JPS6021237B2 - damping material - Google Patents

damping material

Info

Publication number
JPS6021237B2
JPS6021237B2 JP1977A JP1977A JPS6021237B2 JP S6021237 B2 JPS6021237 B2 JP S6021237B2 JP 1977 A JP1977 A JP 1977A JP 1977 A JP1977 A JP 1977A JP S6021237 B2 JPS6021237 B2 JP S6021237B2
Authority
JP
Japan
Prior art keywords
cracks
plating layer
plating
damping
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977A
Other languages
Japanese (ja)
Other versions
JPS5384828A (en
Inventor
敏範 尾崎
俊宏 山田
秀雄 中江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1977A priority Critical patent/JPS6021237B2/en
Publication of JPS5384828A publication Critical patent/JPS5384828A/en
Publication of JPS6021237B2 publication Critical patent/JPS6021237B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 本発明は振動などを高度に減衰させるための材料に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a material for highly attenuating vibrations and the like.

本発明者等は先に、特願昭51−113115「減衰材
料の製造方法および製造装置」において、材料に深さ5
0〜200rm、割れのクリアランス5ムm以下、割れ
間の間隔0.1〜5柳の割れを多数生じさせることによ
り材料の減衰館を飛躍的に向上させる発明を提案した。
The present inventors previously proposed a material with a depth of 5
We have proposed an invention that dramatically improves the damping capacity of materials by creating a large number of willow cracks with a crack clearance of 0 to 200 rm, a crack clearance of 5 mm or less, and a spacing between cracks of 0.1 to 5 mm.

しかしこの減衰材料のようにその表面に多数の割れを生
成させるためには、材料が限定されるばかりでなく、そ
の方法についても多くの制限を受けるのは免れない。こ
のためコスト、機械的性質および化学的性質などの見地
から有利と思われる多くの材料があるにもかかわらず、
その表面に多数の割れを生成させることが困難なのが現
状である。さらに先に提案した方法においては割れの深
さを一定にすることが困難である場合がある。また、高
応力下において使用するときは前もってあたえた割れが
起点となり材料を破壊させることがいよいよ見られる。
本発明は上記難点を解消するためになされたもので、材
料の表面にメッキ層を生成し、このメッキ層に割れを生
じさせてなることを特徴とするものである。割れの大き
さはメッキ層に左右されるが、概ね深さ:10〜100
0rm、割れのクリアランス;0.1〜10山m、割れ
間の間隔;0.1〜5000ムmのものである。
However, in order to generate a large number of cracks on the surface of this damping material, not only the material is limited, but the method for producing it is also subject to many limitations. For this reason, although there are many materials that appear to be advantageous from the standpoint of cost, mechanical properties, and chemical properties,
At present, it is difficult to generate many cracks on the surface. Furthermore, in the method proposed earlier, it may be difficult to maintain a constant crack depth. Moreover, when used under high stress, it is increasingly seen that the cracks created in advance become the starting point for the material to break.
The present invention has been made to solve the above-mentioned problems, and is characterized by forming a plating layer on the surface of the material and causing cracks in the plating layer. The size of the crack depends on the plating layer, but the approximate depth is 10 to 100.
0rm, crack clearance: 0.1 to 10 m, and interval between cracks: 0.1 to 5000 mm.

深さの下限値(loAm)は減衰能に影響し、これ以下
では減衰効果が少なくなる値であり、上限値(1000
一m)はメッキの生成法により左右される値である。
The lower limit value of depth (loAm) affects the attenuation ability, below which the attenuation effect decreases, and the upper limit value (1000
1m) is a value that depends on the method of forming the plating.

又、割れのクリアランスの下限値(0.1山m)は必然
的に生成する値であり、上限値(10rm)はこれ以上
のクリアランスでは減衰材料の微少な振動に対して減衰
効果が小さくなる値である。割れ間の間隔の下限値(0
.1ムm)は製作上から制約される値であり、上限値(
5000山m)は減衰館に影響し、これ以上では減衰効
果が少なくなる値である。以下本発明について詳述する
In addition, the lower limit of the crack clearance (0.1 m) is a value that is inevitably generated, and the upper limit (10 rm) is that if the clearance is larger than this, the damping effect will be small for minute vibrations of the damping material. It is a value. Lower limit of interval between cracks (0
.. 1mm) is a value that is restricted from the manufacturing perspective, and the upper limit value (
5000 m) affects the damping effect, and above this value the damping effect decreases. The present invention will be explained in detail below.

材料の表面に生成するためのメッキ層は数十仏ないし数
肋の膜厚からなることが必要で、それには例えば溶融メ
ッキ、溶射メッキ、電気メッキなどが適当である。
The plating layer to be formed on the surface of the material must have a thickness of several tens to several layers, and suitable methods for this purpose include hot-dip plating, thermal spray plating, and electroplating.

これらの方法により生成されたメッキ層に割れを発生さ
せる方法は下記のとおりである。(i)メッキ層の内部
応力を利用する方法。
The method for generating cracks in the plating layer produced by these methods is as follows. (i) A method that utilizes the internal stress of the plating layer.

一般に素材に対し格子定数の大きいメッキ材をメッキし
た場合には、メッキ層に著しく大きい引張り残留応力が
発生することは公知であり、その応力を利用してメッキ
層に亀甲状の多数の割れを発生させる。前記応力はメッ
キ材料、メッキ条件およびメッキ厚さなどを適当に選定
することにより高めることが可能である。この場合、素
材の表面を加工して曲率の小さい突起を設ければ、この
突起の表面に付着したメッキ層は前記曲率のために引張
応力が一層増大するから明確な割れを発生させることが
できる。また素材表面に薄いメッキ層を生成させた後に
、素材を曲げることにより多数の割れを発生させる。
It is generally known that when a material is plated with a plating material that has a large lattice constant, a significantly large tensile residual stress is generated in the plating layer, and this stress is used to create numerous hexagonal-shaped cracks in the plating layer. generate. The stress can be increased by appropriately selecting the plating material, plating conditions, plating thickness, and the like. In this case, if the surface of the material is processed to provide protrusions with a small curvature, the tensile stress of the plating layer attached to the surface of the protrusions will further increase due to the curvature, resulting in clear cracks. . Furthermore, after forming a thin plating layer on the surface of the material, bending the material causes many cracks.

その後にメッキを継続して施すと、前記割れの個所には
ェピタキシャルな成長が発生し難くなるため割れが発生
しやすくなる。またメッキ時に犠牲を変えることにより
ポーラスメッキを行うことも有効である。また電解法に
より水素をメッキ層内に吸蔵させメッキ層の内部応力を
高めた後外力を加えて割れを入れても良い。
If plating is continued thereafter, epitaxial growth will be less likely to occur at the cracked location, making cracks more likely to occur. It is also effective to perform porous plating by changing the sacrifice during plating. Alternatively, hydrogen may be occluded in the plating layer by an electrolytic method to increase the internal stress of the plating layer, and then an external force may be applied to cause cracks.

(ii)メッキ層に外力を付加する方法。(ii) A method of applying external force to the plating layer.

上記(i)項に準じた方法によりメッキ層を生成した後
に必要に応じて曲げ、ついでショットピーニング加工を
行うことにより素材の表面に多数の割れを発生させるこ
とができる。
A large number of cracks can be generated on the surface of the material by forming a plating layer using a method similar to the above item (i), bending the material as necessary, and then subjecting it to shot peening.

(iii) 合金メッキまたは多層メッキを行った後に
、燐鈍を行って割れの発生しやすい組成として割れを発
生させる方法。
(iii) A method in which after alloy plating or multilayer plating is performed, phosphorous annealing is performed to generate cracks as the composition is likely to cause cracks.

素材の表面に例えばCr一Niの多層メッキを施した後
に浸炭し、ついで拡散焼錨および鋭敏化処理を行った後
に、公知の粒界腐食処理を行う。
After the surface of the material is plated with a multilayer of Cr and Ni, for example, it is carburized, followed by diffusion sintering and sensitization treatment, followed by a known intergranular corrosion treatment.

また素材の表面にNiとSnの合金メッキを施した後に
熱衝撃を付与する。このようにすれば素材表面のメッキ
層に多数の割れを発生させることができる。次に本発明
の実施例について述べる。
Further, after the surface of the material is plated with an alloy of Ni and Sn, thermal shock is applied. In this way, many cracks can be generated in the plating layer on the surface of the material. Next, examples of the present invention will be described.

{1’S3丈の板(厚さ3側)の表面に機械加工により
高さ1欄,幅0.5胸,先端の曲率0.250の突起を
ピッチ3柵の間隔でストライプ状に設けた。
{Protrusions with a height of 1 column, a width of 0.5 mm, and a curvature of 0.250 at the tip are formed in stripes at intervals of 3 fences by machining on the surface of a 1'S3 length board (thickness 3 side). .

その後に公知の方法により厚さ0.5職の硬質クロムメ
ッキを施したところ、メッキ層の表面に深さほぼ0.5
肋の微細な割れが多数発生した。■ 上記【1}と同様
にして素材の表面にメッキ層を生成した後に、このメッ
キ層の表面にショットピーニングを5分間施したところ
、メッキ層の表面に深さほぼ0.4肋の微細な割れが多
数発生した。
After that, hard chrome plating with a thickness of 0.5 mm was applied using a known method, and the surface of the plating layer had a depth of about 0.5 mm.
Many microscopic cracks in the ribs occurred. ■ After forming a plating layer on the surface of the material in the same manner as in [1] above, shot peening was applied to the surface of the plating layer for 5 minutes. Many cracks occurred.

‘3} 1$rステンレス鋼(厚さ3胸)の表面にCr
メッキを厚さ0.2個施した後に、CrおよびNiメッ
キを交互に2の重行つて全体の厚さを0.2仇吻とした
'3} Cr on the surface of 1$r stainless steel (3 mm thick)
After plating was applied to a thickness of 0.2, two layers of Cr and Ni plating were applied alternately to give a total thickness of 0.2.

ついでこの表面にC粉を塗布し1100qo×水rの空
冷および650℃×がrの炉冷の熱処理を行った。さら
にこの材料を10%4S04十10%C船04の溶液中
で2時間粒界腐食させた。その結果、表面に微細な割れ
(深さ0.2柵)が多数発生した。■ 18−8ステン
レス鋼(厚さ2.5凧)の表面に硬質クロムメッキを0
.4仇駁施した。
Next, C powder was applied to this surface, and heat treatment was performed by air cooling at 1100 qo×water r and furnace cooling at 650° C.×r. Further, this material was subjected to intergranular corrosion for 2 hours in a solution of 10% 4S04 and 10% C ship 04. As a result, many fine cracks (depth 0.2 bars) were generated on the surface. ■ Hard chrome plating on the surface of 18-8 stainless steel (2.5 mm thick)
.. 4 enemies were refuted.

この材料を0.5%酢酸+2功岬AS203溶液中にて
、一2.かれめで5分間電解後曲げ応力をかけ多数の割
れを入れた。上記実施例1}〜‘41の材料から試験片
(2×5xlIW岬)を採取し、横振動法により減衰能
を測定したところ、下記表のような結果がえられた。
This material was mixed in 0.5% acetic acid + 2 Komisaki AS203 solution for 1 to 2 hours. After 5 minutes of electrolysis with Kareme, bending stress was applied and many cracks were created. A test piece (2×5×1IW cape) was taken from the material of Example 1} to '41 above, and the damping capacity was measured by the transverse vibration method, and the results shown in the table below were obtained.

表より本発明の減衰材料は素材に比較し高減衰能を有す
ることが明らかである。また、実施例■において発生し
た割れの深さは素材とクロム層の境界で停止するためほ
ぼ一定となり、素材内部まで割れが入る場合はほとんど
見られなかった。また、実施例‘4’の試験片(2×5
×11仇吻)により電磁式、両振の疲労試験を行なった
。その結果N=1ぴにおける疲労限は16k9/ゆであ
った。一方、19一8ステンレス素材(厚さ1.6柵)
における同一荷重下における疲労限は16.1k9/物
であつた。また、硬いクロムメッキ層に割れが存在して
もその下に軟らかな18−8ステンレス母材が存在した
ときは、割れの存在による切欠き効果は小さい。したが
って、クロムメッキ層の割れの存在は疲労による割れの
起点とはなりにくいものである。上述した本実施例では
材料の表面にメッキ層を生成させたが、材料の表面にす
でにメッキ層の生成されたものでは、直接にそのメッキ
層に本実施例と同様な手段により微細な割れを生じさせ
ることは云うまでもないことである。
It is clear from the table that the damping material of the present invention has a higher damping ability than the raw material. In addition, the depth of the cracks that occurred in Example (2) stopped at the boundary between the material and the chromium layer, so it remained almost constant, and there were almost no cases where cracks penetrated into the material. In addition, the test piece of Example '4' (2 x 5
An electromagnetic and bioscillatory fatigue test was conducted using As a result, the fatigue limit at N=1 pi was 16k9/boil. On the other hand, 19-8 stainless steel material (thickness 1.6 fence)
The fatigue limit under the same load was 16.1k9/piece. Further, even if a crack exists in the hard chrome plating layer, if there is a soft 18-8 stainless steel base material underneath, the notch effect due to the presence of the crack is small. Therefore, the presence of cracks in the chromium plating layer is unlikely to become a starting point for cracks due to fatigue. In this example described above, a plating layer was formed on the surface of the material, but if a plating layer was already formed on the surface of the material, fine cracks were directly formed on the plating layer by the same method as in this example. It goes without saying that this will occur.

Claims (1)

【特許請求の範囲】[Claims] 1 材料の表面にメツキ層を生成させ、このメツキ層に
割れを生じさせ、材料が振動したときに前記割れの界面
が摩擦するよう構成したことを特徴とする減衰材料。
1. A damping material characterized in that a plating layer is formed on the surface of the material, cracks are generated in the plating layer, and the interface of the cracks rubs when the material vibrates.
JP1977A 1977-01-05 1977-01-05 damping material Expired JPS6021237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977A JPS6021237B2 (en) 1977-01-05 1977-01-05 damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977A JPS6021237B2 (en) 1977-01-05 1977-01-05 damping material

Publications (2)

Publication Number Publication Date
JPS5384828A JPS5384828A (en) 1978-07-26
JPS6021237B2 true JPS6021237B2 (en) 1985-05-25

Family

ID=11462688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977A Expired JPS6021237B2 (en) 1977-01-05 1977-01-05 damping material

Country Status (1)

Country Link
JP (1) JPS6021237B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19743579C2 (en) * 1997-10-02 2001-08-16 Mtu Aero Engines Gmbh Thermal barrier coating and process for its manufacture

Also Published As

Publication number Publication date
JPS5384828A (en) 1978-07-26

Similar Documents

Publication Publication Date Title
JP2009035793A (en) Method for manufacturing hot pressed steel sheet member
JP2019516015A (en) Ferrite alloy
JPS6021237B2 (en) damping material
CN109433959A (en) Antifatigue auto parts and its manufacturing method
US4168183A (en) Process for improving the fatigue properties of structures or objects
JPS58126965A (en) Shroud for gas turbine
JP2004346424A (en) Method for producing helical spring and helical spring
JPH0559168B2 (en)
JPH08134595A (en) High strength stainless steel sheet excellent in stress corrosion cracking resistance
CN108913943A (en) Tough titanium alloy of a kind of nearly α phase height and preparation method thereof
JPH08134596A (en) High strength stainless steel sheet excellent in stress corrosion cracking resistance
JPS5916948A (en) Soft-nitriding steel
JP3011490B2 (en) Methods for improving corrosion resistance of stainless steel
JPS5913057A (en) Manufacture of machine parts made of precipitation hardening alloy
CN109735796A (en) A kind of method for carburizing for inhibiting the high cobalt carburizing steel net carbide tissue of high chromium and improving carburizing speed
US3439188A (en) Method for treating titanium
SU1752828A1 (en) Method of hardening steel pieces
EP0039594A1 (en) A method of producing a nickel base alloy structure with Ni-Al coating
Mahato et al. Grain size effect on LCF behavior of two different FCC metals
JP4442784B2 (en) High fatigue strength steel and manufacturing method thereof
JP2631658B2 (en) Surface treatment method of steel spring
JP2001170780A (en) Manufacturing method for titanium plate or titanium- cladded plate
JPS5877559A (en) Manufacture of spring for nuclear reactor with superior stress corrosion cracking resistance
JPS6140746B2 (en)
CN1277273C (en) Surface treating method for atomic reactor component and atomic reactor component producing method thereby