JPS6021172A - Method for controlling cooling body of continuous casting device - Google Patents
Method for controlling cooling body of continuous casting deviceInfo
- Publication number
- JPS6021172A JPS6021172A JP12796783A JP12796783A JPS6021172A JP S6021172 A JPS6021172 A JP S6021172A JP 12796783 A JP12796783 A JP 12796783A JP 12796783 A JP12796783 A JP 12796783A JP S6021172 A JPS6021172 A JP S6021172A
- Authority
- JP
- Japan
- Prior art keywords
- cooling body
- signal
- amplitude
- servocontrol
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、連続鋳造装置における冷却体の微振動制御に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to micro-vibration control of a cooling body in a continuous casting apparatus.
連続鋳造設備では、鋳片の表面品質の向上及び、溶鋼の
凝固を安定化させる目的で、冷却体に鋳片の引出方向に
高サイクルの微振動を与える方法がとられる。In continuous casting equipment, in order to improve the surface quality of the slab and stabilize the solidification of molten steel, a method is used in which a high-cycle microvibration is applied to the cooling body in the direction in which the slab is pulled out.
第1図は、従来の微撮動制御方法を示す。ノズル1より
供給される溶鋼2は冷却体5により冷却凝固され、鋳片
3となってピンチロール12により引出される。尚、冷
却体5は図示されていない水流により冷却される。一方
、断熱体4を含む冷却体5は外部枠体6側を固定側とし
て、油圧ノくツキン8を境にして油圧操作により上、下
方向に変位できる。油圧操作は電油サーボ弁11を用い
て電気信号により行なわれ、冷却体5の変位量は位置検
出器20により検出され電気回路側へフィードバックさ
れる。冷却体5の基準位置Soは基準位置設定器15に
より設定される。制御しない時の冷却体5はストッパー
22上に定置されるが、基準位置S。は冷却体5とスト
ッパー22間のギャップを設定するものであり、微振動
中に冷却体5がストッパー22に当らないように微振動
変位以上の値が設定される。一方、微振動変位量ΔSは
振幅設定器14により設定され、その周波数は周波数発
生器13のダイヤルで設定する。基準位置Soと微振動
変位量ΔSは指令加算器16により加算され、この加算
値が位置指令Sとして位置偏差演算器17に出力される
。位置偏差演算器17は位置指令Sに対する現在位置検
出値Stの偏差量とその方向を演算し位置偏差信号Δs
、f:出力する。位置偏差信号ΔS、はゲイン設定増幅
器18により増幅され、電流増幅器19を介して電流サ
ーボ弁11が操作される。ゲイン設定増幅器18は適正
安位置制御ゲインが設定できるよう可変ゲインとなって
いる。冷却体5の変位は前述の位置サーボ制御で位置指
令Sに等しくなるように目動制御される。FIG. 1 shows a conventional fine imaging control method. The molten steel 2 supplied from the nozzle 1 is cooled and solidified by the cooling body 5, becomes a slab 3, and is drawn out by the pinch rolls 12. Note that the cooling body 5 is cooled by a water stream (not shown). On the other hand, the cooling body 5 including the heat insulating body 4 can be displaced upwardly and downwardly by hydraulic operation with the external frame 6 side as a fixed side and the hydraulic lock 8 as a boundary. Hydraulic operation is performed by an electric signal using an electro-hydraulic servo valve 11, and the amount of displacement of the cooling body 5 is detected by a position detector 20 and fed back to the electric circuit side. The reference position So of the cooling body 5 is set by the reference position setting device 15. When not controlled, the cooling body 5 is placed on the stopper 22, but at the reference position S. is used to set the gap between the cooling body 5 and the stopper 22, and is set to a value greater than the slight vibration displacement so that the cooling body 5 does not hit the stopper 22 during minute vibrations. On the other hand, the micro-vibration displacement amount ΔS is set by the amplitude setter 14, and its frequency is set by the dial of the frequency generator 13. The reference position So and the slight vibration displacement amount ΔS are added by a command adder 16, and this added value is outputted as a position command S to a position deviation calculator 17. The position deviation calculator 17 calculates the deviation amount and direction of the detected current position value St with respect to the position command S, and generates a position deviation signal Δs.
, f: Output. The position error signal ΔS is amplified by the gain setting amplifier 18, and the current servo valve 11 is operated via the current amplifier 19. The gain setting amplifier 18 has a variable gain so that an appropriate safe position control gain can be set. The displacement of the cooling body 5 is controlled by the aforementioned position servo control so that it becomes equal to the position command S.
第2図において、実線Aは電油サーボ弁11単体の周波
数ゲイン特性を示す。そして、破線BはこΩ電油サーボ
弁11を使用した時の位置指令Sに対する冷却体5の実
際変位(位置サーボ制御)の周波数ゲイン特性を示す。In FIG. 2, a solid line A indicates the frequency gain characteristic of the electro-hydraulic servo valve 11 alone. A broken line B shows the frequency gain characteristic of the actual displacement (position servo control) of the cooling body 5 with respect to the position command S when the Ω electro-hydraulic servo valve 11 is used.
第2図で明らかなように、電流サーボ弁11は約200
H2より減衰しているが、これを使用した位置サーボ制
御は位置フィードバック制御を行なうのでこの約1/6
の30H2伺近より急激に減衰する。As is clear from FIG. 2, the current servo valve 11 has approximately 200
Although it is attenuated compared to H2, the position servo control using this performs position feedback control, so it is about 1/6 of this.
It attenuates rapidly from near 30H2.
冷却体5の微振動の目的を効果的に発揮させるため、5
0〜100H2の振動周波数が必要とされる。この実用
周波数帯50〜100H2では指令加算器16に許容さ
れる最大の微振動変位量ΔSを加えても冷却体5の実際
変位はわずかであり、さらに、従来方法においては、第
2図の破線Bに示すように、振幅が減衰し始める3 0
H2付近より100H2迄の振Sの変化は80d13以
上(10000大きすぎる場合は鋳片に過大な振動を与
え、凝固面が破かいされブレークアウトに至り、いちじ
るしく操業をさまたげることになる。又、小さすぎる場
合は、冷却体5に十分な振動が加わらなくなり微振動の
目的が達されない。In order to effectively achieve the purpose of the micro-vibration of the cooling body 5,
A vibration frequency of 0-100H2 is required. In this practical frequency band 50 to 100H2, the actual displacement of the cooling body 5 is small even if the maximum permissible micro-vibration displacement amount ΔS is added to the command adder 16. Furthermore, in the conventional method, the broken line in FIG. As shown in B, the amplitude begins to decay at 30
The change in vibration S from around H2 to 100H2 is 80d13 or more (if it is too large, excessive vibration will be given to the slab, the solidified surface will be ruptured and breakout will occur, and the operation will be significantly hindered. If it is too high, sufficient vibration will not be applied to the cooling body 5, and the purpose of the micro-vibration will not be achieved.
従来方法では、周波数を変更する際には、必ずこれに連
動して手動操作により振幅を実測しながら再調整する操
作を行なわなければならず、周波数のみ変更して振幅の
調整ケ忘れた時には、上記した危険におちいる欠点をも
っている。従来の微振動制御では冷却体5に十分な振動
を加えることができない欠点がある。In the conventional method, whenever the frequency is changed, the amplitude must be manually measured and readjusted, and if only the frequency is changed and the amplitude is forgotten, It has the disadvantage of falling into the dangers mentioned above. Conventional micro-vibration control has the disadvantage that sufficient vibration cannot be applied to the cooling body 5.
本発明の目的は冷却体に効果的な微振動を加え得る微振
動制御方法全提供するにある。An object of the present invention is to provide an entire micro-vibration control method that can apply effective micro-vibrations to a cooling body.
本発明は、基準位置のみ位置サーボ制御により保持させ
、微振動変位分は、位置サーボ制御を構成せずに振幅一
定制御を行なう方法により目的を達しようとするにある
。The object of the present invention is to achieve the object by a method in which only the reference position is held by position servo control, and minute vibration displacement is controlled to have a constant amplitude without position servo control.
第3図に本発明の一実施例を示す。位置検出器20によ
り検出される冷却体5の変位信号のうち、微振動高周波
成分以下の低い周波数成分はローパスフィルター28に
より選択されて、位置サーボ制御の位置フィードバック
信号StOとして検出される。冷却体5の基準位(1t
は位置偏差演算器17、ゲイン設定増幅器18、電流増
幅器19、電油サーボ弁11、位置検出器20.ローパ
スフィルター28により構成される位置サーボ制御ルー
プ(1点鎖線I)により基準位置設定器15の設定値S
Oに等しくなるように位置制御される。FIG. 3 shows an embodiment of the present invention. Among the displacement signals of the cooling body 5 detected by the position detector 20, low frequency components below the microvibration high frequency component are selected by the low pass filter 28 and detected as the position feedback signal StO for position servo control. Reference position of cooling body 5 (1t
are a position deviation calculator 17, a gain setting amplifier 18, a current amplifier 19, an electro-hydraulic servo valve 11, a position detector 20. The set value S of the reference position setter 15 is controlled by the position servo control loop (dotted chain line I) constituted by the low-pass filter 28.
The position is controlled to be equal to O.
一方、位置検出器20により検出される冷却体5の変位
信号のうち微振@高周波交流成分はバンドパスフィルタ
ー27により選択検出され、バンドパスフィルター27
の微振動高周波交流信号出力は全波整流器26により直
流信号に変換され、微振動高周波信号の振幅信号Atが
得られる。振幅偏差演算器29は微振動高周波信号の振
幅設定器14の設定値Aに対する実際の微振動高周波の
振幅信号Atの振幅偏差信号ΔA(ΔA = A −A
t )を演算出力する。振幅偏差信号ΔAは積分器25
により積分され、この積分値は振幅制御 (ii号にと
して乗算器24に出力嘔れる。周波数発生器13の出力
信号a−sinωtは乗算器24により振幅制御信号に
と乗算され、その振幅値aが振幅制御信号Kにより自動
調整される。すなわち、実際の微振動高周波の振幅信号
Atが設定値Aに等しくなる迄は、振幅制御信号にの値
は変化しつづけ、振幅信号Afが設定値Aに等しくなる
ように自動制御される。尚、a”s1nωtのaは微撮
動高周波の振幅、ω=2πfo、f0はその周波数、t
は時間を示す。On the other hand, among the displacement signals of the cooling body 5 detected by the position detector 20, the minute vibration @ high frequency AC component is selectively detected by the bandpass filter 27.
The micro-vibration high-frequency AC signal output is converted into a DC signal by the full-wave rectifier 26, and an amplitude signal At of the micro-vibration high-frequency signal is obtained. The amplitude deviation calculator 29 calculates an amplitude deviation signal ΔA (ΔA = A − A
t) is calculated and output. The amplitude deviation signal ΔA is sent to the integrator 25
This integrated value is output to the multiplier 24 as the amplitude control signal (ii).The output signal a-sinωt of the frequency generator 13 is multiplied by the amplitude control signal by the multiplier 24, and its amplitude value a is automatically adjusted by the amplitude control signal K. In other words, the value of the amplitude control signal continues to change until the amplitude signal At of the actual micro-vibration high frequency becomes equal to the set value A, and the amplitude signal Af becomes equal to the set value A. is automatically controlled so that it is equal to
indicates time.
このように、微振動高周波成分に対しては二点鎖線■の
ループ、振幅一定制御を構成する方法をとる。なお5図
中71−i支持架台、9は給油油圧配管、10は返油々
圧配管、11は電油サーボ弁、21は圧油、23は加算
器である。In this way, for the micro-vibration high-frequency component, a method is adopted in which the loop indicated by the chain double-dashed line (■) and constant amplitude control are configured. In addition, in FIG. 5, 71-i is a support frame, 9 is an oil supply hydraulic pipe, 10 is a return oil pressure pipe, 11 is an electro-hydraulic servo valve, 21 is a pressure oil, and 23 is an adder.
本発明によれば冷却体に十分にして、かつ安定した微振
動を加えることができ、鋳片の表面品質と溶鋼の凝固の
安定性を向上させることが可能となる。According to the present invention, sufficient and stable micro-vibration can be applied to the cooling body, thereby making it possible to improve the surface quality of the slab and the stability of solidification of molten steel.
第1図、第2図は従来制御方法の説明図、第3図は本発
明による制御方法の説明図である。1 and 2 are explanatory diagrams of a conventional control method, and FIG. 3 is an explanatory diagram of a control method according to the present invention.
Claims (1)
を指令位置に保持し、前記冷却体の高周波微振動変位は
振幅一定制御により、実際振動振幅を指令振幅に保持す
ることを特徴とする連続鋳造装置の冷却体の制御方法。1. The reference position of the cooling body is continuous, characterized in that the actual position is maintained at the commanded position by a position control loop, and the high-frequency micro-vibration displacement of the cooling body is maintained at the commanded amplitude by constant amplitude control. A method for controlling the cooling body of a casting machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12796783A JPS6021172A (en) | 1983-07-15 | 1983-07-15 | Method for controlling cooling body of continuous casting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12796783A JPS6021172A (en) | 1983-07-15 | 1983-07-15 | Method for controlling cooling body of continuous casting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6021172A true JPS6021172A (en) | 1985-02-02 |
Family
ID=14973109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12796783A Pending JPS6021172A (en) | 1983-07-15 | 1983-07-15 | Method for controlling cooling body of continuous casting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6021172A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62137151A (en) * | 1985-12-09 | 1987-06-20 | マンネスマン・アクチエンゲゼルシヤフト | Vibrator for continuous casting mold |
JPS62228102A (en) * | 1986-03-29 | 1987-10-07 | Toshiba Corp | Remote displacement detector |
JPS63112735A (en) * | 1986-10-24 | 1988-05-17 | ユニチカ株式会社 | Treatment of abnormal untwisted yarn |
JPH04234428A (en) * | 1990-10-19 | 1992-08-24 | Korea Advanced Inst Of Sci Technol | Manufacture of polyester |
-
1983
- 1983-07-15 JP JP12796783A patent/JPS6021172A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62137151A (en) * | 1985-12-09 | 1987-06-20 | マンネスマン・アクチエンゲゼルシヤフト | Vibrator for continuous casting mold |
US4703789A (en) * | 1985-12-09 | 1987-11-03 | Mannesmann Ag | Controlling mold oscillations |
JPS62228102A (en) * | 1986-03-29 | 1987-10-07 | Toshiba Corp | Remote displacement detector |
JPS63112735A (en) * | 1986-10-24 | 1988-05-17 | ユニチカ株式会社 | Treatment of abnormal untwisted yarn |
JPH04234428A (en) * | 1990-10-19 | 1992-08-24 | Korea Advanced Inst Of Sci Technol | Manufacture of polyester |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6021172A (en) | Method for controlling cooling body of continuous casting device | |
JP3591422B2 (en) | Level control method and level control device for continuous casting machine | |
NO953859L (en) | Method and apparatus for controlling the level of liquid metal in a continuous mold for metal casting | |
JP3271242B2 (en) | Continuous casting machine Mold level control device in mold | |
JP2002248555A (en) | Molten metal level control method and equipment for continuous-casting machine | |
JP2960225B2 (en) | Auto start controller for continuous casting equipment | |
JPH0160340B2 (en) | ||
SUMI et al. | Model experiment and theoretical analysis for the effect of electromagnetic pressure on surface quality of continuous castings | |
JP3154377B2 (en) | Pressure control method for low pressure casting machine | |
JPS5611172A (en) | Controlling method for flowing-in of powder in continuous casting of metal | |
JPS62192246A (en) | Device for controlling molten metal level of mold for continuous casting installation | |
JPH07314109A (en) | Device for controlling operation of continuous casting apparatus | |
JPS56109149A (en) | Continuous casting method of less surface cracking | |
JPS603898B2 (en) | Electromagnetic stirring method in continuous casting | |
JPH0245688B2 (en) | FUNRYUSHIKITORIBESEIRENSOCHI | |
Pilyushenko et al. | Effect of Low Frequency Vibration Treatment on Ingot Formation and Quality | |
JP2607335B2 (en) | Flow control device for molten steel in continuous casting mold | |
JP3039580B2 (en) | Slab drawing speed control method in continuous casting equipment | |
JPS5933062A (en) | Method for controlling automatically liquid level of molten steel in casting mold in continuous casting | |
JPS6349588B2 (en) | ||
JPS61147954A (en) | Mold oscillating method in continuous casting | |
JP2561767B2 (en) | Method for adjusting PID controller | |
JP2018086666A (en) | Control device of continuous casting machine, control method of continuous casting machine and continuous casting method of steel | |
JPS58205662A (en) | Semicontinuous casting method of metal | |
JPS61216849A (en) | Oscillation casting method |