be kept low, the structure is simplified despite the strong resistance to vibration, and the labor required for adjustment and maintenance of the device can be greatly reduced.

なお、実施形態1においては、空燃比検出部22の検出結果に基づき判断部23により燃焼器Kの異常の有無を判断するものとしたが、これに限らず、空燃比検出部22により、充分な精度および応答速度で燃焼器Kの空燃比を検出することが可能である場合には、その検出結果をガスタービンの制御装置に出力し、それにより燃料供給量等をフィードバック制御することも可能である。   In the first embodiment, the determination unit 23 determines whether the combustor K is abnormal based on the detection result of the air-fuel ratio detection unit 22. However, the present invention is not limited to this, and the air-fuel ratio detection unit 22 When it is possible to detect the air-fuel ratio of the combustor K with high accuracy and response speed, it is also possible to output the detection result to the control device of the gas turbine and thereby feedback control the fuel supply amount, etc. It is.

また、実施形態1においては、光電変換部2は、一組の光センサ11,12,13から構成されるものとしたが、これに限らず、感度波長が互いに異なる光センサ11,12,13の複数組により光電変換部2を構成するものとし、例えばガスタービンの複数の燃焼器のそれぞれに一組の光センサ11,12,13を割り当て、各燃焼器毎の空燃比を検出し、燃焼器間に空燃比のアンバランスがある場合には、各燃焼器の燃料供給量を調整する、といった適用も可能である。   In the first embodiment, the photoelectric conversion unit 2 is composed of a pair of optical sensors 11, 12, and 13. However, the present invention is not limited to this, and the optical sensors 11, 12, and 13 having different sensitivity wavelengths are used. For example, a set of photosensors 11, 12, 13 is assigned to each of a plurality of combustors of a gas turbine, the air-fuel ratio for each combustor is detected, and combustion is performed. When there is an air-fuel ratio imbalance between the combustors, the fuel supply amount of each combustor can be adjusted.

実施形態2
図5に、実施形態2の燃焼診断装置の演算処理装置4Aの概略構成を機能ブロック図で示す。同図に示すように、実施形態2は実施形態1を改変してなるものであり、演算処理装置4Aに、各自発光の振動成分を各センサ11,12,13ごとに分析して検出する簡易分光分析部21Aを設けるとともに、この簡易分光分析部21Aの分析結果に基づき燃焼器Kの燃焼振動の程度を判定する燃焼振動判定部31を設けてなるものとされる。なお、実施形態2のその余の構成は、実施形態1と同様とされている。以下、主として実施形態2の実施形態1と異なる点について説明する。
Embodiment 2
FIG. 5 is a functional block diagram showing a schematic configuration of the arithmetic processing unit 4A of the combustion diagnostic apparatus according to the second embodiment. As shown in the figure, the second embodiment is a modification of the first embodiment, and the arithmetic processing unit 4A can easily detect the vibration component of each light emission for each sensor 11, 12, 13 detected. The spectral analysis unit 21A is provided, and the combustion vibration determination unit 31 that determines the degree of combustion vibration of the combustor K based on the analysis result of the simple spectral analysis unit 21A is provided. The remaining configuration of the second embodiment is the same as that of the first embodiment. Hereinafter, the points of the second embodiment different from the first embodiment will be mainly described.

燃焼振動判定部31は、簡易分光分析部21Aの分析結果を用いて、燃焼器Kの火炎発光の各パワースペクトル(振動成分(AC成分))におけるピークの大きさを検出し、その検出結果を燃焼データベース6と照合し、これにより燃焼振動の程度を判定し、その判定結果に応じた情報を出力装置5に出力するものとされる。すなわち、実施形態2では、燃焼データベース6は、燃焼器Kの火炎発光のパワースペクトル(振動成分(AC成分))に現れるピークの大きさと燃焼振動の程度との関係を示す情報を、例えば表形式、または関数として格納するものとされる。そして、燃焼振動判定部31は、ピーク値の少なくとも一つが閾値を超えていれば、燃焼振動が発生しているものと判定する。   The combustion vibration determination unit 31 detects the peak size in each power spectrum (vibration component (AC component)) of the flame emission of the combustor K using the analysis result of the simple spectroscopic analysis unit 21A, and the detection result is obtained. It collates with the combustion database 6, thereby determining the degree of combustion vibration, and outputs information corresponding to the determination result to the output device 5. That is, in the second embodiment, the combustion database 6 includes information indicating the relationship between the magnitude of the peak appearing in the power spectrum (vibration component (AC component)) of the flame emission of the combustor K and the degree of combustion vibration, for example, in a tabular format. Or as a function. And the combustion vibration determination part 31 determines with the combustion vibration having generate | occur | produced, when at least one of the peak values exceeds the threshold value.

この点について敷衍すれば、火炎発光のパワースペクトル(振動成分(AC成分))は、燃焼振動が小さいときには平坦なものとなり、燃焼振動が大きくなるとその程度に応じたピークが現れる。したがって、パワースペクトル(振動成分(AC成分))に現れたピークの大きさを調べ、これを燃焼データベース6と照合することによって燃焼器Kの燃焼振動の程度を判定することが可能となる。   If this point is laid down, the power spectrum (vibration component (AC component)) of the flame emission becomes flat when the combustion vibration is small, and a peak corresponding to the degree appears when the combustion vibration becomes large. Therefore, the magnitude of the peak appearing in the power spectrum (vibration component (AC component)) is examined, and by comparing this with the combustion database 6, the degree of combustion vibration of the combustor K can be determined.

つまり、実施形態1では、空燃比検出部22が、OHラジカル、CHラジカルおよびC2ラジカルの自発光の発光強度、つまり各光センサ11,12,13の出力のDC成分を用いて燃焼器Kの空燃比を検出するのに対して、実施形態2の燃焼振動判定部31は、燃焼器Kの火炎発光のパワースペクトル、つまり各光センサ11,12,13の出力のAC成分を用いて燃焼振動の程度を判定する。   That is, in the first embodiment, the air-fuel ratio detection unit 22 uses the light emission intensity of the OH radical, the CH radical, and the C2 radical, that is, the DC component of the output of each of the optical sensors 11, 12, 13. In contrast to detecting the air-fuel ratio, the combustion vibration determination unit 31 of the second embodiment uses the power spectrum of the flame emission of the combustor K, that is, the combustion vibration using the AC component of the output of each of the optical sensors 11, 12, 13. Determine the degree of.

このような燃焼振動判定部31による判定は、光センサ11,12,13として応答速度が速いものを選定することにより、リアルタイムで実施することが可能となる。これにより、燃焼振動の急激な増大を即時に検知することが可能となるため、例えばレゾネータにより燃焼器の共振振動数を調節して燃焼器破壊を回避する、といった適切な処置を即時に実施することも可能となる。   Such determination by the combustion vibration determination unit 31 can be performed in real time by selecting optical sensors 11, 12, and 13 that have a fast response speed. As a result, it is possible to immediately detect a sudden increase in combustion vibration, so that appropriate measures such as adjusting the resonance frequency of the combustor with a resonator to avoid combustor destruction are immediately implemented. It is also possible.

また、実施形態1におけると同様に、各光センサ11,12,13の感度波長範囲に適応するように導光する火炎の部位を設定することによって、燃焼振動の判定精度をより向上させることが可能である。   Further, as in the first embodiment, by setting the part of the flame to be guided so as to be adapted to the sensitivity wavelength range of each of the optical sensors 11, 12, 13, the determination accuracy of the combustion vibration can be further improved. Is possible.

以上、本発明を実施形態に基づいて説明してきたが、本発明かかる実施形態のみに限定されるものではなく、種々改変が可能である。例えば、実施形態1の簡易分光分析部23および実施形態2の簡易分光分析部23Aとを組み合わせることにより、空燃比と燃焼振動とを同時に検出することが可能となる。   As described above, the present invention has been described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made. For example, by combining the simple spectroscopic analysis unit 23 of the first embodiment and the simple spectroscopic analysis unit 23A of the second embodiment, it becomes possible to simultaneously detect the air-fuel ratio and the combustion vibration.

本発明は、例えばガスタービン燃焼器やボイラなどの燃焼状態を診断する場合に適用が可能である。   The present invention is applicable when diagnosing the combustion state of, for example, a gas turbine combustor or a boiler.

本発明の実施形態1に係る燃焼診断方法が適用された燃焼診断装置を模式的に示すブロック図である。1 is a block diagram schematically showing a combustion diagnostic apparatus to which a combustion diagnostic method according to Embodiment 1 of the present invention is applied. 同装置に用いることが可能な受光素子の波長感度特性を示すグラフ図である。It is a graph which shows the wavelength sensitivity characteristic of the light receiving element which can be used for the same apparatus. ガスタービン燃焼器の空燃比と、OHラジカル、CHラジカルおよびCラジカルの自発光強度の比との関係を示すグラフ図である。And air-fuel ratio of the gas turbine combustor is a graph showing the relationship between the OH radicals, the ratio of the self-emission intensity of the CH radical and C 2 radical. 同装置の演算処理装置の詳細を示す機能ブロック図である。It is a functional block diagram which shows the detail of the arithmetic processing unit of the same apparatus. 本発明の実施形態2に係る燃焼診断方法が適用された燃焼診断装置の演算処理装置の詳細を示す機能ブロック図である。It is a functional block diagram which shows the detail of the arithmetic processing unit of the combustion diagnostic apparatus with which the combustion diagnostic method which concerns on Embodiment 2 of this invention was applied.

符号の説明Explanation of symbols

K 燃焼器
1 燃焼診断装置
2 光電変換部
4 演算処理装置
6 燃焼データベース
11 光センサ
12 光センサ
13 光センサ
21 簡易分光分析部
22 空燃比検出部
23 判断部
31 燃焼振動判定部
K Combustor 1 Combustion diagnostic device 2 Photoelectric conversion unit 4 Arithmetic processing unit 6 Combustion database 11 Optical sensor 12 Optical sensor 13 Optical sensor 21 Simple spectroscopic analysis unit 22 Air-fuel ratio detection unit 23 Judgment unit 31 Combustion vibration determination unit

Claims (4)

火炎の自発光に基づいて燃焼診断をなす燃焼診断方法であって、
火炎の各自発光に対応させて設けられた各受光手段からの受光信号に基づいて、各自発光のパワースペクトルを検出する手順と、
前記パワースペクトルのピーク値が閾値を超えているか否か判定する手順と、
前記ピーク値の少なくとも一つが閾値を超えている場合、燃焼振動が発生しているとする手順
とを含んでいることを特徴とする燃焼診断方法。
A combustion diagnosis method for making a combustion diagnosis based on self-luminescence of a flame,
A procedure for detecting the power spectrum of each self-light emission based on the light reception signal from each light receiving means provided corresponding to each self-light emission of the flame,
Determining whether the peak value of the power spectrum exceeds a threshold;
And a procedure for determining that combustion vibration is occurring when at least one of the peak values exceeds a threshold value.
前記自発光が、OHラジカル、CHラジカルおよびCラジカルとされてなることを特徴とする請求項1記載の燃焼診断方法。 2. The combustion diagnosis method according to claim 1, wherein the self-light emission is an OH radical, a CH radical, and a C2 radical. 火炎の自発光に基づいて燃焼診断をなす燃焼診断装置であって、
火炎の各自発光に対応させて設けられた各受光手段と、前記各受光手段からの受光信号に基づいて演算処理をなす演算処理装置と、燃焼データベースとを備え、
前記演算処理装置が、前記各受光手段からの受光信号ごとにパワースペクトルを検出する分光分析部と、前記分光分析部からのパワースペクトルの少なくとも一つに基づいて、燃焼振動を判定する振動燃焼判定部とを有し、
前記燃焼データベースが、パワースペクトルから燃焼振動を判定するのに必要なデータを有してなる
ことを特徴する燃焼診断装置。
A combustion diagnostic device that performs combustion diagnosis based on self-luminescence of a flame,
Each light receiving means provided corresponding to each self-light emission of the flame, an arithmetic processing device that performs arithmetic processing based on a light reception signal from each light receiving means, and a combustion database,
The arithmetic processing unit detects a power spectrum for each received light signal from each of the light receiving means, and a vibration combustion determination for determining combustion vibration based on at least one of the power spectrum from the spectral analysis unit And
A combustion diagnostic apparatus, wherein the combustion database includes data necessary for determining combustion vibration from a power spectrum.
前記自発光が、OHラジカル、CHラジカルおよびCラジカルとされてなることを特徴とする請求項記載の燃焼診断装置。 The spontaneous light, OH radical, a combustion diagnosis apparatus according to claim 3, characterized in that is a CH radical and C 2 radical.
JP2004034391A 2004-02-12 2004-02-12 Combustion diagnostic method and combustion diagnostic apparatus Expired - Fee Related JP3852051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004034391A JP3852051B2 (en) 2004-02-12 2004-02-12 Combustion diagnostic method and combustion diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004034391A JP3852051B2 (en) 2004-02-12 2004-02-12 Combustion diagnostic method and combustion diagnostic apparatus

Publications (2)

Publication Number Publication Date
JP2005226893A JP2005226893A (en) 2005-08-25
JP3852051B2 true JP3852051B2 (en) 2006-11-29

Family

ID=35001750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004034391A Expired - Fee Related JP3852051B2 (en) 2004-02-12 2004-02-12 Combustion diagnostic method and combustion diagnostic apparatus

Country Status (1)

Country Link
JP (1) JP3852051B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072574A (en) * 2011-09-27 2013-04-22 Tokyo Gas Co Ltd Combustion diagnostic device and method of diagnosing combustion

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059598A1 (en) * 2006-11-17 2008-05-22 Imagineering, Inc. Reaction analyzing device, recording medium and measuring system
JP5311305B2 (en) * 2006-11-17 2013-10-09 イマジニアリング株式会社 Reaction analysis device, recording medium, measurement system and control system
AT503276B1 (en) * 2007-05-31 2010-06-15 Avl List Gmbh METHOD FOR EVALUATING THE CONDITION OF A FUEL / AIR MIXTURE
JP5060378B2 (en) * 2008-04-23 2012-10-31 大阪瓦斯株式会社 Gas analysis method and gas analyzer
US8018590B2 (en) * 2008-10-23 2011-09-13 General Electric Company Three-dimensional optical sensor and system for combustion sensing and control
US8752362B2 (en) * 2009-01-15 2014-06-17 General Electric Company Optical flame holding and flashback detection
US8915089B2 (en) * 2010-01-25 2014-12-23 General Electric Company System and method for detecting and controlling flashback and flame holding within a combustor
JP5792435B2 (en) * 2010-05-18 2015-10-14 トヨタ自動車株式会社 In-cylinder state monitoring device and control device for spark ignition internal combustion engine
AT510702B1 (en) 2010-12-01 2012-06-15 Avl List Gmbh METHOD AND DEVICE FOR EVALUATING THE CONDITION OF A FUEL AIR MIXTURE
US8625098B2 (en) 2010-12-17 2014-01-07 General Electric Company System and method for real-time measurement of equivalence ratio of gas fuel mixture
CN105074168B (en) * 2012-11-02 2018-04-20 通用电气公司 Stoichiometric(al) combustion control to the combustion gas turbine systems with exhaust gas recirculatioon
KR20150034035A (en) * 2013-09-25 2015-04-02 한국생산기술연구원 An air fuel ratio instrumentation system including optical sensor
CN107703252A (en) * 2017-11-07 2018-02-16 中国计量大学 The device of the burning time of recorded matter and light intensity change in a kind of oxygen index instrument
JP7244320B2 (en) * 2019-03-25 2023-03-22 アズビル株式会社 Combustion determination device and combustion device
CN110702394B (en) * 2019-10-18 2021-06-08 西安热工研究院有限公司 Vibration change characteristic-based vibration fault diagnosis method for steam turbine generator unit
JP6948678B1 (en) * 2020-11-16 2021-10-13 東京瓦斯株式会社 Air ratio adjustment method, air ratio adjustment system and program
JP6948679B1 (en) * 2020-11-16 2021-10-13 東京瓦斯株式会社 Air ratio estimation system, air ratio estimation method and program
JP6996724B1 (en) 2021-06-18 2022-01-17 東京瓦斯株式会社 Information provision method, information provision system and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072574A (en) * 2011-09-27 2013-04-22 Tokyo Gas Co Ltd Combustion diagnostic device and method of diagnosing combustion

Also Published As

Publication number Publication date
JP2005226893A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JP3852051B2 (en) Combustion diagnostic method and combustion diagnostic apparatus
US8456634B2 (en) Optical interrogation sensors for combustion control
JP2010286487A (en) Optical sensor for controlling combustion
CA2714544C (en) Systems and methods for closed loop emissions control
US5659133A (en) High-temperature optical combustion chamber sensor
JP5023507B2 (en) Wavelength calibration method and wavelength calibration apparatus
US8830469B2 (en) Method for detection of gases by laser spectroscopy, and gas sensor
US6318891B1 (en) Method of temperature measurement by correlation of chemiluminescent spectrum emitted by a flame with stored theoretical emission spectra for OH and/or CH radicals
US20160178517A1 (en) Apparatus and method of gas analysis using laser light
US4233596A (en) Flare monitoring apparatus
JP5916059B2 (en) High temperature gas temperature measurement of gas turbine using tunable diode laser.
US5755819A (en) Photodiode array for analysis of multi-burner gas combustors
US9494466B2 (en) Temperature measurement device
CN108463710B (en) Gas analysis device and gas analysis method using laser beam
CN110285445B (en) Method, system and apparatus for controlling fuel and air supply based on combustion equivalence ratio
US20090214993A1 (en) System using over fire zone sensors and data analysis
JP3242232B2 (en) Flame detection and combustion diagnostic device
KR102289029B1 (en) Apparatus and method for combustion diagnostics using flame emission spectroscopy
JP2004069186A (en) Combustion monitor device
RU2711186C1 (en) Method of signaling presence of combustion in augmenter of air-jet engine
JP3950111B2 (en) Flame detection device with self-diagnosis function
KR20150018017A (en) Apparatus for combustion diagnostic of gas turbine
JP3524412B2 (en) Burner combustion diagnostic device
JP2023533541A (en) Laser heterodyne combustion efficiency monitor and related methods
JP2001343280A (en) Flame detecting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060823

R150 Certificate of patent or registration of utility model

Ref document number: 3852051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees