JPS60211273A - Magnetic refrigerator - Google Patents

Magnetic refrigerator

Info

Publication number
JPS60211273A
JPS60211273A JP6761284A JP6761284A JPS60211273A JP S60211273 A JPS60211273 A JP S60211273A JP 6761284 A JP6761284 A JP 6761284A JP 6761284 A JP6761284 A JP 6761284A JP S60211273 A JPS60211273 A JP S60211273A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
heat
rotor
work material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6761284A
Other languages
Japanese (ja)
Inventor
善則 白楽
久直 尾形
崇弘 大黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6761284A priority Critical patent/JPS60211273A/en
Publication of JPS60211273A publication Critical patent/JPS60211273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、磁気冷凍用作業物質と、この作業物質に磁場
を印加あるいは除去する磁場発生装置よりなる磁気冷凍
機に係り、特に高効率化、高信頼性化に好適な磁気冷凍
機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a magnetic refrigerator comprising a working material for magnetic refrigeration and a magnetic field generator for applying or removing a magnetic field to the working material, and particularly relates to a magnetic refrigerator that has high efficiency and The present invention relates to a magnetic refrigerator suitable for achieving high reliability.

〔発明の背景〕[Background of the invention]

磁気冷凍機の原理は、磁場を加えると発熱し、磁場を除
去すると吸熱するというガドリニウム・めリウム・ガー
ネット(Gda Gas 012)などの磁性体の磁気
熱量効果を利用するものである。
The principle of a magnetic refrigerator is to utilize the magnetocaloric effect of magnetic materials such as gadolinium, mellium, and garnet (Gda Gas 012), which generate heat when a magnetic field is applied and absorb heat when the magnetic field is removed.

静止した磁気冷凍用作業物質に磁場の印加あるいは除去
する方法として、例えば特開昭58−127064、特
開昭58−184471号公報に示されるように、単純
ソレノイドコイルの中心に前記作業物質を配置し、ソレ
ノイドコイルに流す電流量を周期的に変化させたりする
ことによって、またソレノイドコイルに一定電流を通電
して定磁場を発生させた状態で、前記ソレノイドコイル
をその軸方向の周期的に移動させ、前記作業物質が前記
コイルから出入させることによって行うものが知られて
いる。
As a method of applying or removing a magnetic field to a stationary working material for magnetic refrigeration, for example, as shown in JP-A-58-127064 and JP-A-58-184471, the working material is placed at the center of a simple solenoid coil. Then, by periodically changing the amount of current flowing through the solenoid coil, or by passing a constant current through the solenoid coil to generate a constant magnetic field, the solenoid coil is periodically moved in its axial direction. It is known to do this by causing the working substance to enter and leave the coil.

これらの方法は、次のような問題点があった。These methods have the following problems.

先ず、コイルに流す電流量を周期的に変えて動作させる
場合、作業物質に印加する磁場変化を完全に電気的に制
御でき、かつ可動部をなくすことができるので信頼性の
高い磁気冷凍機となるが、コイルの巻線材料の磁化損失
や渦電流損失が大きいため、効率を著しく低下させる。
First, when operating by periodically changing the amount of current flowing through the coil, changes in the magnetic field applied to the work material can be completely electrically controlled, and there are no moving parts, making it a highly reliable magnetic refrigerator. However, because the magnetization loss and eddy current loss of the coil winding material are large, the efficiency is significantly reduced.

一方、コイルを周期的に動かして動作させる場合、その
ストロークが大きく、またその大きな電磁力のために駆
動力も非常に大きくなるので、駆動機構が大型になると
いう問題点があった。
On the other hand, when the coil is operated by periodically moving the coil, the stroke is large and the driving force is also very large due to the large electromagnetic force, so there is a problem that the driving mechanism becomes large.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、磁気冷凍用作業物質を静止した状態で
、一定磁気を発生する磁場発生装置を動機 かして動作させる磁気冷凍へにおいて、前記磁場〔発明
の概要〕 本発明では、複数個のコイルを円柱あるいは円筒体の外
周面上に配置したロータを形成する。前記コイルに通電
することによって発生した磁場分布は外周方向に磁場の
大きさが周期的に増減するような分布を有するようにす
る。この磁場変化中に複数個の磁気冷凍用作業物質を静
止状態で配置すると、ロータが回転することによって、
個々の作業物質にはロータの回転変化と前記コイルの発
生する磁場分布に従って変化磁場が印加されることにな
る。
An object of the present invention is to provide magnetic refrigeration in which a working material for magnetic refrigeration is operated in a stationary state by motivating a magnetic field generator that generates a constant magnetism. A rotor is formed by disposing the coils on the outer peripheral surface of a cylinder or a cylindrical body. The magnetic field distribution generated by energizing the coil is such that the magnitude of the magnetic field periodically increases and decreases in the outer circumferential direction. When a plurality of magnetic refrigeration working materials are placed in a stationary state during this magnetic field change, the rotor rotates and
A changing magnetic field is applied to each workpiece according to the rotational change of the rotor and the magnetic field distribution generated by the coil.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図、第2図で説明する。 An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

円柱体あるいは円筒体のロータ1の外周面上に複数個の
超電導コイル2を配置する。これらの超電導コイルには
脱着式パワーリード2人を介して最初に一定電流を流す
。超電導により、一定の磁場分布が外周面上に形成され
る。この磁場分布は、外周面方向に磁場の大きさが周期
的に増減するような分布となる。これらの磁場分布中に
、複数個の磁場冷凍用作業物質3であるガドニウム・ガ
リウム・ガーネット(Gd、 Ga、 012)などの
磁性体を配置する0個々の作業物質3の間は、熱伝導率
の小さい材料などで形成される熱分離体4がある。磁性
体の低温側伝熱面3a、高温側伝熱面3bは、各々飽和
ヘリウムガス5(約12mml1g)と液体ヘリウム6
(約1atm、 4.2K)に直接面している。前記ヘ
リウムガスの下方には、飽和超流動ヘリウム7(約12
mmtIg、1.8K)がある。これらヘリウムガスと
超流動ヘリウムは容器8内に収納されており、作業物質
3、熱分離体4.容器8によって、ヘリウムガス6およ
び超流動ヘリウム7は密閉されて、液体ヘリウム6と圧
力的に分離されている。断熱真空層9によって、1.8
に層は断熱されている。10は、真空断熱容器10Aは
ボールベアリング、IOBは液体ヘリウム6を入れる穴
である。磁性体3を含む真空断熱容器10は常に静止状
態にある。ロータ1は軸11によって回転させることが
できる。ロータ1が回転すると、超電導コイル2によっ
て形成された磁場分布とロータ1の回転変化に従って、
作業物質3に周期的に磁場を印加したり、除去したりす
ることができる。すなわち、作業物質に磁場が印加され
ると、作業物質3の温度が上り、高温側伝熱面3bより
液体ヘリウム6へ排熱する。そして、作業物質3から磁
場を除去するときには、作業物質の温度が低下し、ヘリ
ウムガス5を作業物質3の低温側伝熱表面3aにおいて
凝縮させる。このように作業物質と外部との熱交換を周
期的に繰り返すことによって、1.8にと4.2に間の
冷凍サイクルを組むことができる。
A plurality of superconducting coils 2 are arranged on the outer peripheral surface of a rotor 1 having a cylindrical or cylindrical body. A constant current is first applied to these superconducting coils via two removable power leads. Due to superconductivity, a constant magnetic field distribution is formed on the outer circumferential surface. This magnetic field distribution is such that the magnitude of the magnetic field increases and decreases periodically in the direction of the outer peripheral surface. In these magnetic field distributions, a plurality of magnetic materials such as gaddonium, gallium, garnet (Gd, Ga, 012), which are working materials 3 for magnetic field refrigeration, are arranged. There is a heat separator 4 made of a material with a small diameter. The low-temperature side heat transfer surface 3a and the high-temperature side heat transfer surface 3b of the magnetic material are filled with saturated helium gas 5 (approximately 12 mm/1 g) and liquid helium 6, respectively.
(approximately 1 atm, 4.2K). Below the helium gas, saturated superfluid helium 7 (about 12
mmtIg, 1.8K). These helium gas and superfluid helium are stored in a container 8, which includes a working material 3, a thermal separator 4. The helium gas 6 and the superfluid helium 7 are hermetically sealed and separated from the liquid helium 6 in terms of pressure by the container 8 . By the insulation vacuum layer 9, 1.8
The layers are insulated. 10 is a vacuum insulation container 10A is a ball bearing, and IOB is a hole into which liquid helium 6 is placed. The vacuum insulation container 10 containing the magnetic material 3 is always in a stationary state. The rotor 1 can be rotated by a shaft 11. When the rotor 1 rotates, according to the magnetic field distribution formed by the superconducting coil 2 and the rotational change of the rotor 1,
A magnetic field can be periodically applied to and removed from the work material 3. That is, when a magnetic field is applied to the working material, the temperature of the working material 3 rises, and heat is exhausted to the liquid helium 6 from the high temperature side heat transfer surface 3b. When the magnetic field is removed from the working material 3, the temperature of the working material 3 decreases and the helium gas 5 is condensed on the low temperature side heat transfer surface 3a of the working material 3. By periodically repeating heat exchange between the working material and the outside in this way, a refrigeration cycle between 1.8 and 4.2 can be constructed.

作業物質3の温度が液体ヘリウム6の温度より低いとき
には、高温冷媒の液体ヘリウム6の自然対流熱伝達で、
作業物質3と液体ヘリウム6が熱伝達しないように、対
流の防止をしである。また、作業物質3の温度が1.8
により高い状態のとき、ヘリウムガス5の自然対流熱伝
達でヘリウムガス5と作業物質3が熱交換しないように
工夫しである。
When the temperature of the working substance 3 is lower than the temperature of liquid helium 6, natural convection heat transfer of liquid helium 6, which is a high temperature refrigerant,
Convection must be prevented to prevent heat transfer between the working material 3 and the liquid helium 6. Also, the temperature of the working substance 3 is 1.8
The device is designed to prevent heat exchange between the helium gas 5 and the working material 3 due to natural convection heat transfer of the helium gas 5 when the temperature is higher.

さて、複数個の超電導コイルによって発生した磁場によ
って、ロータ1の外周方向に配置された複数個の作業物
質3に、円周囲りの方向に、高磁場→低磁場→高磁場→
低磁場・・・・・・と磁場変化を付けている。この磁場
変化を有効に行わせるために、第3図、第4図に示すよ
うに作業物質3の外周に、鉄などの高透磁率の材料で構
成した円筒12を配置し、磁気回路を収束させてもよい
Now, the magnetic field generated by the plurality of superconducting coils causes the plurality of work materials 3 arranged around the outer circumference of the rotor 1 to undergo a high magnetic field → a low magnetic field → a high magnetic field → in the direction around the circumference.
The magnetic field changes as low magnetic field... In order to effect this magnetic field change effectively, a cylinder 12 made of a material with high magnetic permeability such as iron is placed around the outer periphery of the work material 3, as shown in FIGS. 3 and 4, to converge the magnetic circuit. You may let them.

作業物質3に周期的磁場変化を与える方法として、第5
図に示すように円筒体のロータ1の内側に作業物質を配
置するようにしてもよい。
As a method of applying periodic magnetic field changes to the work material 3, the fifth method is as follows.
As shown in the figure, the working material may be placed inside the cylindrical rotor 1.

以上の説明では、1.8に−4,2にの冷凍サイクルに
ついて説明する。低温側は、冷媒としてヘリウムを使用
する場合は、臨界点5.2に以下の温度域に設定できる
。冷媒を水素、アルゴン、窒素などにすれば、もつと高
温に設定することも可能である。高温側は、低温側の設
定温度より高い温度に設定すればよいわけで、また高温
側に適当な熱スイツチ機構を設ければ、高温側冷媒とし
て液体に限定する必要はない。第6図に、低温側4.2
K。
In the above explanation, the refrigeration cycles of 1.8, -4, and 2 will be explained. On the low temperature side, when helium is used as a refrigerant, the following temperature range can be set at the critical point 5.2. If the refrigerant is hydrogen, argon, nitrogen, etc., it is possible to set the temperature to a higher temperature. The high-temperature side only needs to be set at a higher temperature than the set temperature on the low-temperature side, and if an appropriate heat switch mechanism is provided on the high-temperature side, the refrigerant on the high-temperature side does not need to be limited to liquid. Figure 6 shows the low temperature side 4.2.
K.

高温側20にの一実施例について示す。ロータ1に組込
まれた超電導コイル2によって発生した磁場分布に従っ
て、ロータ1が回転すると、円周上に配置された複数個
の作業物質3に印加磁場の増減が生じることは前と同様
である。IOCは底カバーである。このロータ1は容器
13中の液体ヘリウム14に浸漬される。さて、作業物
質3に磁場が印加されたとき、図示しないヘリウムガス
冷凍機によって生成された20にのヘリウムガス15は
流路切換弁ボックス16に入り、管17を介して作業物
質3の高温側熱楔面18で、作業物質3に発生した熱を
吸熱しながら、管19を介して戻り流路切換弁ボックス
20に入り、ヘリウムガス21は外部のヘリウムガス冷
凍機へ戻る。作業物質から磁場が除去された状態では、
作業物質の温度は4.2に以下に低下しているので、ヘ
リウムガス5は、作業物質3の低温側伝熱面3c。
An embodiment on the high temperature side 20 will be shown. As before, when the rotor 1 rotates according to the magnetic field distribution generated by the superconducting coil 2 incorporated in the rotor 1, the applied magnetic field increases or decreases to the plurality of work materials 3 arranged on the circumference. IOC is the bottom cover. This rotor 1 is immersed in liquid helium 14 in a container 13. Now, when a magnetic field is applied to the work material 3, helium gas 15 generated by a helium gas refrigerator (not shown) enters the flow path switching valve box 16, and passes through the pipe 17 to the high temperature side of the work material 3. While absorbing the heat generated in the work material 3 at the thermal wedge surface 18, the helium gas 21 enters the return flow path switching valve box 20 through the pipe 19, and returns to the external helium gas refrigerator. When the magnetic field is removed from the working material,
Since the temperature of the working material has decreased below 4.2, the helium gas 5 is transferred to the low temperature side heat transfer surface 3c of the working material 3.

3dで凝縮し、液化される。被冷却物22、液体ヘリウ
ム14を管23、弁24を介して補給するポンプ25や
ロータ1の回転による熱損失などの熱負荷は、蒸発した
ヘリウムガスの再凝縮で吸収される。以上の説明で、ロ
ータ1は液体ヘリウム中に必ずしも浸漬する必要はなく
、ヘリウムガスの強制冷却で、超電導コイルを冷却した
り、また常温に配置された常電導コイルなどでもよいこ
とは言までもない。
Condenses and liquefies in 3d. Heat loads such as heat loss due to the rotation of the rotor 1 and the pump 25 that replenishes the object to be cooled 22 and the liquid helium 14 through the pipe 23 and the valve 24 are absorbed by recondensation of the evaporated helium gas. In the above explanation, it goes without saying that the rotor 1 does not necessarily need to be immersed in liquid helium, and that the superconducting coil may be cooled by forced cooling of helium gas, or it may be a normal conducting coil placed at room temperature. do not have.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、作業物質を静止した状態で、円柱体あ
るいは円筒体の外周面上に複数個の超電導コイルを配置
したロータを回転させることによって、前記作業物質に
周期的に磁場を印加したり、除去したりできるので、高
効率で信頼性の高い磁気冷凍機を得ることができる。
According to the present invention, while the work material is stationary, a magnetic field is periodically applied to the work material by rotating a cylindrical body or a rotor in which a plurality of superconducting coils are arranged on the outer peripheral surface of the cylindrical body. Since the magnetic refrigerating machine can be removed or removed, it is possible to obtain a highly efficient and reliable magnetic refrigerator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の磁気冷凍機の斜視図、第2図は1本
発明の磁気冷凍機の断面図、第3図〜第6図は夫々本発
明の他の実施例を示す断面図である。 1・・・ロータ、2・・・超電導コイル、3・・・磁気
冷凍用作業物質、訃・・ヘリウムガス、6・・・液体ヘ
リウム。 第2図 1ρ周 /θ乃
FIG. 1 is a perspective view of a magnetic refrigerator of the present invention, FIG. 2 is a cross-sectional view of a magnetic refrigerator of the present invention, and FIGS. 3 to 6 are cross-sectional views showing other embodiments of the present invention. It is. 1... Rotor, 2... Superconducting coil, 3... Working material for magnetic refrigeration, Death... Helium gas, 6... Liquid helium. Fig. 2 1ρ rotation/θno

Claims (1)

【特許請求の範囲】[Claims] 磁場を印加すると発熱し、磁場を除去すると吸熱する磁
気冷凍用の複数の作業物質と、前記作業物質に周期的に
磁場を印加したり、除去する磁場発生装置と、前記作業
物質に磁場を印加したとき、高温側へ排熱する熱スイツ
チ付排熱機構と、前記作業物質から磁場を除去したとき
低温側より吸熱する熱スイツチ付吸熱機構を備え、前記
作業物質を静止状態で動作する磁気冷凍機において、円
柱体あるいは円筒体の周上に複数個のコイルを配置した
ロータの外周あるいは内周に前記複数の作業物質を配置
し、前記コイルに電流を流してロータの周上に磁場の強
度が増減する磁場分布を形成し、このロータを回転させ
ることによって、前記作業物質に周期的に磁場を加えた
り、除去したりすることを特徴とする磁気冷凍機。
A plurality of working substances for magnetic refrigeration that generate heat when a magnetic field is applied and absorb heat when the magnetic field is removed; a magnetic field generator that periodically applies and removes a magnetic field from the working substances; and a magnetic field generator that applies a magnetic field to the working substances. The magnetic refrigeration system operates while the work material is in a stationary state, and includes a heat exhaust mechanism with a heat switch that discharges heat to the high temperature side when the work material is removed, and a heat absorption mechanism with a heat switch that absorbs heat from the low temperature side when the magnetic field is removed from the work material. In a machine, a plurality of working substances are arranged on the outer or inner circumference of a rotor having a cylindrical body or a plurality of coils arranged around the circumference of the cylinder, and a current is applied to the coils to increase the strength of the magnetic field on the circumference of the rotor. 1. A magnetic refrigerator, characterized in that a magnetic field is periodically applied to or removed from the work material by forming a magnetic field distribution that increases and decreases, and by rotating the rotor.
JP6761284A 1984-04-06 1984-04-06 Magnetic refrigerator Pending JPS60211273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6761284A JPS60211273A (en) 1984-04-06 1984-04-06 Magnetic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6761284A JPS60211273A (en) 1984-04-06 1984-04-06 Magnetic refrigerator

Publications (1)

Publication Number Publication Date
JPS60211273A true JPS60211273A (en) 1985-10-23

Family

ID=13349947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6761284A Pending JPS60211273A (en) 1984-04-06 1984-04-06 Magnetic refrigerator

Country Status (1)

Country Link
JP (1) JPS60211273A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283987A (en) * 2005-03-31 2006-10-19 Toshiba Corp Magnetic refrigerating machine
JP2008051412A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
JP2008051409A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
JP2008051410A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
JP2008051411A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
JP2012506115A (en) * 2008-10-16 2012-03-08 クールテック アプリケーションズ エス.エー.エス. Heat generator with magnetocaloric effect

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283987A (en) * 2005-03-31 2006-10-19 Toshiba Corp Magnetic refrigerating machine
JP2008051412A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
JP2008051409A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
JP2008051410A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
JP2008051411A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
JP2012506115A (en) * 2008-10-16 2012-03-08 クールテック アプリケーションズ エス.エー.エス. Heat generator with magnetocaloric effect

Similar Documents

Publication Publication Date Title
US4033734A (en) Continuous, noncyclic magnetic refrigerator and method
JPH0332710B2 (en)
US4532770A (en) Magnetic refrigerator
CA2055043C (en) Magnetic refrigerator
JP4018981B2 (en) Apparatus comprising a rotor and a magnetic bearing for supporting the rotor without contact
JPH0357389B2 (en)
JP2004515192A (en) Superconducting device
JPH042868B2 (en)
JPH04240361A (en) Stationary type magnetic refrigerator
JPH0155392B2 (en)
JP2513608B2 (en) Magnetic refrigeration method and apparatus
JPS60211273A (en) Magnetic refrigerator
US6708503B1 (en) Vacuum retention method and superconducting machine with vacuum retention
EP0104713B1 (en) A magnetic refrigerator
JPH0663675B2 (en) Magnetic refrigerator
Helvensteijn et al. Conceptual design of a 0.1 W magnetic refrigerator for operation between 10 K and 2 K
JPS61114061A (en) Magnetic refrigerator
JPH04177065A (en) Magnetic refrigerator
JPH0371626B2 (en)
JPS63129271A (en) Rotary type magnetic refrigerator
JPS63169463A (en) Cooling device for pulse superconducting magnet
JPS61147063A (en) Magnetic refrigerator
JPS5969668A (en) Magnetic refrigerator
RU45874U1 (en) CRYOGENIC TURBOGENERATOR ROTOR
JPS5629309A (en) Superconductive magnet device