JPS60211843A - Forming method of insulating film pattern - Google Patents

Forming method of insulating film pattern

Info

Publication number
JPS60211843A
JPS60211843A JP59067953A JP6795384A JPS60211843A JP S60211843 A JPS60211843 A JP S60211843A JP 59067953 A JP59067953 A JP 59067953A JP 6795384 A JP6795384 A JP 6795384A JP S60211843 A JPS60211843 A JP S60211843A
Authority
JP
Japan
Prior art keywords
substrate
insulating film
light
beams
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59067953A
Other languages
Japanese (ja)
Inventor
Akinori Shimizu
了典 清水
Misao Saga
佐賀 操
Kazuo Matsuzaki
松崎 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP59067953A priority Critical patent/JPS60211843A/en
Publication of JPS60211843A publication Critical patent/JPS60211843A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02277Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition the reactions being activated by other means than plasma or thermal, e.g. photo-CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02354Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light using a coherent radiation, e.g. a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment

Abstract

PURPOSE:To deposit and compact an insulating film pattern without elevating the temperature of a base body by giving reaction energy by optical projection through a mask disposed near the surface of the base body and irradiating an insulating film grown on the base body in a vapor phase by beams in a visible or infrared region. CONSTITUTION:Each gas of SiH4, N2O and N2 is introduced into a reaction chamber 2 from bombs 6-8 through mass flowmeters 5, and ultraviolet beams 10 having wavelengths corresponding to reaction energy are projected through a mirror 11 and a lens 12 so that the focus is placed on a substrate 1 from an ArF excimer laser. Since the power density of beams on a mask 4 on the substrate 1 is largely lower than that on the substrate 1, silicon oxide by the combination of silicon from SiH4 and oxygen generated by the decomposition of N2O deposits only on the substrate 1 according to the light-transmitting pattern of the mask 4. When an atmosphere in the reaction chamber 2 is changed over to one only of N2 gas and the mirror 11 is turned and the substrate 1 is irradiated by oscillation beams 13 at the wavelength of a CO2 gas laser, an silicon oxide film absorbs the beams, and is compacted without elevating a substrate temperature.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は基体上の所定の領域に緻密な絶縁膜のパターン
を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for forming a dense insulating film pattern in a predetermined region on a substrate.

〔従来技術とその問題点〕[Prior art and its problems]

基体上に緻密々絶縁膜パターンを形成することは、特に
半導体工業において半導体基板上の配線層との間の絶縁
あるいはパッシベーションのために広く行われている。
Forming a dense insulating film pattern on a substrate is widely practiced, particularly in the semiconductor industry, for insulation or passivation between wiring layers on a semiconductor substrate.

絶縁膜は、熱CVD(化学的気相成長)法やプラズマC
VD法による絶縁膜の基板上への堆積と、熱アニールに
よる緻密化との組合わせによって形成することが知られ
ている。しかし、これらの技術には種々の問題が内在し
ている。まず堆積技術に関し、て熱CVD法は、その名
が示す通シかなシの高温が必要となるため、適用範囲が
限定されるとともに、室温に冷却されたときの膜中の内
部応力が基板に影響を与えるという問題を有するし、プ
ラズマCVD法では、温度を低く押えることができる反
面、基板や基板中に作シ込まれているデバイスにプラズ
マ損傷を与え、特性値を大きく変えてしまうという問題
があった。またこれらの従来法では、たとえマスクを使
用したとしても、μm程度の微細なパターンを堆積工程
と同時に形成することは不可能でアシ、その後のリソグ
ラフィ一工程が必須である。さらに、従来の緻密化技術
では、電気炉による高温を利用するため、たとえプラズ
マCVD法を用いて堆積時にある程度温度を押えても、
結果的には、その効果が消失してしまうという大きな問
題をかかえていた。
The insulating film is formed using thermal CVD (chemical vapor deposition) or plasma C.
It is known that the insulating film is formed by a combination of depositing an insulating film on a substrate by a VD method and densification by thermal annealing. However, these techniques have various problems inherent in them. First, regarding the deposition technology, the thermal CVD method requires extremely high temperatures as its name suggests, which limits its applicability, and the internal stress in the film when cooled to room temperature can be applied to the substrate. While the plasma CVD method can keep the temperature low, it also causes plasma damage to the substrate and devices embedded in the substrate, significantly changing the characteristic values. was there. Further, in these conventional methods, even if a mask is used, it is impossible to form a micrometer-sized pattern simultaneously with the deposition process, and a subsequent lithography process is essential. Furthermore, since conventional densification techniques utilize high temperatures produced by electric furnaces, even if the temperature is suppressed to some extent during deposition using plasma CVD,
As a result, the big problem was that the effect disappeared.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の問題を解決し、基体温度を高くしない
で精密な絶縁膜パターンを基体上に連続的に堆積、緻密
化する方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a method for continuously depositing and densifying a precise insulating film pattern on a substrate without increasing the temperature of the substrate.

〔発明の要点〕[Key points of the invention]

本発明は、基体表面近傍に配置された所望の絶縁膜パタ
ーンと同一の透光パターンを有するマスクを通して光を
照射して反応エネルギーを与えることによシ反応ガスか
ら前記絶縁膜パターンを基体上に気相成長させ、次いで
絶縁膜に可視ないし赤外領域の光を照射して緻密化する
ことによシ上記の目的を達成するものである。反応エネ
ルギーを与える光としては、エネルギー値に対応する波
長よυ短波長の光を用い、通常1000ないし4000
Aの波長の紫外光が用いられる。
In the present invention, the insulating film pattern is formed on the substrate from a reactive gas by irradiating light through a mask having the same light-transmitting pattern as the desired insulating film pattern placed near the surface of the substrate and giving reaction energy. The above object is achieved by performing vapor phase growth and then irradiating the insulating film with light in the visible to infrared region to make it dense. As the light that gives reaction energy, light with a wavelength shorter than the wavelength corresponding to the energy value is used, and usually 1000 to 4000
Ultraviolet light of wavelength A is used.

〔発明の実施例〕[Embodiments of the invention]

以下第1図に示しだ装置を用いてシリコン基板上に酸化
シリコン膜のパターンを形成した実施例について述べる
。シリコン基板1は反応室2の底板上に載置され、ヒー
タ3によって250℃に加熱される。その直上1咽の位
置に、石英板にクロムで遮光領域を形成したマスク4が
配置されている。まず、反応室内にマスフローメータ5
によシ流量制御し、てボンベ6よ、j)5mA!/分の
SiH4ガス、ボンベ7よF)800ml1分のN20
ガスならびにキャリヤガスとしてボンベ8よp65ml
l1分のN2ガスを導入し、真空ポンプ9で排気して反
応室内を10Torr前後の圧力に保つ。次いで反応エ
ネルギーに対応する1930Xの波長の紫外光10ト週
)ArFエキシマレーザから基板1の上で焦点を結ぶよ
うに鏡11、レンズ12を介して10 MW/6Iのパ
ワー密度で入射させる。基板1の上1謔の位置にあるマ
スク上における光のパワー密度は、基板上のパワー密度
に比べて%以上低いため、Si■14からのシリコンと
N20の分解によシ生ずる酸素の化合による酸化シリコ
ンはマスク上には堆積せず、基板上にのみマスクの透光
パターン通シに堆積する。
An example in which a pattern of a silicon oxide film was formed on a silicon substrate using the apparatus shown in FIG. 1 will be described below. Silicon substrate 1 is placed on the bottom plate of reaction chamber 2 and heated to 250° C. by heater 3 . A mask 4, which is a quartz plate with a light-shielding area made of chromium, is placed directly above it. First, install a mass flow meter 5 in the reaction chamber.
Control the flow rate and use cylinder 6, j) 5mA! /min SiH4 gas, cylinder 7F) 800ml 1min N20
Gas and carrier gas: cylinder 8 p65ml
1 minute of N2 gas is introduced, and the reaction chamber is evacuated using a vacuum pump 9 to maintain the pressure in the reaction chamber at around 10 Torr. Next, ultraviolet light having a wavelength of 1930X corresponding to the reaction energy is incident from an ArF excimer laser at a power density of 10 MW/6I through a mirror 11 and a lens 12 so as to be focused on the substrate 1. The power density of light on the mask located one foot above the substrate 1 is more than % lower than the power density on the substrate, so it is due to the combination of silicon from Si14 and oxygen generated by the decomposition of N20. Silicon oxide is not deposited on the mask, but only on the substrate through the transparent pattern of the mask.

次に反応室内ふん囲気をボンベ8からのN2ガスのみに
切換えてから、鏡11を回転してCO2ガスレーザの波
長9,6μmの発振光13を基板1に照射すると、酸化
シリコン膜は9.35μmの吸収帯によりこの光を吸収
し、基板温度の上昇なしに緻密化する0 さらに、本発明はこのような酸化シリコン膜のパターン
にとどまらず、使用ガス、使用光源を変えることによシ
各種絶縁換のパターンを基体上に堆積し、緻密化するこ
とができる。例えばSiH4と窒素ガスを用いて200
℃の温度のシリコン基板上に2480Xの波長のKrF
エキシマレーザの発振光をマスクを通して照射すること
により窒化シリコン膜のパターンを形成し、波長10.
6μmのC02ガスレーザの発振光により緻密化するこ
とが有効である。
Next, the atmosphere in the reaction chamber is changed to only N2 gas from the cylinder 8, and the mirror 11 is rotated to irradiate the substrate 1 with the oscillation light 13 of the CO2 gas laser having a wavelength of 9.6 μm. This light is absorbed by the absorption band of the silicon oxide film and becomes dense without increasing the temperature of the substrate. A pattern of replacements can be deposited and densified onto a substrate. For example, using SiH4 and nitrogen gas,
KrF at a wavelength of 2480X on a silicon substrate at a temperature of °C.
A silicon nitride film pattern is formed by irradiating excimer laser oscillation light through a mask, and a wavelength of 10.
It is effective to perform densification using 6 μm CO2 gas laser oscillation light.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、所望パターンに対応する透光パターン
を有するマスクを透過した光とする光CVD法と光エネ
ルギーによるアニールとを組み合わせて絶縁膜パターン
の堆積と緻密化を行うもので、基体温度を高くすること
なく、同一反応室内の連続的な操作によシ緻密な絶縁膜
パターンを形成することができる。従って基体温度を高
くできない場合に有効に適用でき、特に半導体基板上へ
絶縁膜パターンを形成する場合には半導体装置の特性へ
の影響がないため極めて有効である。
According to the present invention, an insulating film pattern is deposited and densified by combining the optical CVD method in which light passes through a mask having a transparent pattern corresponding to a desired pattern, and annealing using optical energy. A dense insulating film pattern can be formed by continuous operations in the same reaction chamber without increasing the temperature. Therefore, it can be effectively applied when the substrate temperature cannot be raised, and is particularly effective when forming an insulating film pattern on a semiconductor substrate because it does not affect the characteristics of the semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のだめの装置の断面図である
。 1・・・・・・シリコン基板、2・・・・・・反応室、
4・・・・・・マスフ、6・・・・・・SiH4ボンベ
、7・・・市N20ボンベ、8・・・・・・N2ボンベ
、10・・・・・・ArFエキシマレーレー、11・・
・・・・銑、13・・・・・・CO□ガスレーザ光。 第1図
FIG. 1 is a sectional view of a reservoir device according to an embodiment of the present invention. 1...Silicon substrate, 2...Reaction chamber,
4...Masuf, 6...SiH4 cylinder, 7...City N20 cylinder, 8...N2 cylinder, 10...ArF excimer relay, 11.・
...Pig, 13...CO□ gas laser light. Figure 1

Claims (1)

【特許請求の範囲】 1)基体表面近傍に配置された所望の絶縁膜パターンと
同一の透光パターンを有するマスクを通Iて光を照射し
て反応エネルギーを与えることによ逆反応ガスよシ前記
絶縁膜パターンを基体上に気相成長させ、次いで絶縁膜
に可視ないし赤外領域の光を照射して緻密化することを
特徴とする絶縁膜パターンの形成方法。 2、特許請求の範囲第1項記載の方法において、反応エ
ネルギーを与える光として波長1000ないし4000
Xの紫外光を用いることを特徴とする絶R膜の形成方法
。 3)特許請求の範囲第1項または第2項記載の方法にお
いて、絶縁膜が酸化シリコン膜であp、緻密化のために
波長9.6μmの002ガスレ一ザ発振光を用いること
を特徴とする絶縁膜、の形成方法04)%許請求の範囲
第1項または第2項記載の方法において、絶縁膜が窒化
シリコン膜であシ、緻密化のために波長10.6μmの
002ガスレ一ザ発振光を用いることを特徴とする絶縁
膜の形成方法。
[Claims] 1) Reverse reaction gas is removed by irradiating light through a mask having the same light-transmitting pattern as the desired insulating film pattern placed near the surface of the substrate and giving reaction energy. A method for forming an insulating film pattern, comprising growing the insulating film pattern on a substrate in a vapor phase, and then irradiating the insulating film with light in a visible or infrared region to make it dense. 2. In the method according to claim 1, the wavelength of the light for providing reaction energy is 1000 to 4000.
A method for forming an absolute R film, characterized by using X ultraviolet light. 3) The method according to claim 1 or 2, wherein the insulating film is a silicon oxide film, and 002 gas laser oscillation light with a wavelength of 9.6 μm is used for densification. A method for forming an insulating film according to claim 1 or 2, wherein the insulating film is a silicon nitride film and a 002 gas laser with a wavelength of 10.6 μm is used for densification. A method for forming an insulating film characterized by using oscillation light.
JP59067953A 1984-04-05 1984-04-05 Forming method of insulating film pattern Pending JPS60211843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59067953A JPS60211843A (en) 1984-04-05 1984-04-05 Forming method of insulating film pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59067953A JPS60211843A (en) 1984-04-05 1984-04-05 Forming method of insulating film pattern

Publications (1)

Publication Number Publication Date
JPS60211843A true JPS60211843A (en) 1985-10-24

Family

ID=13359824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59067953A Pending JPS60211843A (en) 1984-04-05 1984-04-05 Forming method of insulating film pattern

Country Status (1)

Country Link
JP (1) JPS60211843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248041A (en) * 1989-03-20 1990-10-03 Mitsubishi Electric Corp Laser beam irradiation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130369A (en) * 1974-04-01 1975-10-15
JPS55123133A (en) * 1979-03-16 1980-09-22 Agency Of Ind Science & Technol Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130369A (en) * 1974-04-01 1975-10-15
JPS55123133A (en) * 1979-03-16 1980-09-22 Agency Of Ind Science & Technol Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248041A (en) * 1989-03-20 1990-10-03 Mitsubishi Electric Corp Laser beam irradiation device

Similar Documents

Publication Publication Date Title
US5650013A (en) Layer member forming method
US4581248A (en) Apparatus and method for laser-induced chemical vapor deposition
KR100423560B1 (en) Semiconductor processing methods and methods of forming transistor gate stacks
JPH11145148A (en) Apparatus and method for heat plasma annealing
Slaoui et al. Properties of silicon dioxide films prepared by pulsed‐laser ablation
US5741431A (en) Laser assisted cryoetching
JPS60245217A (en) Thin film formation equipment
JPS60211843A (en) Forming method of insulating film pattern
JPS5982732A (en) Manufacture for semiconductor device
JPS60211844A (en) Forming method of insulating film
Sugimura et al. Selective area deposition of silicon‐nitride and silicon‐oxide by laser chemical vapor deposition and fabrication of microlenses
JPH0114313B2 (en)
JPS59129774A (en) Selective formation of nitrided film
JP2606318B2 (en) Method of forming insulating film
JPS5940525A (en) Growth of film
JPH08262251A (en) Film forming device for optical waveguide
JPS60216549A (en) Manufacture of semiconductor device
JPS60211847A (en) Forming method of insulating film
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JP3307937B2 (en) Semiconductor layer and insulating layer manufacturing method
JPS60211078A (en) Formation of electrically conductive film
JPS6313339B2 (en)
JPS62160732A (en) Forming method for silicon oxynitride films
JP3088446B2 (en) Plasma processing apparatus and plasma processing method
JPS60218868A (en) Manufacture of compound element