JPH0245688B2 - FUNRYUSHIKITORIBESEIRENSOCHI - Google Patents
FUNRYUSHIKITORIBESEIRENSOCHIInfo
- Publication number
- JPH0245688B2 JPH0245688B2 JP13976284A JP13976284A JPH0245688B2 JP H0245688 B2 JPH0245688 B2 JP H0245688B2 JP 13976284 A JP13976284 A JP 13976284A JP 13976284 A JP13976284 A JP 13976284A JP H0245688 B2 JPH0245688 B2 JP H0245688B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- buffer tank
- valve
- hollow tube
- electromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 28
- 239000010959 steel Substances 0.000 claims description 28
- 238000007670 refining Methods 0.000 claims description 16
- 230000003139 buffering effect Effects 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 33
- 238000003756 stirring Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/072—Treatment with gases
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Description
【発明の詳細な説明】
(産業の利用分野)
この発明は、溶鋼の二次精錬を目的とする装置
であつて、取鍋内に溶鋼中に耐火物で覆つた中空
管が浸漬されており、中空管内の圧力変動によつ
て溶鋼を撹拌する精錬装置に関するものである。[Detailed Description of the Invention] (Field of Industrial Application) This invention is an apparatus for the purpose of secondary refining of molten steel, in which a hollow tube covered with a refractory is immersed in the molten steel in a ladle. This invention relates to a refining device that stirs molten steel using pressure fluctuations inside a hollow tube.
(従来の技術)
従来、転炉や電気炉などで一次精錬を受けた溶
鋼は、炉から取鍋に出鋼され、この取鍋内で合金
や脱酸剤が添加され、酸素などの不純物の除去や
目的の鋼の組成を得るための成分調節などを目的
としていわゆる溶鋼の二次精錬が行われている。(Prior art) Conventionally, molten steel that has undergone primary refining in a converter or electric furnace is tapped from the furnace into a ladle, where alloys and deoxidizing agents are added to remove impurities such as oxygen. So-called secondary refining of molten steel is carried out for the purpose of removal and component adjustment to obtain the desired steel composition.
この二次精錬装置として取鍋内に溶鋼中に耐火
物で覆つた中空管が浸漬されており、中空管内の
ガス圧力を変動させる手段によつて中空管内に溶
鋼を吸い上げたり、吐出させることにより溶鋼を
撹拌する精錬装置いわゆるパルセイテイング、ミ
キシング装置(以下P.M.装置という)がある。 As this secondary refining device, a hollow tube covered with a refractory is immersed in molten steel in a ladle, and the molten steel is sucked up and discharged into the hollow tube by means of varying the gas pressure inside the hollow tube. There is a refining device that stirs molten steel using a so-called pulsating or mixing device (hereinafter referred to as a PM device).
第2図は従来のP.M.装置の圧力制御手段の説
明図である。第2図に示す如く、P.M.装置には
一次精錬炉から溶鋼2を受取る取鍋1と、取鍋1
中の溶鋼2を撹拌するための溶鋼2中に浸漬され
ている中空管3と、中空管3内のガス圧力を加圧
する加圧用配管系と、中空管3内のガス圧力を減
圧する減圧用配管系とが設けられている。加圧用
配管系には加圧用ガス源6と、ガス源6の圧力を
使用圧力に減圧する減圧弁6aと、ガスを一時的
に貯えるガスタンク6bと、ガス流量調節弁4
a、電磁開閉弁4等とが設けられ、減圧用配管系
には減圧用ポンプ7と電磁開閉弁5等とが設けら
れており、さらに中空管3内の圧力を検出し信号
を発信する発信器8と、発信器8からの信号を受
けて電磁開閉弁4,5を制御する制御手段9とが
設けられている。 FIG. 2 is an explanatory diagram of a pressure control means of a conventional PM device. As shown in Figure 2, the PM device includes a ladle 1 that receives molten steel 2 from the primary refining furnace, and a ladle 1
A hollow tube 3 immersed in the molten steel 2 for stirring the molten steel 2 inside, a pressurizing piping system for pressurizing the gas pressure inside the hollow tube 3, and a pressure reduction system for reducing the gas pressure inside the hollow tube 3. A pressure reducing piping system is provided. The pressurization piping system includes a pressurization gas source 6, a pressure reducing valve 6a that reduces the pressure of the gas source 6 to the working pressure, a gas tank 6b that temporarily stores gas, and a gas flow rate adjustment valve 4.
a, an electromagnetic on-off valve 4, etc. are provided, and the pressure reduction piping system is provided with a pressure reduction pump 7, an electromagnetic on-off valve 5, etc., and further detects the pressure inside the hollow pipe 3 and sends a signal. A transmitter 8 and a control means 9 that receives a signal from the transmitter 8 and controls the electromagnetic on-off valves 4 and 5 are provided.
この装置によれば、取鍋1内の溶鋼2を撹拌す
るため約5秒周期で中空管3内の圧力を、加圧用
電磁弁4、減圧用電磁弁5を切り換えることによ
つて変動させ、中空管3内の溶鋼2を中空管3外
に吐出したり、中空管3内に吸い上げたりする。
このとき溶鋼に効率よく撹拌エネルギーを与える
ためには加圧時の中空管3内圧力の最大値を指定
された値に制御することが重要である。特公昭59
−5834号に開示されている如く、従来は中空管3
内の吸い上げ期間の終了時における中空管3内の
ガス圧力値が発信器8で制御手段9に信号が送ら
れ、予め作成してある吸上げ期間終了時における
中空管3内の圧力値と、吐出期間の中空管3内の
ガス圧力の最大値との関係式に基いて中空管3内
のガス圧力の最大値が一定値となるように中空管
3内への加圧用ガス電磁弁4と、減圧用ガス電磁
弁5とを開閉して、中空管3内の圧力制御を行つ
ていた。この装置によれば中空管3内の圧力を制
御する因子は、電磁弁4が開状態となつている時
間であり、制御手段9では電磁弁4を開状態に保
持する時間を演算している。 According to this device, in order to stir the molten steel 2 in the ladle 1, the pressure in the hollow tube 3 is varied at approximately 5 second intervals by switching the pressurizing solenoid valve 4 and the pressure reducing solenoid valve 5. , the molten steel 2 inside the hollow tube 3 is discharged to the outside of the hollow tube 3 or sucked up into the hollow tube 3.
At this time, in order to efficiently apply stirring energy to the molten steel, it is important to control the maximum value of the internal pressure of the hollow tube 3 during pressurization to a specified value. Special Public Service 1986
As disclosed in No.-5834, the conventional hollow tube 3
The gas pressure value in the hollow tube 3 at the end of the suction period is sent by the transmitter 8 to the control means 9, and the gas pressure value in the hollow tube 3 at the end of the suction period created in advance is determined. For pressurizing the inside of the hollow tube 3 so that the maximum value of the gas pressure inside the hollow tube 3 becomes a constant value based on the relation between The pressure inside the hollow tube 3 was controlled by opening and closing the gas solenoid valve 4 and the pressure reducing gas solenoid valve 5. According to this device, the factor that controls the pressure inside the hollow tube 3 is the time that the solenoid valve 4 is in the open state, and the control means 9 calculates the time that the solenoid valve 4 is kept in the open state. There is.
(発明が解決しようとする問題点)
しかしながら前述の装置においても、なお圧力
制御の誤差要因となる、電磁弁4の開閉速度の影
響と、ガスタンク6bをおいて圧力変動を軽減す
る処置はとられているが、工場内窒素ガス源6の
元圧変動の影響とを完全に避けることができず、
精密に加圧時の中空管3内の最大圧力を一定にす
ることができなかつた。さらに制御手段9が故障
したときは過剰の圧力が中空管3内に数秒間以上
かかることになり、取鍋1から溶鋼2が噴出する
事故につながる可能性がある。前述の如き理由
で、制御手段9の精度を考慮に入れて、安全操業
を確保するためには、加圧時の最大圧力設定値を
小さくせざるを得なかつたので、撹拌エネルギー
を充分溶鋼に与えることができず、また制御手段
9の故障に原因しておこる事故の可能性を持つた
まゝ、操業せざるを得ないという欠点があつた。(Problem to be Solved by the Invention) However, even in the above-mentioned device, measures are not taken to reduce the influence of the opening/closing speed of the solenoid valve 4 and the gas tank 6b to reduce pressure fluctuations, which are sources of error in pressure control. However, it is not possible to completely avoid the effects of fluctuations in the source pressure of the nitrogen gas source 6 in the factory.
It was not possible to accurately maintain the maximum pressure within the hollow tube 3 constant during pressurization. Further, if the control means 9 fails, excessive pressure will be applied in the hollow tube 3 for several seconds or more, which may lead to an accident in which the molten steel 2 is spouted out from the ladle 1. For the reasons mentioned above, in order to take into account the accuracy of the control means 9 and ensure safe operation, it was necessary to reduce the maximum pressure setting value during pressurization, so that sufficient stirring energy could be applied to the molten steel. However, there was a drawback that the system had to operate with the possibility of an accident occurring due to failure of the control means 9.
本発明は従来の欠点ならびに問題点を除去、改
善することのできる噴流式取鍋精錬装置を提供す
ることを目的とするものであり、特許請求の範囲
記載の噴流式取鍋精錬装置を提供することによつ
て前記目的を達成することができる。 An object of the present invention is to provide a jet ladle refining device that can eliminate and improve the conventional drawbacks and problems, and provides the jet ladle refining device as described in the claims. By this, the above object can be achieved.
すなわちこの発明は、溶鋼中に浸漬される中空
管内の圧力を変動させ溶鋼を撹拌する精錬装置に
おいて、加圧ガス源からのガスを中空管内な送る
その管路の途中に設けられる圧力緩衝用バツフア
タンク、前記バツフアタンクに、加圧ガス源から
一定圧のガス供給のために用いられる減圧弁、前
記バツフアタンクの入側配管に設けられる電磁開
閉弁、バツフアタンク出側配管に設けられる電磁
開閉弁、バツフアタンクに付帯して設けられる該
タンク内加圧ガスを大気中に放散するための電磁
開閉弁とバツフアタンク内圧力を監視するための
圧力計、および中空管内圧力信号と前記圧力計の
信号とにより、前記電磁開閉弁を制御して前記の
バツフアタンク内圧力を所定値に維持するように
作動させる制御手段とが設けられている噴流式取
鍋精錬装置に関する。 That is, the present invention provides a pressure buffer buffer tank provided in the middle of a conduit for transporting gas from a pressurized gas source into the hollow tube in a refining device that stirs the molten steel by varying the pressure inside the hollow tube immersed in the molten steel. , a pressure reducing valve used to supply gas at a constant pressure from a pressurized gas source to the buffer tank, an electromagnetic on-off valve provided on the inlet side piping of the buffer tank, an electromagnetic on-off valve provided on the outlet side piping of the buffer tank, and attached to the buffer tank. An electromagnetic opening/closing valve is provided to dissipate the pressurized gas in the tank into the atmosphere, a pressure gauge is provided to monitor the pressure inside the buffer tank, and the electromagnetic opening/closing is controlled by a hollow pipe internal pressure signal and a signal from the pressure gauge. The present invention relates to a jet ladle refining apparatus provided with a control means for controlling a valve to maintain the pressure inside the buffer tank at a predetermined value.
(問題点を解決するための手段)
以下本発明の噴流式取鍋精錬装置を詳細に説明
する。(Means for Solving the Problems) The jet ladle refining apparatus of the present invention will be described in detail below.
第1図は本発明の圧力制御手段の説明図であ
る。同図において一次精錬炉から溶鋼2を受取る
取鍋1と、取鍋1中の溶鋼2を撹拌するために溶
鋼2中に浸漬されている中空管3と、中空管3内
のガス圧力を加圧する加圧用配管系と、中空管3
内のガス圧力を減圧する減圧用配管系とを有し、
加圧用配管系には加圧用ガス源6と、ガス源6の
圧力を使用圧力に減圧する減圧弁6aと、減圧用
配管系には減圧用ポンプ7と電磁開閉弁5が設け
られており、さらに中空管3内の圧力を検出し信
号を発信する発信器8と、発信器8からの信号を
受けて電磁弁4,5を制御する制御手段9とが設
けられていることは第2図で説明した従来の装置
と変らない。 FIG. 1 is an explanatory diagram of the pressure control means of the present invention. In the figure, a ladle 1 receives molten steel 2 from a primary refining furnace, a hollow tube 3 immersed in the molten steel 2 to stir the molten steel 2 in the ladle 1, and a gas pressure inside the hollow tube 3. Pressurizing piping system and hollow pipe 3
It has a pressure reduction piping system that reduces the gas pressure in the
The pressurizing piping system is provided with a pressurizing gas source 6, a pressure reducing valve 6a that reduces the pressure of the gas source 6 to the working pressure, and the depressurizing piping system is provided with a depressurizing pump 7 and an electromagnetic on-off valve 5. The second feature is that a transmitter 8 that detects the pressure inside the hollow tube 3 and transmits a signal, and a control means 9 that controls the solenoid valves 4 and 5 in response to the signal from the transmitter 8 are provided. It is no different from the conventional device explained in the figure.
本発明の装置によれば更に加圧配管系に圧力緩
衝用バツフアタンク11と、バツフアタンク11
の入口側配管に設けられた電磁開閉弁12と、出
口側配管に設けられた電磁開閉弁4と、バツフア
タンク11内の圧力を大気に開放する電磁開閉弁
13と、前述の電磁開閉弁4,5のみならず、さ
らにバツフアタンク内の圧力を監視する圧力計の
信号に基づき前記各電磁開閉弁12,13を、制
御する演算制御手段9とが設けられている点にお
いて、従来の装置と異なるだけでなく以下に述べ
るように従来の装置にみられない格段の効果を挙
げることができる。 According to the apparatus of the present invention, the pressure piping system further includes a pressure buffer buffer tank 11 and a buffer tank 11.
An electromagnetic on-off valve 12 provided on the inlet side piping, an electromagnetic on-off valve 4 provided on the outlet side piping, an electromagnetic on-off valve 13 that releases the pressure in the buffer tank 11 to the atmosphere, and the electromagnetic on-off valve 4, The only difference from the conventional device is that in addition to 5, arithmetic control means 9 is further provided to control the electromagnetic on-off valves 12 and 13 based on a signal from a pressure gauge that monitors the pressure inside the buffer tank. However, as described below, it is possible to achieve remarkable effects not found in conventional devices.
次にこの発明の装置について基本的な弁動作に
ついて説明する。第3図において第1図に示され
た各開閉バルブ4,5,12の動作と、中空管3
内圧力、バツフアタンク11の圧力を示してい
る。図において示す如く、弁4を閉じ、弁5を開
き中空管3内の排気を行つている間に(減圧中と
呼ぶ)弁12を開き、演算制御手段9によつて演
算されたバツフアタンクチヤージ圧力設定値P1
にバツフアタンク11内の圧力が一致するまでバ
ツフアタンク内の加圧用ガス源6より窒素ガスを
チヤージする。チヤージ完了後(時点t1)弁12
を閉じ、次に弁12の閉を確認の上、弁4を開と
し、弁5を閉とし(時点t2)、中空管3に窒素ガ
スを送り、溶鋼2に下向きのエネルギーを与える
(加圧と呼ぶ)。一定時間後弁4を閉じ、弁5を開
き減圧に切り換え(時点t3)さらにバツフアタン
ク11内への窒素チヤージに移る。このよううな
方法を採用することにより加圧配管系では弁4又
は弁12のいずれかが閉じており、加圧用ガス源
6の圧力が直接浸漬管内に伝わることがなく、中
空管3内に過大な圧力がかゝることによる溶鋼2
の噴出事故が防止できる。 Next, the basic valve operation of the device of this invention will be explained. In FIG. 3, the operation of each on-off valve 4, 5, 12 shown in FIG. 1 and the hollow pipe 3 are explained.
The internal pressure and the pressure of the buffer tank 11 are shown. As shown in the figure, the valve 12 is opened while the valve 4 is closed, the valve 5 is opened and the inside of the hollow tube 3 is being exhausted (referred to as during depressurization), and the buffer calculated by the calculation control means 9 is Tank charge pressure set value P 1
Nitrogen gas is charged from the pressurizing gas source 6 in the buffer tank until the pressure in the buffer tank 11 matches the pressure in the buffer tank 11. After charging is completed (time t 1 ) valve 12
, then after confirming that the valve 12 is closed, open the valve 4, close the valve 5 (time t 2 ), send nitrogen gas to the hollow tube 3, and give downward energy to the molten steel 2 ( (called pressurization). After a certain period of time, the valve 4 is closed, and the valve 5 is opened to switch to reduced pressure (time t 3 ) and then proceed to nitrogen charging into the buffer tank 11. By adopting such a method, in the pressurized piping system, either the valve 4 or the valve 12 is closed, and the pressure of the pressurizing gas source 6 is not directly transmitted into the immersion pipe, and the pressure is not transmitted directly into the hollow pipe 3. Molten steel 2 due to excessive pressure
can prevent blowout accidents.
次にバツフアタンク11内の圧力を設定値P1
に等しくする操作を説明する。前述の如く弁4を
閉じ、弁12を開きバツフアタンク11内の圧力
を増加させる。このとき弁12を通じて供給され
るガスの圧力を安定化させ、かつ加圧ガス源6の
高圧力が弁4,12の漏れ、誤動作等によつて直
接中空管3に伝わることを防ぐため減圧弁6aが
あり、加圧ガス源6からのガスは減圧弁6aによ
り減圧されてバツフアタンク11に流れるように
なつている。演算制御手段9はバツフアタンク1
1の圧力計10の出力を監視し、設定圧力P1よ
りわずかに低い圧力にて弁12を閉じる指令を出
す。さらにバツフアタンク内の圧力がP1を越え
た場合にはP1より低くなるまで弁13を開とし、
バツフアタンク11内の圧力を下げる。 Next, set the pressure inside the buffer tank 11 to the set value P 1
Explain the operation to make it equal to . As described above, valve 4 is closed and valve 12 is opened to increase the pressure in buffer tank 11. At this time, the pressure is reduced in order to stabilize the pressure of the gas supplied through the valve 12 and to prevent the high pressure of the pressurized gas source 6 from being transmitted directly to the hollow pipe 3 due to leakage or malfunction of the valves 4 and 12. A valve 6a is provided, and the gas from the pressurized gas source 6 is reduced in pressure by the pressure reducing valve 6a and flows into the buffer tank 11. The calculation control means 9 is a buffer tank 1
The output of the pressure gauge 10 of No. 1 is monitored, and a command is issued to close the valve 12 at a pressure slightly lower than the set pressure P1 . Furthermore, if the pressure inside the buffer tank exceeds P1 , the valve 13 is opened until the pressure becomes lower than P1 ,
Reduce the pressure inside the buffer tank 11.
つゞいてバツフアタンク11内の設定圧力P1
を演算する方法を説明する。 The set pressure P 1 in the buffer tank 11
Explain how to calculate.
第4図は中空管3の圧力の制御パターンを示す
図であつて、バツフアタンク11のチヤージ圧力
P1との相関関係をも示している。同図において、
制御開始時点t4より、初期制御期間(時点t4〜t5)
はバツフアタンクチヤージ圧力P1を次の(1)式に
従つて演算する。 FIG. 4 is a diagram showing a control pattern for the pressure in the hollow tube 3, and shows the charge pressure in the buffer tank 11.
The correlation with P 1 is also shown. In the same figure,
From the control start time t4 , the initial control period (time t4 to t5 )
calculates the buffer tank charge pressure P 1 according to the following equation (1).
P1=P1S+n×△P1 …(1)
ここで、P1S:初回のバツフアタンク設定値
n:加圧回数
△P1:P1の増分値
つまり、中空管3内の圧力を漸増させるために
バツフアタンクチヤージ圧力P1も線形的に漸増
させる。 P 1 = P 1S + n×△P 1 …(1) Here, P 1S : Initial buffer tank setting value n: Number of times of pressurization △P 1 : Incremental value of P 1 In other words, the pressure inside the hollow tube 3 is gradually increased. In order to achieve this, the buffer tank charge pressure P1 is also gradually increased linearly.
初期制御期間中、演算制御手段9は中空管3内
の圧力信号を発信する発信器8の出力信号の加圧
中の最大値PHを監視し、PHがあらかじめ設定す
る初期制御終了の基準値P3を越えた時点(時点
t5)でバツフアタンクチヤージ圧力P1の演算方法
を変更し、次式にてバツフアタンクチヤージ圧力
P1を演算する。 During the initial control period, the arithmetic control means 9 monitors the maximum value P H of the output signal of the transmitter 8 that transmits the pressure signal in the hollow tube 3 during pressurization, and determines the end of the initial control set in advance by P H. The point in time when the standard value P 3 is exceeded (point in time
t5 ), change the calculation method of buffer tank charge pressure P1 , and use the following formula to calculate buffer tank charge pressure.
Calculate P 1 .
P1=P 1(前回のバツフアタンクチヤージ圧力)
+(P2−PH)×k …(2)
ここで、P2:中空管内加圧時の上限圧力設定
値
PH:中空管内加圧時の最大値
k:比例係数
この演算方式によつて、できるだけ迅速に加圧
時の最大圧力PHを目標圧力P2に収束させること
ができる。しかし制御開始直後、直ちに(2)式を用
いる制御を行うと|P2−PH|が大きくなり、制
御が不安定となり、噴出事故につながる可能性が
あるので、(1)式に基づく初期制御時期をおくこと
が必要である。P 1 = P 1 (previous buffer tank charge pressure) + (P 2 − P H ) × k … (2) where, P 2 : Upper limit pressure setting value when pressurizing inside the hollow pipe P H : Inside the hollow pipe Maximum value k during pressurization: Proportionality coefficient By this calculation method, the maximum pressure P H during pressurization can be converged to the target pressure P 2 as quickly as possible. However, if control using equation (2) is performed immediately after the start of control, |P 2 −P H | will increase, making control unstable and potentially leading to a blowout accident. It is necessary to set a control period.
次に実施例を図面によつて説明する。 Next, embodiments will be described with reference to the drawings.
第5図は従来の装置を使用する場合と、本発明
の装置を使用する場合との中空管3内の圧力変化
の相違を示している。図に示すように、従来の装
置では中空管3内の最大圧力PHの実測値をオペ
レータが監視しながら弁4が開となつている時間
を調節する方法をとつている。そのため中空管3
内の圧力の最大値PHは設定圧力P2の近くまで到
達しているが、なお±0.2Kg/cm2程度のばらつき
を有している。 FIG. 5 shows the difference in pressure changes within the hollow tube 3 when using the conventional device and when using the device of the present invention. As shown in the figure, the conventional apparatus employs a method in which an operator monitors the actual value of the maximum pressure P H in the hollow tube 3 and adjusts the time period during which the valve 4 is open. Therefore, hollow tube 3
Although the maximum value P H of the internal pressure has reached close to the set pressure P 2 , there is still a variation of about ±0.2 Kg/cm 2 .
本発明の装置では圧力制御がすべて自動的に行
われるため、オペレータが従来の装置のごとく約
5秒間隔の周期で設定値を変更しなくてもよくな
り、かつ制御開始後わずか2秒程度で中空管内の
最大圧力PHが設定圧力P2に収束している。この
場合の設定圧力P2との誤差は記録紙上では判別
できない程度で約0.01Kg/cm2である。 In the device of the present invention, all pressure control is performed automatically, so the operator does not have to change the set value at intervals of about 5 seconds as in conventional devices, and it is possible to control the pressure in just 2 seconds after starting the control. The maximum pressure P H in the hollow tube has converged to the set pressure P 2 . In this case, the error from the set pressure P 2 is approximately 0.01 Kg/cm 2 and cannot be discerned on the recording paper.
(発明の効果)
本発明の装置によればバツフアタンク11の入
口側配管に開閉弁12を設け、加圧用ガス源6と
独立させることができ中空管3内に過剰の圧力が
かかる危険がないため、安全性が従来の装置に較
べて非常に優れており、中空管3内の設定値P2
を0.1〜0.2Kg/cm2程度従来の装置より高く設定で
きる。従つて従来の装置よりも大きな撹拌力が得
られ、鋼材の品質も向上し、従来の装置では小規
模の溶鋼噴出があり得たが、本装置では皆無とな
つた。(Effects of the Invention) According to the device of the present invention, the on-off valve 12 is provided on the inlet side piping of the buffer tank 11, and it can be made independent of the pressurizing gas source 6, so there is no risk of excessive pressure being applied inside the hollow tube 3. Therefore, the safety is very superior compared to conventional equipment, and the set value P 2 in the hollow tube 3
can be set to 0.1-0.2Kg/ cm2 higher than conventional equipment. Therefore, a larger stirring force than the conventional device was obtained, and the quality of the steel material was also improved.In the conventional device, there could be small-scale molten steel spouting, but with this device, there was none.
以上説明した通り、本発明の噴流式取鍋精錬装
置を用いると、加圧手段に、圧力緩衝用バツフア
タンクと、バツフアタンクに一定圧のガスを供給
するための調整弁と、前記バツフアタンクの入口
側配管と出口側配管とにそれぞれ設けられ中空管
内圧力による信号によつて制御される電磁弁と、
さらにバツフアタンク内の加圧ガスを大気中に放
散し、バツフアタンク内圧力を制御しうる開閉弁
とを設けたため、撹拌力が著しく増大し、かつ安
全性の極めて高い噴流式取鍋精錬装置が得られ
た。 As explained above, when the jet ladle refining apparatus of the present invention is used, the pressurizing means includes a buffer tank for pressure buffering, a regulating valve for supplying gas at a constant pressure to the buffer tank, and piping on the inlet side of the buffer tank. and a solenoid valve provided in the outlet side pipe and controlled by a signal based on the pressure inside the hollow pipe;
Furthermore, by installing an on-off valve that can control the pressure inside the buffer tank by dissipating the pressurized gas in the buffer tank into the atmosphere, a jet-type ladle refining device with significantly increased stirring power and extremely high safety can be obtained. Ta.
第1図は本発明の噴流式取鍋装置の説明図、第
2図は従来の装置の説明図、第3図は本発明の弁
の作動タイムチヤートと、中空管及びバツフアタ
ンクの圧力変化とを示す説明図、第4図は中空管
内圧力とバツフアタンク圧力の制御パターン、第
5図は本発明の装置と従来の装置との中空管内圧
力の比較を示す図である。
1……取鍋、2……溶鋼、3……中空管、4…
…加圧配管開閉弁、5……減圧配管開閉弁、6…
…加圧用ガス源、7……減圧ポンプ、8……中空
管圧力発信器、9……制御装置、10……バツフ
アタンク圧力計、11……バツフアタンク、12
……バツフアタンク入口側配管開閉弁、13……
バツフアタンク大気開放弁。
Fig. 1 is an explanatory diagram of the jet ladle device of the present invention, Fig. 2 is an explanatory diagram of the conventional device, and Fig. 3 is an operating time chart of the valve of the present invention and pressure changes in the hollow pipe and buffer tank. FIG. 4 is an explanatory diagram showing a control pattern for the pressure inside the hollow tube and the pressure in the buffer tank, and FIG. 5 is a diagram showing a comparison of the pressure inside the hollow tube between the device of the present invention and the conventional device. 1... Ladle, 2... Molten steel, 3... Hollow tube, 4...
... Pressure piping on-off valve, 5... Pressure reduction piping on-off valve, 6...
... Pressurization gas source, 7 ... Decompression pump, 8 ... Hollow tube pressure transmitter, 9 ... Control device, 10 ... Buffer tank pressure gauge, 11 ... Buffer tank, 12
...Battle tank inlet side piping on/off valve, 13...
Vacuum tank atmosphere release valve.
Claims (1)
の管内圧力を正圧にするための加圧手段および負
圧にするための減圧手段が設けられてなる噴流式
取鍋精錬装置において; 前記加圧手段に、下記(イ)〜(ヘ)のデバイスを設け
たことを特徴とする噴流式取鍋精錬装置。 (イ) 加圧ガス源からのガスを中空管内に送るその
管路の途中に設けられる圧力緩衝用バツフアタ
ンク、 (ロ) 前記バツフアタンクに、加圧ガス源から一定
圧のガス供給のために用いられる減圧弁、 (ハ) 前記バツフアタンクの入側配管に設けられる
電磁開閉弁、 (ニ) バツフアタンク出側配管に設けられる電磁開
閉弁、 (ホ) バツフアタンクに付帯して設けられる該タン
ク内加圧ガスを大気中に放散するための電磁開
閉弁とバツフアタンク内圧力を監視するための
圧力計、および (ヘ) 中空管内圧力信号と前記(ホ)の圧力計の信号と
により、前記(ハ)と(ホ)の各電磁開閉弁を制御して
前記(イ)のバツフアタンク内圧力を所定値に維持
するように作動する制御手段。[Claims] 1. A jet stream comprising a hollow tube immersed in molten steel and a pressure means for making the pressure inside the tube positive and a pressure reducing means for making the pressure negative. A jet-type ladle refining apparatus, characterized in that the pressurizing means is provided with the following devices (a) to (f). (a) A buffer tank for pressure buffering provided in the middle of the pipe line that sends gas from a pressurized gas source into the hollow pipe; (b) A buffer tank used for supplying gas at a constant pressure from a pressurized gas source to the buffer tank. a pressure reducing valve, (c) an electromagnetic on-off valve provided on the inlet pipe of the buffer tank, (d) an electromagnetic on-off valve provided on the outlet pipe of the buffer tank, and (e) a pressurized gas in the tank provided incidentally on the buffer tank. An electromagnetic on-off valve for dissipating into the atmosphere, a pressure gauge for monitoring the pressure inside the buffer tank, and (f) the pressure signal inside the hollow tube and the signal from the pressure gauge in (e) above, allow the above (c) and (ho) A control means that operates to control each electromagnetic on-off valve of (a) to maintain the internal pressure of the buffer tank at a predetermined value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13976284A JPH0245688B2 (en) | 1984-07-07 | 1984-07-07 | FUNRYUSHIKITORIBESEIRENSOCHI |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13976284A JPH0245688B2 (en) | 1984-07-07 | 1984-07-07 | FUNRYUSHIKITORIBESEIRENSOCHI |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6119728A JPS6119728A (en) | 1986-01-28 |
JPH0245688B2 true JPH0245688B2 (en) | 1990-10-11 |
Family
ID=15252795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13976284A Expired - Lifetime JPH0245688B2 (en) | 1984-07-07 | 1984-07-07 | FUNRYUSHIKITORIBESEIRENSOCHI |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0245688B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04281028A (en) * | 1991-02-28 | 1992-10-06 | Kuraray Co Ltd | Spun-like processed yarn having core-sheath structure and improved body and its production |
JP5504953B2 (en) * | 2010-02-17 | 2014-05-28 | Jfeスチール株式会社 | Ladle equipped with an accumulator cylinder type gas blowing device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59146727A (en) * | 1983-02-04 | 1984-08-22 | Murata Mach Ltd | Tool exchanging system in machining center |
-
1984
- 1984-07-07 JP JP13976284A patent/JPH0245688B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6119728A (en) | 1986-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4195216A (en) | Plasma welding | |
WO2017057400A1 (en) | Gas supply device, gas supply device having mixing function, welding device, and gas supply method | |
JPH0245688B2 (en) | FUNRYUSHIKITORIBESEIRENSOCHI | |
US4741381A (en) | Method of and apparatus for automatically controlling pressure in holding furnace incorporated in low pressure die-casting system | |
US4541865A (en) | Continuous vacuum degassing and casting of steel | |
JP2985235B2 (en) | Flow control method of refining gas in smelting furnace | |
EP0174061A1 (en) | Continuous vacuum degassing and casting of steel | |
JP3145250B2 (en) | How to refill powder into the powder injection tank | |
US6079476A (en) | Method for producing pre-treated molten metal castings | |
JPS5973169A (en) | Control device for low pressure casting | |
JPS63183118A (en) | Method for heating and stirring molten metal | |
KR20150001465A (en) | Shielding gas feeding apparatus for welding | |
JPS62214416A (en) | Automatic control method for fluid supply circuit by computer | |
JPS6021172A (en) | Method for controlling cooling body of continuous casting device | |
JPS61213315A (en) | Pressure controlling method for jet-type ladle refining apparatus | |
JPS6255949B2 (en) | ||
JP2002168404A (en) | Deaerating system and its operating method | |
JP2024015628A (en) | Double shield tig welding apparatus | |
JPS56141953A (en) | Method for controlling pouring flow rate of molten steel for continuous casting | |
JP2006043753A (en) | Chamber device and seam welder provided with chamber device | |
JPH04193904A (en) | Method for supplying oxygen gas in lance and its lance | |
JPS63295049A (en) | Method and apparatus for supplying and exhausting molten metal in heat reserving furnace holding fixed molten surface | |
JPS62259649A (en) | Continuous casting apparatus for small sectional casting billet | |
JPS63183119A (en) | Method and apparatus for metallurgical treatment of molten metal | |
JPH04308396A (en) | Feed water pump operation control method and device therefor |