JPS60211914A - Cvd apparatus - Google Patents

Cvd apparatus

Info

Publication number
JPS60211914A
JPS60211914A JP6770784A JP6770784A JPS60211914A JP S60211914 A JPS60211914 A JP S60211914A JP 6770784 A JP6770784 A JP 6770784A JP 6770784 A JP6770784 A JP 6770784A JP S60211914 A JPS60211914 A JP S60211914A
Authority
JP
Japan
Prior art keywords
gas
supplied
reaction
gases
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6770784A
Other languages
Japanese (ja)
Inventor
Masakuni Akiba
秋葉 政邦
Hiroyuki Shida
啓之 志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6770784A priority Critical patent/JPS60211914A/en
Publication of JPS60211914A publication Critical patent/JPS60211914A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To attain the uniformity in reactions and in the thickness and characteristics of formed films by a system wherein gases supplied into a reaction unit can be controlled in sequence separately from one another and each gas is supplied intermittently with a time difference in which another gas can be diffused uniformly in the reaction unit. CONSTITUTION:After a heated state is attained, a sequence control unit 24 opens valves 21a and 21c, so that SiH4 gas and PH3 gas can be supplied from a gas supply port 14 into a reaction unit 12. When the valve 21a is closed after the SiH4 gas is supplied for a prescribed time, APC is also closed, and the SiH4 gas is diffused inside the reaction unit 12 to be uniform in density in a short time. Then, the sequence control unit 24 opens a valve 21b, so as to supply O2 gas. Thereby a chemical reaction is brought about, PSG is produced, deposited on and made to stick onto the surface of a wafer 13, and thus the formation of a film is completed. After the O2 gas is supplied for a prescribed time, the supply thereof is discontinued, so that the gas can be diffused and made uniform in the reaction unit 12. Then, the SiH4 gas is supplied again in the same way so as to react with the O2 gas. Thereafter, the processes described above are repeated. On said occasion, reactions are made to proceed in accordance with uniform quantities of gases.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はCV D (Chemical Vapovr
Depos i t ion )技術に関し、特に成膜
膜質の均一化およびステップカバレジの向上を図り得る
CvD技術に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to CVD (Chemical Vapor
The present invention relates to deposition technology, and in particular to CvD technology that can make the quality of deposited films uniform and improve step coverage.

〔背景技術〕[Background technology]

半導体装置の製造に利用されるCVD成膜技術は、生成
させるべき物質の元素を含むガスを坦体のガスとともに
供給し、基板上で熱的に分解、酸化、還元などの化学反
応を行なわせることにより、所望の物質を析出させるこ
とである(電子材料1970年臨時増刊、工業調査会発
行、昭和45年11月5日発行P61〜67)。
CVD film deposition technology used in the manufacture of semiconductor devices supplies a gas containing the elements of the substance to be generated together with a carrier gas, and causes chemical reactions such as thermal decomposition, oxidation, and reduction to occur on the substrate. By doing so, the desired substance is precipitated (Electronic Materials 1970 Extra Edition, Kogyo Kenkyukai, November 5, 1970, pages 61-67).

例えば第1図に大略を示す装置が考えられる。For example, a device schematically shown in FIG. 1 can be considered.

即ち、半導体基板(ウェーッ・)1を収納する石英管2
とこれを加熱するヒータ3とで構成される反応部4、異
なる反応ガスA、Hのガス流量を設定し、ガスシーケン
サ5からの信号によって前記反応部4内にこれらを供給
するガス量制御部6、前記反応部4で消費されたガスを
真空ポンプ等で排気する排気部7および前記ガスA、 
B量が変化した場合でも反応部4内の圧力を一定にする
ため自動開閉する自動圧力調整弁(Arc)8から構成
されている。
That is, a quartz tube 2 housing a semiconductor substrate (wah) 1
a reaction section 4 consisting of a heater 3 for heating the reaction gas, and a gas amount control section that sets the gas flow rates of different reaction gases A and H and supplies them into the reaction section 4 according to a signal from a gas sequencer 5. 6. An exhaust section 7 for exhausting the gas consumed in the reaction section 4 using a vacuum pump or the like, and the gas A;
It is comprised of an automatic pressure regulating valve (Arc) 8 that automatically opens and closes to keep the pressure within the reaction section 4 constant even when the amount of B changes.

そして、前記ガスシーケンサ5の信号によりA。Then, A according to the signal from the gas sequencer 5.

Bの各ガスを反応部4内に供給し、ここで所定の加熱条
件下におかれて両ガスA、Bが化学反応されることによ
り、反応生成物を前記ウェーッ・1表面に付着堆積せし
め成膜を行なうことになる。
Each of the gases A and B is supplied into the reaction section 4, where the gases A and B are subjected to a chemical reaction under predetermined heating conditions, thereby depositing reaction products on the surface of the wave 1. Film formation will be performed.

しかしながら、この構成ではガスA、 Bを夫々同時に
かつ連続して反応部4内に供給する方式であることから
、供給されたガスA、 Bは反応部4内に拡散されるよ
りも早く反応部40入口側からガスA、 Bの反応が進
行され易い。このため、反応部4の出口側(排気側)に
ガスA、 Bが拡散され難くなり、結局第2図(3)に
ガス濃度分布を示すように反応部4内におけるガス濃度
が入口側から出口側に向かって勾配を有する分布とされ
てしまう。したがって、反応部4内における成膜速度(
ガス濃度に相関する)にバラツキが生じ、各ウェーハ1
に均一な膜厚の成膜を施すことが難力化いということが
本発明者によって明らかにされた。
However, in this configuration, since the gases A and B are supplied simultaneously and continuously into the reaction section 4, the supplied gases A and B reach the reaction section faster than they are diffused into the reaction section 4. The reaction between gases A and B tends to proceed from the 40 inlet side. For this reason, it becomes difficult for gases A and B to diffuse to the outlet side (exhaust side) of the reaction section 4, and as a result, the gas concentration in the reaction section 4 increases from the inlet side as shown in the gas concentration distribution in Figure 2 (3). This results in a distribution that has a slope toward the exit side. Therefore, the film formation rate (
(correlated with gas concentration), and each wafer 1
The inventors have found that it is difficult to form a film with a uniform thickness on the surface.

このようなことから、第2図の)のように反応部4内に
おける温度分布を入口側から出口側に向かって漸増する
ようにヒータ3による加熱制御を行ない、ガス濃度差に
よる成膜速度のバラツキを反応温度条件によって補正す
ることが考えられる。
For this reason, heating control is performed using the heater 3 so that the temperature distribution within the reaction section 4 gradually increases from the inlet side to the outlet side as shown in ) in Fig. 2, and the film forming rate is controlled by the difference in gas concentration. It is possible to correct the variation by adjusting the reaction temperature conditions.

しかし、反応温度が異なることにより不純物濃度や結晶
の大きさ等にバラツキが生じるようになり、均一特性(
膜質)の成膜が困難になる。特に反応温度を上げると結
晶の微粒化や膜のステップカバレジが低下され、微細バ
ターニングが困難になるということが不発明者によって
明らかにされた。
However, due to differences in reaction temperature, variations in impurity concentration and crystal size occur, resulting in uniform characteristics (
film quality) becomes difficult to form. In particular, the inventors have revealed that increasing the reaction temperature results in finer grains of crystals and lower step coverage of the film, making it difficult to perform fine buttering.

〔発明の目的〕[Purpose of the invention]

本発明の目的は反応部内におけるガス濃度の均一化を図
り、これにより反応部内の成膜の膜厚の均一化、微粒性
等の特性の均一化を実現して膜質のバラツキを防止する
ことのできるCVD装置を提供することにある。
The purpose of the present invention is to equalize the gas concentration within the reaction section, thereby achieving uniformity of film thickness and properties such as fineness of the film formed within the reaction section, thereby preventing variations in film quality. Our goal is to provide a CVD device that can.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、反応部内に供給するガスを夫々独立してシー
−ケンス制御できるようにし、かつ各ガスは他のガスが
反応部内において均一に拡散され得る時間差をもって間
欠的に供給し得るよう構成することにより、反応部内に
おける反応の均一化を図り、成膜の膜厚の均一化と特性
の均一化を実現して品質のバラツキを防止するものであ
る。
That is, by making it possible to independently sequence control the gases supplied into the reaction section, and by configuring each gas to be supplied intermittently with a time difference that allows other gases to be uniformly diffused within the reaction section. , the reaction within the reaction section is made uniform, the thickness of the film formed is made uniform and the characteristics are made uniform, thereby preventing variations in quality.

〔実施例〕〔Example〕

第3図は本発明のCVD装置を半導体製造装置、特にP
SG(IJンシリケートガラス)膜の製造用装置に適用
した実施例である。図において、10は円筒状に形成し
た石英管であり、その周囲に配設したヒータ11と共に
反応部12を構成している。この石英管10は一端を開
口して被処理物である半導体ウェーハ13を出入れ可能
とし、かつ処理時には蓋10aを取着できるようにして
いる。
FIG. 3 shows the CVD apparatus of the present invention in a semiconductor manufacturing apparatus, in particular a P
This is an example applied to an apparatus for manufacturing an SG (IJ silicate glass) film. In the figure, 10 is a quartz tube formed into a cylindrical shape, and together with a heater 11 disposed around it, constitutes a reaction section 12. This quartz tube 10 has one end open so that a semiconductor wafer 13, which is an object to be processed, can be taken in and out, and a lid 10a can be attached during processing.

また、この一端部位にはガス供給口14を配設している
。一方、石英管10の他端には図外の真空ポンプによっ
て石英管10内を排気する排気部15を接続すると共に
、その間には石英管10内のガス圧力を一定にするため
に自動開閉する自動圧力調整弁(APC)16を配設し
ている。
Further, a gas supply port 14 is provided at this one end portion. On the other hand, an exhaust part 15 for evacuating the inside of the quartz tube 10 is connected to the other end of the quartz tube 10 by a vacuum pump (not shown), and an exhaust part 15 is connected to the other end of the quartz tube 10 to automatically open and close it in order to keep the gas pressure inside the quartz tube 10 constant. An automatic pressure control valve (APC) 16 is provided.

前記ガス供給口14には管路17および分岐管路17a
、17b、17cを通してSiH4ガス源18.0.ガ
ス源19およびPH,ガス源20を接続している。そし
て、各分岐管路17a、17b、17cには夫々バルブ
21 a、2 l b、21Cおよび流量計22 a、
22 b、22 cを介装しかつこれらバルブと流量計
にガスシーケンサ23を接続してシーケンス制御部24
を構成し、このシーケンス制御部24により各パルプ2
1a。
The gas supply port 14 has a pipe line 17 and a branch pipe line 17a.
, 17b, 17c through the SiH4 gas source 18.0. A gas source 19, PH, and a gas source 20 are connected. The branch pipes 17a, 17b, and 17c are provided with valves 21a, 21b, and 21C, respectively, and flow meters 22a,
22 b and 22 c, and a gas sequencer 23 is connected to these valves and flow meters to control the sequence control unit 24.
This sequence control unit 24 controls each pulp 2.
1a.

21b、21cを夫々独立して開閉ないし絞り作動でき
るようにしている。
21b and 21c can be independently opened/closed or throttled.

次に以上の構成のCVD装置の作用を説明する。Next, the operation of the CVD apparatus having the above configuration will be explained.

反応部12内にウェーッ・13等をセントして全体を加
熱状態とした上で、シーケンス制御部24はパルプ21
aと21cを開いてSiH4ガスとPH,ガスをガス供
給口14から反応部12内に供給する。なお、後述する
化学反応に直接関係するのはSiH,ガスと02ガスで
あり、以下この両ガスについて説明する。第4図(5)
のように、一定時間のSiH,ガス供給を行なった後に
パルプ21aを閉じると、それまで開いていたAPC1
’6も閉じ、SiH,ガスは反応部12内に拡散され短
かい時間で均一な濃度とされる。これを待って、今度は
シーケンス制御部24がパルプ21bを開き同図田)の
ように反応部12内に02ガスを供給する。これにより
、SiH4ガスと02ガスとの化学反応が生起され、P
SGが生成されてウェーハ13表面に堆積付着し成膜が
完成される。02ガスを一定時間供給した後はこの供給
を停止して反応部12内に拡散させかつ均一化させる。
After placing the pulp 21 into the reaction section 12 to heat the entire reaction section 12, the sequence control section 24 controls the pulp 21.
a and 21c are opened, and SiH4 gas, PH, and gas are supplied into the reaction section 12 from the gas supply port 14. Note that SiH gas and 02 gas are directly related to the chemical reaction described later, and these two gases will be explained below. Figure 4 (5)
When the pulp 21a is closed after supplying SiH and gas for a certain period of time, the APC 1 that was open until then
'6 is also closed, and the SiH and gas are diffused into the reaction section 12 and are made to have a uniform concentration in a short time. After waiting for this, the sequence control section 24 opens the pulp 21b and supplies 02 gas into the reaction section 12 as shown in the same figure. This causes a chemical reaction between SiH4 gas and 02 gas, and P
SG is generated and deposited on the surface of the wafer 13, completing the film formation. After supplying the 02 gas for a certain period of time, the supply is stopped to allow the gas to diffuse into the reaction section 12 and become uniform.

そして、再びSiH4ガスを前述と同様に(ガス量は前
回の略2倍)供給し、0.ガスと反応させてPSGを再
び生成させる。以下、これを同図(A)、 (B)のよ
う忙繰返すことにより、反応部12内ではSiH4ガス
又は02ガスのいずれかが常に均一な濃度になっており
、これにより均一な膜の生成が可能とされる。
Then, SiH4 gas is supplied again in the same manner as described above (the gas amount is approximately twice that of the previous time), and 0. React with gas to generate PSG again. By repeating this process as shown in (A) and (B) in the same figure, either the SiH4 gas or the 02 gas is always at a uniform concentration in the reaction section 12, and a uniform film is thereby formed. is possible.

即ち、反応はSiH,ガス又は02ガスの両者が存在し
て初めて可能とされるものであり、したがっていずれか
一方の少ない量のガスに応じた反応が進行される。そし
て、この場合光に供給されているガスの濃度が均一化さ
れていることから反応はこの均一ガス量に応じて進めら
れることになり、均一な反応つまり均一な成膜が可能と
されるのである。なお、反応部12内を見たときには、
第5図のように先に供給された8iH,ガスは02ガス
の供給に伴なって排気側に移動するが、両ガスの混合領
域(反応ゾーン)はその中間にあり反応部内を反応しな
がら移動するために均一な化学反応が得られることが判
る。これは、0□ガスの後に再び8iH4ガスを供給し
たときも同じである。
That is, the reaction is only possible when both SiH, gas, or 02 gas are present, and therefore the reaction proceeds depending on the smaller amount of either gas. In this case, since the concentration of the gas supplied to the light is uniform, the reaction proceeds according to this uniform amount of gas, and it is said that a uniform reaction, that is, uniform film formation, is possible. be. Note that when looking inside the reaction section 12,
As shown in Figure 5, the 8iH gas that was supplied earlier moves to the exhaust side as the 02 gas is supplied, but the mixing area (reaction zone) for both gases is located in the middle, and the gases are reacting inside the reaction section. It can be seen that a uniform chemical reaction can be obtained due to the movement. The same holds true when 8iH4 gas is supplied again after 0□ gas.

以上により、反応部12内の長さ方向のいずれの部位に
おいても均一な′反応を得ることができ、成膜の膜厚の
均一化、特性(膜質)の均一化な図って膜品質のバラツ
キの防止を達成できる。
As described above, it is possible to obtain a uniform reaction at any part in the length direction within the reaction section 12, and to make the thickness of the film formed uniform and the properties (film quality) uniform, thereby eliminating variations in film quality. prevention can be achieved.

〔効果〕〔effect〕

(1)反応部へのガス供給系内にシーケンス制御部を設
け、2以上の異なるガスを夫々独立に供給できるように
し、かつ−のガスの供給後にこのガスが反応部内で均一
化される時間差をもって他のガスを供給し得るように構
成しているので、反応部内のいずれにおいても均一な反
応を可能とし、膜厚の均一化を図ることができる。
(1) A sequence control unit is provided in the gas supply system to the reaction section so that two or more different gases can be supplied independently, and there is a time difference in which the gases are made uniform within the reaction section after the - gas is supplied. Since the structure is configured such that other gases can be supplied at the same time, a uniform reaction can be carried out in any part of the reaction section, and a uniform film thickness can be achieved.

(2) 反応部内においてガス濃度の均一化を図って反
応の均一化を達成するので二反応部内において温度に勾
配をもたせる必要もなく均一な温度での成膜ができ、こ
れにより膜品質の均一化を達成できる。
(2) Since the reaction is made uniform by equalizing the gas concentration within the reaction section, there is no need to create a temperature gradient within the two reaction sections, and film formation can be performed at a uniform temperature, resulting in uniform film quality. can be achieved.

(3)−のガスと他のガスを交互的に供給して均一反応
を繰返し状態で行なうので、必要な厚さの成膜を容易に
コントロールすることができる。
(3) Since the gas (-) and other gases are alternately supplied to carry out a uniform reaction in a repeated state, it is possible to easily control film formation to a required thickness.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。たとえば、反応ガスと
してSiH4ガスとNH。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, SiH4 gas and NH as reaction gases.

ガスを使用したシリコンナイトライド膜の生成、又はS
iH4ガスとPH3ガスを使用したドープドポリシリコ
ン膜の生成でも同じである。また、前例の場合も、好ま
しく ハ’ S i H4カス、o21x、PH3ガス
の各ガスを順序的に供給することが好ましい。
Generation of silicon nitride film using gas or S
The same applies to the production of doped polysilicon films using iH4 gas and PH3 gas. Also in the case of the previous example, it is preferable to sequentially supply each gas of H4 gas, O21x, and PH3 gas.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってかされた発明
をその背景となった利用分野である牛導体装置の成膜用
のCVD装置に適用した場合につイテ説明したが、それ
に限定されるものではなく他の分野における成膜用CV
D装置としても適用できる。また、プラズマエネルギと
加熱を反応エネルギとして利用するプラズマCVD装置
や、排気ポンプを有せずに反応部内を低圧にしない常圧
CVD装置にも適用でき、更にウェーハを平面デスク上
に並べて処理する縦型炉にも適用できる。
In the above explanation, the invention made by the present inventor has mainly been explained in the case where it is applied to the field of application which is the background of the invention, which is a CVD apparatus for film formation of a conductor device, but the invention is not limited to this. CV for film deposition in other fields
It can also be applied as a D device. It can also be applied to plasma CVD equipment that uses plasma energy and heating as reaction energy, and atmospheric pressure CVD equipment that does not have an exhaust pump and does not create a low pressure inside the reaction section. It can also be applied to mold furnaces.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCVD装置の概略構成図、 第2図囚、■)はガス濃度、温度の分布を示すグラフ、 第3図は本発明の一実施例であるCVD装置の構成図、 第4図珈ヨ餅は本発明の一実施例を説明するためのガス
供給シーケンスを示すグラフ、第5図は反応部内の反応
ゾーンの移動状態を示すための概念図である。 10・・・石英管、11・・・ヒータ、12・・・反応
部、13・・・ウェーハ、14・・・ガス供給口、15
・・・排気部、16・・・APC117・・・管路、1
8・・・SiH4ガス源、19・・・02ガス源、20
・・・PH3ガス源、21a〜21c・・・パルプ、2
3・・・ガスシーケンサ、24・・・シーケンス制御部
。 第 1 図 第2図 パ イロ
Figure 1 is a schematic configuration diagram of a CVD apparatus, Figure 2 (2) is a graph showing the distribution of gas concentration and temperature, Figure 3 is a configuration diagram of a CVD apparatus that is an embodiment of the present invention, and Figure 4 Fig. 5 is a graph showing a gas supply sequence for explaining an embodiment of the present invention, and Fig. 5 is a conceptual diagram showing a movement state of a reaction zone in a reaction section. DESCRIPTION OF SYMBOLS 10... Quartz tube, 11... Heater, 12... Reaction part, 13... Wafer, 14... Gas supply port, 15
...Exhaust section, 16...APC117...Pipeline, 1
8...SiH4 gas source, 19...02 gas source, 20
...PH3 gas source, 21a-21c...pulp, 2
3... Gas sequencer, 24... Sequence control section. Figure 1 Figure 2 Pyro

Claims (1)

【特許請求の範囲】 1、反応部内に2以上の異なるガスを供給しかつこれら
のガスを反応させて成膜を行なうCVD装置であって、
前記ガスを夫々個別に反応部内に供給し得るシーケンス
制御部を備え、このシーケンス制御部は他のガスが反応
部内において均一に拡散され得る時間差または手段をも
って−のガスを反応部内に供給し得るよう構成t7たこ
とを特徴とするCVD装置。 2、シーケンス制御部は各ガスを交互にかつ間欠的に供
給し得るよう構成してなる特許請求の範囲第1項記載の
CVD装置。 3.2種類のガスを交互にかつ所定の時間差をもって供
給し得る特許請求の範囲第2項記載のCVD装置。
[Scope of Claims] 1. A CVD apparatus that supplies two or more different gases into a reaction section and forms a film by reacting these gases, comprising:
A sequence control section is provided which can supply each of the above gases individually into the reaction section, and the sequence control section is arranged so that the - gas can be supplied into the reaction section with a time difference or means that allows the other gases to be uniformly diffused within the reaction section. A CVD apparatus characterized by having a configuration t7. 2. The CVD apparatus according to claim 1, wherein the sequence control section is configured to supply each gas alternately and intermittently. 3. The CVD apparatus according to claim 2, which is capable of supplying two types of gases alternately and with a predetermined time difference.
JP6770784A 1984-04-06 1984-04-06 Cvd apparatus Pending JPS60211914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6770784A JPS60211914A (en) 1984-04-06 1984-04-06 Cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6770784A JPS60211914A (en) 1984-04-06 1984-04-06 Cvd apparatus

Publications (1)

Publication Number Publication Date
JPS60211914A true JPS60211914A (en) 1985-10-24

Family

ID=13352696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6770784A Pending JPS60211914A (en) 1984-04-06 1984-04-06 Cvd apparatus

Country Status (1)

Country Link
JP (1) JPS60211914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339832U (en) * 1989-08-28 1991-04-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339832U (en) * 1989-08-28 1991-04-17

Similar Documents

Publication Publication Date Title
JP3696632B2 (en) Gas inlet for wafer processing chamber
KR930011414B1 (en) Method of manufacturing silicon nitride film
US5916369A (en) Gas inlets for wafer processing chamber
US6506691B2 (en) High rate silicon nitride deposition method at low pressures
JP3121131B2 (en) Low temperature and high pressure silicon deposition method
US6500734B2 (en) Gas inlets for wafer processing chamber
JP2000331939A (en) Film-forming device
KR900008970B1 (en) Process vapor growth of phosphosilicate glass coating
JP2668687B2 (en) CVD device
US6780464B2 (en) Thermal gradient enhanced CVD deposition at low pressure
EP0473067A1 (en) Wafer processing reactor
US4651673A (en) CVD apparatus
US4518455A (en) CVD Process
JPS60211914A (en) Cvd apparatus
JPH0766139A (en) Chemical vapor deposition system
US5489446A (en) Device for forming silicon oxide film
JPS59159980A (en) Vapor growth device
JPH10102256A (en) Cvd device
JPH05335250A (en) Cvd device
JPH01257321A (en) Vapor growth apparatus
JPS61114519A (en) Vapor growth equipment
JP2022547508A (en) Process system and method of supplying reactant gases
JPH0620961A (en) Cvd apparatus
JP2002176048A (en) Oxidizing furnace system
JPS61251119A (en) Chemical vapor deposition method