JPS60211342A - X-ray two crystal diffraction device - Google Patents

X-ray two crystal diffraction device

Info

Publication number
JPS60211342A
JPS60211342A JP59068022A JP6802284A JPS60211342A JP S60211342 A JPS60211342 A JP S60211342A JP 59068022 A JP59068022 A JP 59068022A JP 6802284 A JP6802284 A JP 6802284A JP S60211342 A JPS60211342 A JP S60211342A
Authority
JP
Japan
Prior art keywords
sample
ray
monochromator
support
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59068022A
Other languages
Japanese (ja)
Inventor
Tomohisa Kitano
北野 友久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59068022A priority Critical patent/JPS60211342A/en
Publication of JPS60211342A publication Critical patent/JPS60211342A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure the locking curve of a sample without rotating a sample base by an X-ray two crystal diffraction device by rotating a support carrying a monochromator and X-ray tube bulb around the point of the sample on which the X-ray is made incident. CONSTITUTION:A sample 21 is placed horizontally on a sample base 22. An X-ray tube bulb 23 and a monochromator 25 are placed in a support 26 by fixing the relative position thereof. An X-ray beam is made incident on the monochromator 25 from the tube 23 and thereafter the beam is made incident on the point O of the sample 21. The diffracted beam from the sample 21 is made incident on a detector 210 and a locking curve is obtd. The support 26 is made rotatable around the point O of the sample 21 and the incident beam 30 is made incident to the sample at an incident angle theta so as to increase parallelism and monochromaticity. The support 26 is rotated by means of a motor 29 and an arm 27. Since the support is rotated, the crystal is evaluated easily without the need for moving the sample base even in the case of a heavy sample such as ingot.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、試料を回転できない場合に用いるX線二結晶
回折装謔に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an X-ray double crystal diffraction device used when a sample cannot be rotated.

(従来技術とその問題点) X線を用いた単結晶の結晶性を調べる一つの手段として
、動力学理論に基づいたX線ロッキングカーブ測定の方
法がある。通常、X線ロッキングカーブの精度の良い測
定を行なうためには、単結晶試料に入射するX線ビーム
の平行性ならびに、単色性を高める必要がある。そのた
め第1図に示すように、X線管球11から出射しスリッ
ト15を通ったX線ビームは、モノクロメータ12によ
って、平行性ならびに単色性を高めた後、試料13に入
射し、試料13を回転軸の周りに回転することによって
、X線pyキングカーブ測足をする、いわゆる二結晶配
置が使用されている。
(Prior Art and its Problems) As one means of examining the crystallinity of a single crystal using X-rays, there is a method of measuring an X-ray rocking curve based on kinetic theory. Normally, in order to accurately measure an X-ray rocking curve, it is necessary to improve the parallelism and monochromaticity of the X-ray beam incident on a single crystal sample. Therefore, as shown in FIG. 1, the X-ray beam emitted from the X-ray tube 11 and passed through the slit 15 is made parallel and monochromatic by the monochromator 12, and then enters the sample 13. A so-called two-crystal arrangement is used to measure the X-ray PY King curve by rotating the crystal around a rotation axis.

ところで、試料13を回転軸の周りに回転する際、試料
13が、形が小さくて、軽量の場合は、ゴニオメータに
機械的負荷を生じることなく、容易に回転させることが
可能である。ところが、試料の形が大きいか、あるいは
重量の大きなものでは、ゴニオメータに機械的負荷を生
じ、高精度に回転させることが不可能な場合がある。例
えば、直径が5インチ、長さが1mもあるSi単結晶イ
ンゴットの側面の結晶性を縦方向に任意の箇所を調べる
場合、あるいは回転させると自由に形が変化するような
融液からの結晶成長をその場で調べる場合には、水平な
自由液面を保つ必要があり、もはや、試料を回転するこ
とによって、X紳qツキングカープを測定することは不
可能である。
By the way, when rotating the sample 13 around the rotation axis, if the sample 13 is small and lightweight, it can be easily rotated without creating a mechanical load on the goniometer. However, if the sample is large or heavy, a mechanical load may be placed on the goniometer, making it impossible to rotate it with high precision. For example, when examining the crystallinity of the side surface of a Si single-crystal ingot with a diameter of 5 inches and a length of 1 m at any point in the longitudinal direction, or when examining crystals from a melt whose shape changes freely when rotated. When examining the growth in situ, it is necessary to maintain a horizontal free liquid level, and it is no longer possible to measure the curve by rotating the sample.

(発明の目的) 本発明は、このような従来の欠点を除去せしめて、試料
を回転させないで、X線二結昂回折測定が可能となる装
置を提供することにある。
(Object of the Invention) The present invention aims to eliminate such conventional drawbacks and to provide an apparatus that enables X-ray double-concentration diffraction measurement without rotating the sample.

(発明の構成) 本発明によれは、水平な平行移動試料台を有し、試料に
XfJ!が入射する点を通る鉛直軸を中心としてモノク
ロメータとX線管球とが相対的位置関係を一定に保って
水平に回転しうろことを特徴とするX線二結晶回折装置
が得られる。
(Structure of the Invention) According to the present invention, a horizontal parallel movement sample stage is provided, and an XfJ! There is obtained an X-ray double crystal diffraction apparatus characterized in that the monochromator and the X-ray tube rotate horizontally around a vertical axis passing through the point of incidence of the monochromator while maintaining a constant relative positional relationship.

(実施例) 以下、本発明の実施例について、図面を参照して詳細に
説明する。第2図は、本発明の実施例を示す図である。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 2 is a diagram showing an embodiment of the present invention.

試料21(形が大きく、重量が大きいインゴット)を、
水準器等で精密に水平に保たれた平行移動試料台22に
固定する。試料21への入射角θの変化は、X線管球2
3と、X線管球23からのX線ビームの発散角を抑える
ための発散スリット24と、モノクロメータ25とが7
体化されて設置されている台26をモノクロメータ25
から出射するX線が、試料21に入射する点0を通る鉛
直軸を中心として、回転することによって可能となる。
Sample 21 (large in shape and heavy ingot)
It is fixed on a parallel moving sample stage 22 that is kept precisely horizontal using a spirit level or the like. The change in the angle of incidence θ on the sample 21 is determined by
3, a divergence slit 24 for suppressing the divergence angle of the X-ray beam from the X-ray tube 23, and a monochromator 25.
A monochromator 25 is installed on the stand 26
This is possible by rotating the X-rays emitted from the sample 21 around a vertical axis passing through the point 0 of incidence on the sample 21.

この時X線管球23と、モノクロメータ25の相対的位
置関係は、一定に保持された状態であり、モノクロメー
タ25によるX線管球23から出射したX線ビームの平
行性ならびに単色性を高めるためのブラッグ角θ8も保
持された状態である。
At this time, the relative positional relationship between the X-ray tube 23 and the monochromator 25 is maintained constant, and the monochromator 25 controls the parallelism and monochromaticity of the X-ray beam emitted from the X-ray tube 23. The Bragg angle θ8 to be increased is also maintained.

点0を通る鉛直軸を中心とする台26の矢印A方向の回
転運動は、次のようにして得られる。パルスモータ29
からのパルス駆動を歯車によって矢印B方向の運動に変
え、この運動をアーム27に伝達してDに示す方向の直
線運動に変換する。
The rotational movement of the table 26 in the direction of arrow A about the vertical axis passing through point 0 is obtained as follows. Pulse motor 29
The pulse drive from is converted into a motion in the direction of arrow B by a gear, and this motion is transmitted to the arm 27 and converted into a linear motion in the direction shown by D.

アーム27の先は台26に接しており、D方向の直線運
動は点0を中心とする回転運動に変換される。この変換
機構は通常のゴニオメータと同じである。またねじ28
は台26の回転機構を、パルス駆動と手動とに切り換え
るためのものである。
The tip of the arm 27 is in contact with the stand 26, and linear motion in the D direction is converted into rotational motion about point 0. This conversion mechanism is the same as a normal goniometer. Also screw 28
is for switching the rotation mechanism of the table 26 between pulse drive and manual operation.

このように、台26を点Oを通る鉛直軸を中心として回
転させることによって、試料21への入射角θを任意に
変化させた際の、試料21からの回折ビーム強度を、検
出器210で、測定することによって、X線ロッキング
カーブ測定が可能となる。
In this way, by rotating the table 26 around the vertical axis passing through the point O, the intensity of the diffracted beam from the sample 21 can be detected by the detector 210 when the incident angle θ on the sample 21 is arbitrarily changed. , it becomes possible to measure the X-ray rocking curve.

しかも試料21を水平な、平行移動試料台22によって
矢印C方向に平行移動すせれば、試料の他の部分の測定
も可能となる。
Furthermore, by moving the sample 21 in parallel in the direction of arrow C using the horizontal parallel-moving sample stage 22, it becomes possible to measure other parts of the sample.

(発明の効果) 以上、本発明によれば、どのような形状を有する試料で
も、あるいは重量が大きな試料に対しても試iに擾乱を
与えることなくX線二結晶回折実験が可能となる。また
試料台の平行移動機構によって、試料上の測定点の違い
による結晶性の違いも測定できる。
(Effects of the Invention) As described above, according to the present invention, it is possible to perform an X-ray double crystal diffraction experiment on a sample having any shape or a large weight without disturbing the sample i. Furthermore, by using the parallel movement mechanism of the sample stage, it is possible to measure differences in crystallinity due to differences in measurement points on the sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のX線二結晶回折装置の概念図、第2図
は、X線二結晶回折装置の実施例の平面図である。 図において、 11・・・X線管球、12・・・モノクロメータ、13
・・・試料、14・・・検出器、15・・・発散スリッ
ト、21・・・試料、22・・・水平精密な平行移動試
料台、23・・・X線管球、24・・・発散スリット、
25・・・モノクロメータ、26・・・台、28・・・
ねじ、29・・・パルスモータ、 210・・・検出器をそれぞれ示す。 ¥1図 第2図 2I:l
FIG. 1 is a conceptual diagram of a conventional X-ray double-crystal diffractometer, and FIG. 2 is a plan view of an embodiment of the X-ray double-crystal diffractometer. In the figure, 11...X-ray tube, 12...monochromator, 13
... Sample, 14... Detector, 15... Diverging slit, 21... Sample, 22... Horizontal precision parallel movement sample stage, 23... X-ray tube, 24... divergent slit,
25...monochromator, 26...unit, 28...
A screw, 29...pulse motor, and 210...detector are shown, respectively. ¥1 Figure 2 Figure 2I:l

Claims (1)

【特許請求の範囲】[Claims] 水平な平行移動試料台を有し、試料にX線が入射する点
を通る鉛直軸を中心としてモノクロメータとX線管球と
が相対的位置関係を一定に保って水平に回転しうろこと
を特徴とするX線二結晶回折装置。
It has a horizontal parallel movement sample stage, and the monochromator and the X-ray tube rotate horizontally around the vertical axis that passes through the point where the X-rays are incident on the sample, keeping the relative positional relationship constant. Characteristics of the X-ray double crystal diffraction device.
JP59068022A 1984-04-05 1984-04-05 X-ray two crystal diffraction device Pending JPS60211342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59068022A JPS60211342A (en) 1984-04-05 1984-04-05 X-ray two crystal diffraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59068022A JPS60211342A (en) 1984-04-05 1984-04-05 X-ray two crystal diffraction device

Publications (1)

Publication Number Publication Date
JPS60211342A true JPS60211342A (en) 1985-10-23

Family

ID=13361769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59068022A Pending JPS60211342A (en) 1984-04-05 1984-04-05 X-ray two crystal diffraction device

Country Status (1)

Country Link
JP (1) JPS60211342A (en)

Similar Documents

Publication Publication Date Title
US3868506A (en) X-ray diffraction instrument
EP0110469B1 (en) X-ray analysis apparatus comprising a four-crystal monochromator
JPH0755729A (en) X-ray analyzer
CA1141483A (en) X-ray powder diffractometer
JPS60211342A (en) X-ray two crystal diffraction device
US5459770A (en) X-ray diffractometer
JPH11304729A (en) X-ray measurement method and x-ray measurement device
JPH0654265B2 (en) 2-axis swing X-ray stress measurement device
JP2000035409A (en) X-ray apparatus and x-ray measuring method
JP2620106B2 (en) X-ray diffraction pole figure observation device for thin film samples
JP2002148219A (en) X-ray diffractometer
JPH112614A (en) X-ray measuring method of single crystal axial orientation and device
JPH076929B2 (en) Total reflection fluorescent EXAFS device
JPS57136150A (en) Method for measuring deviation angle of cut plane of single crystal
JP2732311B2 (en) X-ray topography equipment
SU1190244A1 (en) Attachment to x-ray goniometer
SU1225358A1 (en) Method and apparatus for checking distribution of structural inhomogeneity over monocrystal square
JP2741167B2 (en) X-ray diffraction method of polycrystalline thin film sample on single crystal substrate
JP3150167B2 (en) Asymmetric X-ray diffraction method
JP2912670B2 (en) X-ray diffractometer
JP2732506B2 (en) Vibrating solar slit
JP2001336992A (en) X-ray stress measuring method and x-ray stress measuring device
GB2228167A (en) X-ray diffractometer
SU1718067A1 (en) X-ray monochromator
JPH0254496B2 (en)