JPS60211840A - Forming method for pattern - Google Patents

Forming method for pattern

Info

Publication number
JPS60211840A
JPS60211840A JP6802684A JP6802684A JPS60211840A JP S60211840 A JPS60211840 A JP S60211840A JP 6802684 A JP6802684 A JP 6802684A JP 6802684 A JP6802684 A JP 6802684A JP S60211840 A JPS60211840 A JP S60211840A
Authority
JP
Japan
Prior art keywords
film
etching
amorphous silicon
etched
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6802684A
Other languages
Japanese (ja)
Other versions
JPH0658903B2 (en
Inventor
Kesao Noguchi
野口 今朝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP6802684A priority Critical patent/JPH0658903B2/en
Publication of JPS60211840A publication Critical patent/JPS60211840A/en
Publication of JPH0658903B2 publication Critical patent/JPH0658903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent a glass substrate from damaging in the etching step of an amorphous silicon device by mixing etching as an mixture gas plasma of oxygen in the course of etching a titanium film by a plasma of carbon tetrachloride, thereby increasing the etching velocity of not only a molybdenum film but also the amorphous silicon film. CONSTITUTION:With a photoresist 38 as a mask a titanium film 37 is etched with etching gas of only carbon tetrachloride in plasma in a sample for a thin film transistor. Then, the film to be etched becomes gray of a molybdenum film 36 from white of the film 37. In this state oxygen gas is mixed in the plasma, and it is etched with the same discharging power. Then, the entire sample is colored with red amorphous silicon film 35. Further, an n<+> type amorphous silicon film 35 and a non-doped amorphous silicon film 34 are etched, become colorless silicon nitride film 33, and finished for the etching.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアモルファスシリコンを用いた半導体デバイス
の製造工程において、パターンを形成する方法、特にチ
タン膜とアモルファスシリコン膜とに同時にパターンを
形成する方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for forming a pattern in the manufacturing process of a semiconductor device using amorphous silicon, particularly a method for forming a pattern on a titanium film and an amorphous silicon film at the same time. It is related to.

(従来技術とその問題点) アモルファスシリコンを用いた半導体デバイスの開発が
進み、より大面積なデバイスが出現しつつある。シリコ
ン結晶を用いたデバイスは直径6インチ程度が主流であ
るのに対して、アモルファスシリコンデバイスは15イ
ンチ以上のデバイスが要求されている。さらにこれらの
アモルファスシリコンデバイスに対しては高精細なエツ
チング加工を必要とする製造工程が要求されるようにな
っだ。
(Prior art and its problems) Development of semiconductor devices using amorphous silicon is progressing, and devices with larger areas are appearing. Devices using silicon crystal are mainly about 6 inches in diameter, whereas amorphous silicon devices are required to have a diameter of 15 inches or more. Furthermore, these amorphous silicon devices now require a manufacturing process that requires high-definition etching.

ところが、アモルファスシリコンのエツチングに関する
詳細なデータは公表されている例か少ない。これはアモ
ルファスシリコン中には多くの欠陥を含む膜や、水素、
弗素等も多量に含む膜があυ、この含有元素や欠陥とエ
ッチャントとの相互作用が不明なためと思われる。CF
4ガスを用いてアモルファスシリコンをドライエツチン
グした例が電子通信学会論文誌、1981年10月号、
Vol。
However, very few detailed data regarding etching of amorphous silicon have been published. This is because amorphous silicon contains a film containing many defects, hydrogen,
This seems to be because the film contains a large amount of fluorine, etc., and the interactions between the contained elements and defects and the etchant are unknown. C.F.
An example of dry etching amorphous silicon using 4 gases is published in the Journal of the Institute of Electronics and Communication Engineers, October 1981 issue.
Vol.

J64−C、No、 10第698頁にある程度で、他
はHF+HNO,系エツチング液を用いたウェットエツ
チングが考えられる程度である。又、アモルファスシリ
コンデバイスにはAnti!などが金属膜として主も多
く用いられているが、我々はAJ膜を用いた場合の種々
の不都合を見い出し、金属膜をチタン膜に変えることを
試みた。しかし、チタン膜もエツチングに関する詳細な
データはほとんど見られない。
J64-C, No. 10, page 698, and for others, wet etching using an HF+HNO etching solution can be considered. Also, Anti! for amorphous silicon devices. Although AJ films are mainly used as metal films, we discovered various disadvantages when using AJ films and attempted to change the metal film to a titanium film. However, there is almost no detailed data regarding etching of titanium films.

従来のアモルファスシリコンデバイスのエツチング加工
には種々の欠点が存在していた。第一にアモルファスシ
リコンデバイスの多くはガラス基板を用いておシ、弗素
を含有するエッチャントを用いた場合にはガラスの平滑
度が損なわれ、光を利用するデバイスにとって重大な問
題となる。第二にアモルファスシリコン膜と他の膜との
エツチング速度の差が小さいため、エツチングの停止が
不正確となる欠点があった。又、第三にエツチングの不
均一性があり、大面積デバイスの歩留りが悪い欠点があ
った。
Conventional etching processes for amorphous silicon devices have had various drawbacks. First, many amorphous silicon devices use glass substrates, and when an etchant containing fluorine is used, the smoothness of the glass is impaired, which poses a serious problem for devices that utilize light. Second, because the difference in etching rate between the amorphous silicon film and other films is small, there is a drawback that etching cannot be stopped accurately. Thirdly, there is non-uniformity in etching, resulting in a poor yield of large-area devices.

(発明の目的) 本発明の目的は従来のアモルファスシリコンデバイスの
エツチング加工においてガラス基板が損傷を受ける欠点
と、エツチング速度差の小さい欠点及びエツチングの均
一性の悪い欠点を解決するアモルファスシリコンデバイ
スのパターン形成方法を提供することにある。
(Object of the Invention) The object of the present invention is to develop a pattern for an amorphous silicon device that solves the drawbacks of damage to the glass substrate in the conventional etching process of amorphous silicon devices, the drawbacks of a small difference in etching speed, and the drawbacks of poor etching uniformity. The object of the present invention is to provide a forming method.

(発明の構成) 本発明によればアモルファスシリコン膜上にモリブデン
膜およびチタン膜が積層された構造の上にマスクを形成
し、塩素系ガスプラズマを用いてチタン膜をエツチング
し、チタン膜が完全に除去できた時点で上記ガスプラズ
マに酸素を混入させてエツチングを進行させ、モリブデ
ン膜及びアモルファスシリコン膜をエツチングすること
を特徴とするパターン形成方法が得られる。
(Structure of the Invention) According to the present invention, a mask is formed on a structure in which a molybdenum film and a titanium film are laminated on an amorphous silicon film, and the titanium film is etched using chlorine gas plasma to completely remove the titanium film. A pattern forming method is obtained in which the molybdenum film and the amorphous silicon film are etched by mixing oxygen into the gas plasma to advance the etching at the time when the molybdenum film and the amorphous silicon film can be removed.

さらに本発明によれば絶縁性基板上にパターン形成され
たチタン膜上に、さらにアモルファスシリコン膜及びチ
タン膜が積層された構造の上にマスクを形成し、塩素系
ガスプラズマを用いてチタン膜及びアモルファスシリコ
ン膜をエツチングし、下地チタン膜の一部分が露出する
と同時に上記ガスプラズマに酸素を混入させて、アモル
ファスシリコン膜の残シをエツチングし、下地チタン膜
をエツチングストッパーとして用いることを特徴とする
パターン形成方法が得られる。
Furthermore, according to the present invention, a mask is formed on a structure in which an amorphous silicon film and a titanium film are stacked on a titanium film patterned on an insulating substrate, and a titanium film and a titanium film are formed using chlorine-based gas plasma. A pattern characterized in that an amorphous silicon film is etched, and at the same time a part of the underlying titanium film is exposed, oxygen is mixed into the gas plasma to etch the remaining portion of the amorphous silicon film, and the underlying titanium film is used as an etching stopper. A forming method is obtained.

(構成の詳細な説E!A) 次に本発明の根拠となる新規な実験事実について図面を
用いて詳細に説明する。
(Detailed explanation of the structure E!A) Next, novel experimental facts that form the basis of the present invention will be explained in detail using the drawings.

平行平板電極形プラズマエツチング装置を用いた。マス
クはホトレジストを用いてパターンを形成し、アモルフ
ァスシリコン膜とチタン膜に対してエツチングを試みた
。エツチングガスとして、四塩化炭素をプラズマエツチ
ング装置内にg OmT orrの圧力まで導入しプラ
ズマ放電を起こしてエツチングした。その結果得られた
エツチング速度(nm/min )を投入RF放電電力
(5)に対して第1図に示した。第1図11はチタン膜
に対して、12はアモルファスシリコン膜に対して得ら
れた結果である。
A parallel plate electrode type plasma etching apparatus was used. A pattern was formed using a photoresist mask, and etching was attempted on the amorphous silicon film and titanium film. As an etching gas, carbon tetrachloride was introduced into the plasma etching apparatus up to a pressure of g OmT orr, and plasma discharge was generated to perform etching. The etching rate (nm/min) obtained as a result is shown in FIG. 1 with respect to the applied RF discharge power (5). 11 shows the results obtained for the titanium film, and 12 shows the results obtained for the amorphous silicon film.

次にエツチングガスとして四塩化炭素に酸素を混入させ
る割合いを変えてエツチングを試みた。
Next, etching was attempted by changing the ratio of oxygen mixed into carbon tetrachloride as the etching gas.

プラズマエツチング装置内に導入する混合ガスの圧力ば
95rnTorr一定とし、放電電力も600W定とし
た。その結果得られたエツチング速度(nm/min 
)を第2図に酸素ガスの四塩化炭素に対する圧力の混合
割合いで示した。第2図21はチタン膜に対して、22
はアモルファスシリコン膜に対して得られた結果である
。なお、エツチングガスとしては四塩化炭素を用いた例
を述べたが、他に三塩化はう素、四塩化シリコン、塩化
水素および塩素ガスなども放電プラズマ中で塩素を発生
させる原料としては周知の材料である。
The pressure of the mixed gas introduced into the plasma etching apparatus was constant at 95 rnTorr, and the discharge power was also constant at 600 W. The resulting etching rate (nm/min
) is shown in Figure 2 as a mixture ratio of pressure of oxygen gas to carbon tetrachloride. 21 shows the titanium film with 22
are the results obtained for an amorphous silicon film. Although we have described an example using carbon tetrachloride as the etching gas, other well-known raw materials for generating chlorine in discharge plasma include boron trichloride, silicon tetrachloride, hydrogen chloride, and chlorine gas. It is the material.

以上の実験結果から以下のことがらについて工業的利用
上特に意義があることが見い出された。
From the above experimental results, it has been found that the following points are particularly significant for industrial use.

■アモルファスシリコン膜とチタン膜は四塩化炭素プラ
ズマ中で同程度でエツチングされること。
■Amorphous silicon film and titanium film should be etched to the same extent in carbon tetrachloride plasma.

■四塩化炭素に酸素ガスを混合させたガスのプラズマエ
ツチングではアモルファスシリコン膜トチタン膜のエツ
チング速度に著しく差が生じること。
■When plasma etching is performed using a mixture of carbon tetrachloride and oxygen gas, there is a significant difference in the etching speed of amorphous silicon and titanium films.

父、その他エツチング表面が平滑なこと、ガラス基板の
エツチング速度が極めて遅く、くもシも発生しないこと
、パターン変化率が小さいこと、アノード給電又はカソ
ード給電方式のいずれの方式でも十分なエツチング速度
が得られること、チタン膜とアモルファスシリコン膜と
の違いは膜の帯びている色の違いによってプラズマ中で
も識別できることなどが明らかとなった。本発明は上述
の結果から従来技術の問題点を解決するアモルファスシ
リコンデバイスのパターン形成方法を見い出したもので
ある。
In addition, the etching surface is smooth, the etching speed of the glass substrate is extremely slow, no clouding occurs, the rate of pattern change is small, and a sufficient etching speed can be obtained with either the anode or cathode power supply method. It has become clear that the difference between a titanium film and an amorphous silicon film can be distinguished even in plasma by the difference in the color of the film. Based on the above results, the present invention has discovered a method of patterning an amorphous silicon device that solves the problems of the prior art.

以下に本発明の実施例について図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

(実施例1.) この実施例はMlの発明の実施例である。第3図(a)
 、 (b)を用いて説明すると、ガラス基板31上に
パターンが形成されたモリブデン膜32が100OA付
着しており、その上に厚さ2000Xのシリコン窒化膜
33、厚さ3oooXのノンドープアモルファスシリコ
ン膜34、リントーク厚す500Xのn+アモルファス
シリコン欣35、厚さ200Aのモリブデン11Si!
36、厚さ100OAのチタン膜37が形成された薄膜
トランジスタ用試料をホトレジスト38のマスクでエツ
チングした。平行平板電極形プラズマエツチング装置を
用いて、アノード給電方式を採用した。又RF放重重電
力500(W)とした。先ず、エツチングガスを四塩化
炭素のみで85mTDrr として、プラズマ中でチタ
ン膜37をエツチングする。約2分半相度でチタン膜は
完全にエツチング除去され、モリブデン膜36に達して
いることが試料全面に渡って被エツチング膜がチタン膜
37の白色からモリブデン膜36の灰色となシ膜の色の
変化で判った。この状態を第3図(alに示す。ただち
に引続き上記プラズマ中に酸素ガスを2096混入して
同じ85mTorrとなるよう調整し、同一500(W
)の放電電力でエツチング行った。約30秒で試料全面
に渡ってアモルファスシリコン膜上の金属膜の色は無く
なり換って赤味を帯びたアモルファスシリコン膜の色と
なった。エツチングをさらに進行させ、n+アモルファ
スシリコン膜35及びノンドープアモルファスシリコン
膜34をエツチングシタ。約3分経過した後、全面に渡
り、エツチングしているアモルファスシリコン膜の赤味
を帯びた色が消え、換って窒化シリコン膜の無色の色と
なったところでエツチングを終了させた。その状態を第
3図+b>に示す。モリブデン膜は四塩化炭素のプラズ
マのみではエツチング速度が遅いため、この膜のエツチ
ング途中でエツチングガスを変え、四塩化炭素と酸素の
混合ガスプラズマとすることで、モリブデン膜のみなら
ず、アモルファスシリコン膜のエツチング速度も大きく
なシ、エツチング時間の短縮が計れる。又、モリブデン
膜のようにエツチング速度の遅い所でエツチングの不均
一性が補正され、しかる後エツチング速度を高めるため
後のエツチングをよシ均一にエツチングできる。さらに
、エツチング速度の極めて遅い窒化シリコン膜上でエツ
チングを終了させることで、エツチング加工量の不均一
性を解消できた。
Example 1. This example is an embodiment of Ml's invention. Figure 3(a)
, To explain using (b), a patterned molybdenum film 32 of 100 OA is adhered on a glass substrate 31, a silicon nitride film 33 with a thickness of 2000×, and a non-doped amorphous silicon film with a thickness of 300× are deposited on top of it. 34, Lintalk thickness 500X n+ amorphous silicon 35, 200A thickness molybdenum 11Si!
36. The thin film transistor sample on which the titanium film 37 with a thickness of 100 OA was formed was etched using a photoresist mask 38. A parallel plate electrode type plasma etching system was used, and an anode power supply system was adopted. Further, the RF free power was set to 500 (W). First, the titanium film 37 is etched in plasma using only carbon tetrachloride as an etching gas at 85 mTDrr. The titanium film was completely etched away in about 2 and a half minutes, and the etched film reached the molybdenum film 36. The etched film changed from the white of the titanium film 37 to the gray of the molybdenum film 36 over the entire surface of the sample. It was recognized by the change in color. This state is shown in FIG.
) was used for etching. In about 30 seconds, the color of the metal film on the amorphous silicon film disappeared over the entire surface of the sample, changing to a reddish color of the amorphous silicon film. Etching is further progressed, and the n+ amorphous silicon film 35 and the non-doped amorphous silicon film 34 are etched away. After approximately 3 minutes had elapsed, the etching was terminated when the reddish color of the amorphous silicon film being etched disappeared and was replaced by the colorless color of the silicon nitride film. The state is shown in Fig. 3+b>. Since the etching speed of a molybdenum film is slow with carbon tetrachloride plasma alone, by changing the etching gas during etching of this film and creating a mixed gas plasma of carbon tetrachloride and oxygen, not only a molybdenum film but also an amorphous silicon film can be etched. Since the etching speed is also high, the etching time can be shortened. In addition, non-uniformity in etching is corrected in areas where the etching rate is slow, such as a molybdenum film, and the etching rate is then increased, so that subsequent etching can be performed more uniformly. Furthermore, by finishing the etching on the silicon nitride film, which has an extremely slow etching rate, it was possible to eliminate non-uniformity in the amount of etching.

(実施例2.) この実施例は第2の発明の実施例である。第4図(a)
 、 (b)を用〜いて説明すると、ガラス基板41上
ニハターンが形成されたチタン膜42が15ooX付着
しており、その上に厚さ300Xのリンドープn+アモ
ルファスシリコン層43.FJさ5000Aのノンド〜
プアモルファスシリコン膜44、厚さ200Aノホロン
ドーグr アモルファスシリコン膜45、厚さ2000
Xのチタン膜46が積層された’p i n ダイオー
ド用試料をホトレジスト47のマスクでエツチングした
。その状態を第4図(a)に示す。平行平板電極形プラ
ズマエツチング装置を用いて、カソード給電方式を採用
した。又、RF電力は600(W) とした。先ずエツ
チングガスを四塩化炭素のみで100 (mTorr 
)として、プラズマを発生させ、チタン膜46F p+
+ l 、 n+層アモルファスシリコン膜45.44
.43のそれぞれを順次エツチングしてゆく。最初にエ
ツチングを開始してから、約15分経過後アモルファス
シリコン換のエツチング面の一部分が赤味を帯びている
色から下地チタン膜の白色と変化した。この変化と同時
に四塩化炭素プラズマ中に酸素を圧力比で4096とな
る値に導入し、100(rnTorr ) 、 600
(W) で同様にエツチングを続けた。その結果、その
後約30秒で試料全面のエツチング部分の色がチタン膜
の白色となったためエツチングを終了させた。この休憩
を第4図(b)に示す。下地チタン膜までエツチングが
一部分でも達した時に酸素を混入させたプラズマに変え
たため、下地チタン膜はほとんどエツチングされずスト
ッパーとして作用し、アモルファスシリコン膜が不均一
に残っている部分のみ高速度でエツチングされ、結果的
に下地チタン膜の断線がなく、アモルファスシリコン膜
を均一性良くエツチングできた。
(Example 2) This example is an example of the second invention. Figure 4(a)
To explain using (b), a titanium film 42 with a Ni-turn pattern of 150X is adhered on a glass substrate 41, and a 300X thick phosphorus-doped n+ amorphous silicon layer 43. FJ Sa5000A nondo~
Poor amorphous silicon film 44, thickness 200A Amorphous silicon film 45, thickness 2000A
A 'pin diode sample on which a titanium film 46 of X was laminated was etched using a photoresist 47 mask. The state is shown in FIG. 4(a). A cathode power supply system was adopted using a parallel plate electrode type plasma etching system. Further, the RF power was set to 600 (W). First, the etching gas was carbon tetrachloride alone at 100 mTorr (mTorr).
), plasma is generated and titanium film 46F p+
+l, n+ layer amorphous silicon film 45.44
.. 43 are etched in sequence. Approximately 15 minutes after etching was first started, the color of a part of the etched surface of the amorphous silicone layer changed from reddish to the white color of the underlying titanium film. At the same time as this change, oxygen was introduced into the carbon tetrachloride plasma to a pressure ratio of 4096, and the pressure ratio was 100 (rnTorr), 600
Etching was continued in the same manner with (W). As a result, after about 30 seconds, the color of the etched portion on the entire surface of the sample became the white color of the titanium film, so the etching was terminated. This break is shown in FIG. 4(b). When the etching reaches even a part of the underlying titanium film, the plasma is changed to oxygen-containing plasma, so that the underlying titanium film is hardly etched and acts as a stopper, and only the parts where the amorphous silicon film remains unevenly are etched at high speed. As a result, there was no disconnection of the underlying titanium film, and the amorphous silicon film could be etched with good uniformity.

(発明の効果) 。(Effect of the invention) .

本発明においてはガラス基板が荒れてしまうことは全く
発生せず、外観検査による不良率を大幅に低減できた。
In the present invention, the glass substrate did not become rough at all, and the defective rate by visual inspection could be significantly reduced.

チタン膜を用いたアモルファスシリコンデバイスのエツ
チング加工をドライプロセステアモルファスシリコン膜
のエッチンクト同一ガスで行うことが出来、プロセスの
簡略化が計れた。又、本発明による方法は従来法よりパ
ターン変化率が小さく、デバイス特性の素子間ばらつき
が極めて小さくすることができた。エツチングガス比を
エツチング除中で変えることにより、エツチング加工厚
さの不均一性が解消され、さらに下地チタン膜に対して
選択性を高めたため下池チタン膜の断線を防ぐことがで
きた。
Etching of an amorphous silicon device using a titanium film can be performed using the same gas used for etching a dry-processed amorphous silicon film, simplifying the process. Furthermore, the method according to the present invention has a smaller pattern change rate than the conventional method, and can extremely reduce variations in device characteristics between elements. By changing the etching gas ratio during etching, the non-uniformity of the etching thickness was eliminated, and the selectivity to the underlying titanium film was increased, thereby preventing disconnection of the lower titanium film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放電電力に対するエツチング速度を示す図、第
2図は四塩化炭素と酸素の混合比に対するエツチング速
度を示す図、第3図(at 、 (b)は本願の第1の
発明を説明するだめの試料の構造を示す図で、第3図(
a)はエツチングガスを変えた時のエツチング途中の構
造を示す図で、M3図(b)はエツチング終了時の構造
を示す図、又第4図(a) 、 (b)は本願の第2の
発明を説明するだめの試料の構造を示す図で、第4図(
a)はエツチング前の構造図、第4図(blはエツチン
グガスを変えてエツチングし終った時の構造を示す図で
ある。 図において、11.21はチタン膜に対するエツチング
特性、12.22はアモルファスシリコン膜に対するエ
ツチング特性であり、又、31.41はガラス基板、3
2.36はモリブデン膜、33は窒化シリコン膜、34
,35.43,44.45はアモルファスシリコン膜、
37,42.46はチタン膜、38゜47はホトレジス
)Illをそれぞれ示す。 第1図 第2図 73図 第4図 スR
Fig. 1 is a diagram showing the etching rate with respect to the discharge power, Fig. 2 is a diagram showing the etching rate with respect to the mixing ratio of carbon tetrachloride and oxygen, and Fig. 3 (at, (b)) explains the first invention of the present application. Figure 3 (
a) is a diagram showing the structure during etching when the etching gas is changed, M3 diagram (b) is a diagram showing the structure at the end of etching, and FIGS. Figure 4 (
a) shows the structure before etching, and FIG. 4 shows the structure after etching with different etching gases. Etching characteristics for amorphous silicon film, 31.41 is a glass substrate, 3
2.36 is a molybdenum film, 33 is a silicon nitride film, 34
, 35.43, 44.45 are amorphous silicon films,
37, 42, and 46 are titanium films, and 38° and 47 are photoresist) Ill, respectively. Figure 1 Figure 2 73 Figure 4 SR

Claims (1)

【特許請求の範囲】 1、 アモルファスシリコン膜上にモリブデン膜および
チタン膜が積層された構造の上にマスクを形成し、塩素
系ガスプラズマを用いてチタン膜をエツチングし、チタ
ン膜が完全に除去できた時点で上記ガスプラズマに酸素
を混入させてエツチングを進行させ、モリブデン膜及び
アモルファスシリコン膜をエツチングすることを特徴と
するパターン形成方法。 2、絶縁性基板上にパターン形成されたチタン膜上に、
さらにアモルファスシリコン膜及びチタン膜が積層され
た構造の上にマスクを形成し、塩素系ガスプラズマを用
いてチタン膜及びアモルファスシリコン膜をエツチング
し、下地チタン膜の一部分が露出すると同時に、上記ガ
スプラズマに酸素を混入させて、アモルファスシリコン
膜の残シをエツチングし、下地チタン膜をエツチングス
トッパーとして用いることを特徴とするパδ形成方法。
[Claims] 1. A mask is formed on a structure in which a molybdenum film and a titanium film are stacked on an amorphous silicon film, and the titanium film is completely removed by etching the titanium film using chlorine-based gas plasma. A pattern forming method comprising the step of etching the molybdenum film and the amorphous silicon film by mixing oxygen into the gas plasma when the etching is completed. 2. On the titanium film patterned on the insulating substrate,
Furthermore, a mask is formed on the structure in which the amorphous silicon film and the titanium film are laminated, and the titanium film and the amorphous silicon film are etched using chlorine-based gas plasma. 1. A method for forming a pattern δ, which is characterized in that the remaining portion of the amorphous silicon film is etched by mixing oxygen into the etching film, and the underlying titanium film is used as an etching stopper.
JP6802684A 1984-04-05 1984-04-05 Pattern formation method Expired - Lifetime JPH0658903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6802684A JPH0658903B2 (en) 1984-04-05 1984-04-05 Pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6802684A JPH0658903B2 (en) 1984-04-05 1984-04-05 Pattern formation method

Publications (2)

Publication Number Publication Date
JPS60211840A true JPS60211840A (en) 1985-10-24
JPH0658903B2 JPH0658903B2 (en) 1994-08-03

Family

ID=13361885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6802684A Expired - Lifetime JPH0658903B2 (en) 1984-04-05 1984-04-05 Pattern formation method

Country Status (1)

Country Link
JP (1) JPH0658903B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285426A (en) * 1986-06-03 1987-12-11 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285426A (en) * 1986-06-03 1987-12-11 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPH0528896B2 (en) * 1986-06-03 1993-04-27 Oki Electric Ind Co Ltd

Also Published As

Publication number Publication date
JPH0658903B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
JP2574094B2 (en) Etching method
JPH0545057B2 (en)
US6651678B2 (en) Method of manufacturing semiconductor device
JPS60211840A (en) Forming method for pattern
JPH05190508A (en) Thin film etching method and laminated thin film etching method
JPH03237715A (en) Etching method
JPH08236506A (en) Manufacture of semiconductor device
US6528341B1 (en) Method of forming a sion antireflection film which is noncontaminating with respect to deep-uv photoresists
JPH11274143A (en) Dry etching method and manufacture of thin film transistor
US7341953B2 (en) Mask profile control for controlling feature profile
JPH1140542A (en) Gaseous mixture for etching polysilicon layer and method and etching polysilicon electrode layer by using it
KR20020078583A (en) Etchant for manufacturing source and drain electrode in tft-lcd
US7271102B2 (en) Method of etching uniform silicon layer
KR960005555B1 (en) Semiconductor device isolation method
JPH07263406A (en) Method of manufacturing semiconductor device
JPS60145624A (en) Forming method of pattern
JPH1083984A (en) Ito patterning method
JPH03270223A (en) Dry-etching process of amorphous silicon thin film
KR100576439B1 (en) Method for cleanning etching chamber of semiconductor device
JPH0220021A (en) Manufacture of semiconductor device
JPH0831796A (en) Dry etching method
JPS6353928A (en) Dry etching
JPH09270407A (en) Manufacture of semiconductor device
JPH06163512A (en) Etching method
JPH0613354A (en) Semiconductor device and fabrication thereof