JPH04177065A - Magnetic refrigerator - Google Patents

Magnetic refrigerator

Info

Publication number
JPH04177065A
JPH04177065A JP30558690A JP30558690A JPH04177065A JP H04177065 A JPH04177065 A JP H04177065A JP 30558690 A JP30558690 A JP 30558690A JP 30558690 A JP30558690 A JP 30558690A JP H04177065 A JPH04177065 A JP H04177065A
Authority
JP
Japan
Prior art keywords
magnetic
shield
magnetic shield
magnetic field
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30558690A
Other languages
Japanese (ja)
Other versions
JP2877495B2 (en
Inventor
Yoshiro Saji
佐治 吉郎
Hiroaki Toda
戸田 博章
Tetsuo Takagi
高木 鉄雄
Takao Sugioka
孝雄 杉岡
Masaru Inoue
勝 井上
Kohei Otani
光平 大谷
Manabu Sato
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koatsu Gas Kogyo Co Ltd
Original Assignee
Koatsu Gas Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koatsu Gas Kogyo Co Ltd filed Critical Koatsu Gas Kogyo Co Ltd
Priority to JP30558690A priority Critical patent/JP2877495B2/en
Priority to US07/788,100 priority patent/US5156003A/en
Priority to CA002055043A priority patent/CA2055043C/en
Priority to EP91202909A priority patent/EP0487130B1/en
Priority to DE69101539T priority patent/DE69101539T2/en
Publication of JPH04177065A publication Critical patent/JPH04177065A/en
Application granted granted Critical
Publication of JP2877495B2 publication Critical patent/JP2877495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0023Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with modulation, influencing or enhancing an existing magnetic field

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To put the above refrigerator close to an ideal refrigerating cycle by enlarging the variation of a magnetic flux density in processes of excitation and demagnetization and by the demagnetization at zero magnetic field, by repeating one process wherein a magnetic actuation substance is placed in a strong magnetic field and is excited, and the other process wherein the magnetic actuation substance is inserted or held in a hollow part on a magnetic shield substance and is demagnetized. CONSTITUTION:A magnetic actuation substance 2 exists in a strong magnetic field at the end of the rising thereof and radiates heat by exciting. This heat is cooled until a temperature reaches a definite value by a heat bath 4 on the side of high temperature. After that, when quickly lowered and held in a hollow part 33 on a magnetic shield substance 3, the magnetic actuation substance 2 is adiabatically demagnetized, radiates cold, absorbs heat from a cold bath 5 and cools the cold bath 5. After that, when the magnetic actuation substance 2 is raised and held in the central part of a coil 1 by the escape from the hollow part 33 on the magnetic shield substance 3, heat generation by adiabatic excitation and cooling by the hot bath 4 on the side of the high temperature are performed. By a course of these processes, heat is transferred from the cold bath 5 to the hot bath 4 and the cold bath 5 is cooled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強磁界発生用の磁石と磁性作動体との間に磁
気遮蔽体を介在させて、磁性作動体に寒冷を発生させる
磁気冷凍機に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a magnetic refrigeration system that generates cold in a magnetic working body by interposing a magnetic shield between a magnet for generating a strong magnetic field and a magnetic working body. Regarding machines.

(従来の技術) 従来の超低温領域への冷却法である断熱消磁法は、研究
用としては、広く使用されているが、断熱消磁法を利用
した磁気冷凍機は、工業用としては、実用段階には至っ
ていない。磁気冷凍機には、大きな磁界を発生させる磁
石と冷却される磁性作動体とその磁性作動体を収容する
断熱真空容器とを基本構成とするのであるが、磁石につ
いては、従来の電磁石に代って、現在では、超電導体の
線条コイルの利用が可能になり、電磁石の場合の磁束密
度は概ね2Tが限度であるのに対して、超電導コイルの
使用により5T以上の強磁場発生の実現が可能となった
。また、磁性作動体としてガーネット型のガドリニウム
・ガリウム酸化物やクロムみょうばんをはじめ、種々の
物質が検討されており、この磁性作動体を冷却し、この
磁性作動体から発生した寒冷を伝達する熱媒体に、気体
や液体を利用する方法や、固体の接触熱伝導による方法
、ヒートパイプの方法が検討されている。
(Prior technology) The adiabatic demagnetization method, which is a conventional cooling method for ultra-low temperature regions, is widely used for research purposes, but magnetic refrigerators using the adiabatic demagnetization method have not yet reached the practical stage for industrial use. This has not yet been achieved. A magnetic refrigerator basically consists of a magnet that generates a large magnetic field, a magnetic working body to be cooled, and an insulated vacuum container that houses the magnetic working body. Nowadays, it is possible to use superconducting wire coils, and while the magnetic flux density of electromagnets is generally limited to 2T, the use of superconducting coils has made it possible to generate strong magnetic fields of 5T or more. It has become possible. In addition, various materials are being considered for the magnetic actuating body, including garnet-type gadolinium/gallium oxide and chromium alum. Methods using gas or liquid, contact heat conduction in solids, and heat pipe methods are being considered.

磁気冷凍機においては、磁性作動体を励磁・消磁する機
構が必要であって、従来は、電磁石や超電導コイルの電
流の継続遮断により発生磁場自体を制御する方法と、一
定の強磁場の下で磁性作動体を強磁界域から弱磁界域ま
でを移動させて、当該磁性作動体における磁束密度を変
化させる方法とがある。コイル電流を断続する方法は、
大電流の開閉操作が困難なこと、超電導コイルを使用す
るとしても、当該コイルから外部電源に接続する電線や
当該電源自体に電流起動時と遮断時には大電流が流れて
ジュール熱漬を生じ、冷凍機の効率を低下させることか
ら専ら小形の冷凍機には適用されるが1通常の実用的な
冷凍機においては、磁性作動体自体を往復運動もしくは
回転運動をさせる方法を採用すべく広く検討されている
Magnetic refrigerators require a mechanism to excite and demagnetize the magnetic actuating body. Conventionally, two methods have been used: controlling the generated magnetic field itself by continuously interrupting the current of an electromagnet or superconducting coil, and controlling the generated magnetic field itself under a constant strong magnetic field. There is a method of changing the magnetic flux density in the magnetic actuator by moving the magnetic actuator from a strong magnetic field region to a weak magnetic field area. The method of intermittent coil current is
It is difficult to open and close large currents, and even if superconducting coils are used, large currents flow through the wires connecting the coils to the external power supply and the power supply itself when the current starts and stops, causing Joule heating and freezing. It is only applied to small refrigerators because it reduces the efficiency of the machine, but in ordinary practical refrigerators, it is widely considered to adopt a method in which the magnetic actuating body itself makes reciprocating or rotating motion. ing.

(発明が解決しようとする課題) 磁性作動体自体を強磁界から零磁界の間を移動させる方
法においては、磁界コイルに超電導コイルを使用すれば
、永久電流モードで常時強磁場を保持することができる
が、磁性作動体の往復もしくは回転運動のための複雑な
機構を必要とし、消磁過程で磁界コイルからの磁力線の
帰路線を横断することなく当該磁性作動体を完全零磁界
中まで移動させるには、往復もしくは回転の移動距離を
著しく大きく採らなければならず、装置が巨大なものと
なる。そこで、従来技術では、実用的な移動距離で満足
していたが、この場合は、磁場残留中で消磁過程の終端
となり、消磁過程における磁束密度が零とならず、熱効
率の点で不満を残していた。
(Problem to be solved by the invention) In the method of moving the magnetic actuating body itself between a strong magnetic field and a zero magnetic field, if a superconducting coil is used as the magnetic field coil, it is possible to maintain a strong magnetic field at all times in persistent current mode. However, it requires a complicated mechanism for reciprocating or rotating the magnetic actuating body, and it is difficult to move the magnetic actuating body into a completely zero magnetic field without crossing the return line of the magnetic field lines from the magnetic field coil during the demagnetization process. In this case, the distance of reciprocating or rotational movement must be significantly large, resulting in a large device. Therefore, the conventional technology was satisfied with a practical moving distance, but in this case, the demagnetization process ends in a residual magnetic field, and the magnetic flux density during the demagnetization process does not become zero, leaving a dissatisfaction in terms of thermal efficiency. was.

また、機械運動に伴い軸受部や摺動部での摩擦熱の発生
によって、冷凍機の熱効率を悪化させ、さらに励磁域に
おける磁性作動体の昇温を冷却する媒体と、消磁域にお
ける磁性作動体の降温により冷却される媒体の循環が必
要となるが、この場合、回転又は摺動する磁性作動体の
周辺部での媒体の漏出により、冷凍機の熱効率は低下せ
ざるを得ない。
In addition, the thermal efficiency of the refrigerator is deteriorated due to the generation of frictional heat in bearings and sliding parts due to mechanical motion.Furthermore, the temperature rise of the magnetic actuating body in the excitation region is reduced by a cooling medium, and a magnetic actuating body in the demagnetization region. As the temperature decreases, it is necessary to circulate the cooling medium, but in this case, the thermal efficiency of the refrigerator inevitably decreases due to leakage of the medium around the rotating or sliding magnetic actuating body.

本発明は、以上の諸問題に鑑みなされたものであって、
超電導コイルを定電流モードで使用して、磁性作動体を
固定し、あるいは移動させるとしても移動距離を極力短
縮することにより、熱効率の高い磁気冷凍機を提供せん
とするものである。
The present invention was made in view of the above problems, and
The present invention aims to provide a magnetic refrigerator with high thermal efficiency by using a superconducting coil in a constant current mode to fix the magnetic actuating body, or to shorten the moving distance as much as possible if it is moved.

(課題を解決するための手段) 本発明の磁気冷凍機は、強磁界を発生させる磁石と、筒
状の超電導性磁気遮蔽体と、磁性作動体と、当該磁性作
動体もしくは当該磁気遮蔽体を往復移動させる往復機構
とから成るものであって。
(Means for Solving the Problems) The magnetic refrigerator of the present invention includes a magnet that generates a strong magnetic field, a cylindrical superconducting magnetic shield, a magnetic actuator, and the magnetic actuator or the magnetic shield. It consists of a reciprocating mechanism for reciprocating movement.

当該往復機構によって、当該磁性作動体が当該強磁界中
において励磁される過程と当該磁性作動体が当該磁気遮
蔽体の中空部に挿入もしくは収容されて消磁される過程
とを繰り返すことにより、当該磁性作動体が寒冷を発生
させるようになした磁気冷凍機である。
The reciprocating mechanism repeats a process in which the magnetic actuating body is excited in the strong magnetic field and a process in which the magnetic actuating body is inserted or housed in the hollow part of the magnetic shield and demagnetized. This is a magnetic refrigerator whose working body generates cold.

本発明で使用される磁石は、2T以下の比較的弱い磁場
を利用する場合には、有鉄芯電磁石又は永久磁石が使用
されるが、通常は超電導コイルであって、液体ヘリウム
温度で使用される場合には、Nb−Ti系合金又はNb
3Sn系化合物の線条が使用され、定電流モードによっ
て、当該コイルからは、常時強磁場が発生している。
The magnet used in the present invention is a ferrous core electromagnet or a permanent magnet when a relatively weak magnetic field of 2T or less is used, but usually a superconducting coil is used at liquid helium temperature. Nb-Ti alloy or Nb
A wire made of a 3Sn compound is used, and a strong magnetic field is constantly generated from the coil in constant current mode.

寒冷を発生させる磁性作動体は1作動温度において、磁
束密度変化及び温度変化に対するエントロピー変化の大
きい物質が使用されるが、20に以下の温度では、ガー
ネット型のガドリニウム・ガリウム酸化物が使用され、
また、20に以上の温度では、強磁性体1例えば、Dy
Al2その他の希土類金属のアルミニウム化合物RA1
2などが使用できる。
For the magnetic actuator that generates cold, a material with large changes in magnetic flux density and large entropy changes with respect to temperature changes is used at the operating temperature, but at temperatures below 20 degrees, garnet-type gadolinium gallium oxide is used.
Furthermore, at temperatures above 20°C, the ferromagnetic material 1, for example, Dy
Al2 Aluminum compounds of other rare earth metals RA1
2 etc. can be used.

当該磁気遮蔽体は、周辺磁場を有効に遮断するために、
超電導体の原板と常電導体の原板とを交互に積み重ねた
積層体が好んで使用される。超電導体層からなる磁気遮
蔽体は、周辺磁界の下で臨界温度以下に冷却して使用す
る必要があり、Nb−Ti合金板を利用する場合は、液
化ヘリウム中に浸漬される。
In order to effectively block the surrounding magnetic field, the magnetic shield has the following characteristics:
A laminate in which superconductor original plates and normal conductor original plates are stacked alternately is preferably used. A magnetic shield made of a superconductor layer needs to be cooled to below a critical temperature under an ambient magnetic field before use, and when a Nb-Ti alloy plate is used, it is immersed in liquefied helium.

上記往復機構は、磁性作動体を往復運動させるものと、
磁気遮蔽体を往復運動させるものとがある。磁性作動体
を移動させる型の磁気冷却機においては、超電導コイル
の中空中心軸に沿って移動可能に往復機構の駆動杆に接
続された当該磁性作動体が配置され、当該超電導コイル
に近接して固定された円筒状磁気遮蔽体の中空部内と上
記強磁場中との区間を、当該磁性作動体が往復するもの
である。
The reciprocating mechanism causes the magnetic actuating body to reciprocate;
There is one that makes the magnetic shield move back and forth. In a magnetic cooler that moves a magnetic working body, the magnetic working body is connected to a drive rod of a reciprocating mechanism so as to be movable along the hollow center axis of the superconducting coil, and the magnetic working body is disposed close to the superconducting coil. The magnetic operating body reciprocates between the hollow part of the fixed cylindrical magnetic shield and the strong magnetic field.

他の方法は、超電導コイルからの強磁場中に当該磁性作
動体を固定しておき、往復機構の駆動杆に接続された当
該磁気遮蔽体を、当該磁気遮蔽体の中空部が当該磁性作
動体を収容することができるように、往復運動させるも
のである。
Another method is to fix the magnetic actuating body in a strong magnetic field from a superconducting coil, and move the magnetic shield connected to the drive rod of the reciprocating mechanism so that the hollow part of the magnetic shield is connected to the magnetic actuating body. It is designed to move reciprocatingly so that it can be accommodated.

この往復機構としては、上記駆動杆の他の端部に、回転
するクランクと連結する方法や、油圧シリンダーのピス
トンと連結する方法が使用され、運動行程の小さいとき
は、カム機構が利用できる。
As this reciprocating mechanism, a method of connecting the other end of the drive rod to a rotating crank or a method of connecting it to a piston of a hydraulic cylinder is used, and when the movement stroke is small, a cam mechanism can be used.

また、磁気遮蔽体又は磁性作動体が移動する行程は急速
であり、両端の位置では、遅滞し、あるいは休息するの
が好ましく、このため行程の両端で休息するカム機構又
は油圧制御が採用される。
In addition, the stroke of the magnetic shield or magnetic actuator is rapid, and it is preferable to delay or rest at both end positions, so a cam mechanism or hydraulic control that rests at both ends of the stroke is adopted. .

本発明は、また1強磁界を発生させる磁石と、当該磁界
中に配置された筒状の超電導性磁気遮蔽体と、当該磁気
遮蔽体の中空部に配置された磁性作動体と、当該磁気遮
蔽体が浸漬される冷却液体の液面を制御する液面制御機
構からなる磁気冷凍機であって、当該超電導性磁気遮蔽
体は、当該液体の温度より高い温度で、磁気を透過する
ものであり、当該液面制御機構によって、当該磁気遮蔽
体の一部が当該液面より露出することにより当該磁性作
動体が励磁される過程と、当該磁気遮蔽体が当該液体中
に浸漬されて当該磁性作動体が消磁される過程を繰り返
すことにより、当該磁性作動体が寒冷を発生させるよう
になした磁気冷凍機を包含するものである。
The present invention also provides a magnet that generates a strong magnetic field, a cylindrical superconducting magnetic shield placed in the magnetic field, a magnetic actuator placed in a hollow part of the magnetic shield, and a magnetic shield. A magnetic refrigerator comprising a liquid level control mechanism that controls the liquid level of a cooling liquid in which the body is immersed, and the superconducting magnetic shield is permeable to magnetism at a temperature higher than the temperature of the liquid. , a process in which the magnetic actuating body is excited by a part of the magnetic shield being exposed above the liquid surface by the liquid level control mechanism, and a process in which the magnetic shield is immersed in the liquid and the magnetic actuating body is excited. This includes a magnetic refrigerator in which the magnetic operating body generates cold by repeating the process of demagnetizing the body.

上記の往復機構を備えた磁気冷凍機と異なる所は、液面
制御機構により、当該磁気遮蔽体を浸漬する液体の液面
を、通常は上下方向に変化させ、当該液体に完全に浸漬
されて当該磁気遮蔽体が冷却される過程と、当該液面上
の真空中もしくは蒸気中にその一部が露出されて当該磁
気遮蔽体の温度が上昇する過程とを実現するものであり
、当該液面制御機構としては、当該磁気遮蔽体を収納す
る容器をサイフオン構造として、当該容器中の液体の上
面の圧力を加減調整するものである。この方式において
は、当該磁性作動体も磁気遮蔽体も、磁界コイルに対し
て固定されており、特別の移動機構を必要としない。
The difference from the above-mentioned magnetic refrigerator with a reciprocating mechanism is that the liquid level control mechanism changes the liquid level of the liquid in which the magnetic shield is immersed, usually in the vertical direction, so that the magnetic shield is completely immersed in the liquid. This method realizes a process in which the magnetic shield is cooled, and a process in which the temperature of the magnetic shield increases by exposing a part of it to the vacuum or vapor above the liquid surface. As a control mechanism, the container housing the magnetic shielding body has a siphon structure, and the pressure on the upper surface of the liquid in the container is adjusted. In this system, both the magnetic actuating body and the magnetic shielding body are fixed relative to the magnetic field coil, and no special moving mechanism is required.

液面制御機構による磁気冷凍機においては、当該磁気遮
蔽体に、当該液体に液体ヘリウムを使用する場合には、
上述のように、液体ヘリウムの常圧沸騰温度下で超電導
性を示すNb−Ti合金の円環板と常電導体の円環板と
の積層体を使用し、当該温度より高温では、当該合金が
常電導性を示すような合金組成が必要となる。
In a magnetic refrigerator with a liquid level control mechanism, when liquid helium is used as the liquid in the magnetic shield,
As mentioned above, a laminate of an Nb-Ti alloy annular plate that exhibits superconductivity at the normal pressure boiling temperature of liquid helium and a normal conductor annular plate is used. An alloy composition that exhibits normal conductivity is required.

往復機構による冷凍機、液面制御機構による冷凍機のい
ずれについても、磁気遮蔽体には、超電導体の薄層と非
磁性金属薄層との帯体を筒状に巻着成形してなる積層体
、又は、酸化物超電導体の粉末成型焼結体もしくは酸化
物超電導体薄層と非磁性金属薄層との帯体を筒状に巻着
成形してなる焼結体が好ましく使用される。酸化物超電
導体は、Y−Ba−Cu−0系もしくはB1−5r−C
u−0系の超電導物質が利用され、この酸化物を包含す
る当該磁気遮蔽体は、液体窒素あるいは液体ヘリウムに
浸漬されて使用される。
For both refrigerators with a reciprocating mechanism and refrigerators with a liquid level control mechanism, the magnetic shield is a laminate made by wrapping and forming a strip of a thin layer of superconductor and a thin layer of non-magnetic metal into a cylindrical shape. A sintered body, a powder-molded sintered body of an oxide superconductor, or a sintered body formed by winding and forming a band of an oxide superconductor thin layer and a nonmagnetic metal thin layer into a cylindrical shape is preferably used. The oxide superconductor is Y-Ba-Cu-0 type or B1-5r-C
A u-0 type superconducting material is used, and the magnetic shielding material containing this oxide is used by being immersed in liquid nitrogen or liquid helium.

(作用) 磁気冷凍機は、強磁場中で励磁された磁性作動体は、当
該磁場を急速に除去することにより、断熱的に消磁され
て、寒冷を発して、自らを冷却するのであり、再び強磁
場を付与して、断熱的に励磁されて、発熱して、自らを
加熱するのであるが、本発明においては、断熱消磁の過
程を、円筒状の磁気遮蔽体の中空部に、当該磁性作動体
を収納することにより実現するものである。即ち、第3
図に示すように、筒状の超電導積層体3を磁場中におい
たとき、超電導積層体3の中空部33には、外部からの
磁力線9は浸透せず、磁界強度は零となる。そこで、強
磁場中の磁性作動体を、その強磁場近傍に配置された磁
気遮蔽体の中空部に移送することにより、磁性作動体の
消磁状態を容易に得ることができる。磁気遮蔽は強磁性
体を使用しても可能ではあるが、強磁性体から成る磁気
遮蔽体は、磁気冷凍機に適用される程の強大な磁界の下
で完全に磁気を遮蔽するには、相当大きい筒体肉厚を必
要とし、磁気遮蔽体自体の重量が大きくなって、実用的
ではない。本発明では、第2図に示すように、環状の超
電導体板31と常電導体板32との筒状積層体3で構成
され、超電導状態を維持できる温度下で、環状の超電導
体板は、浸入する外部磁場を打ち消すように自ら磁場を
発生させる閉電流を流して、当該板面とその内部には。
(Function) In a magnetic refrigerator, a magnetic operating body excited in a strong magnetic field is adiabatically demagnetized by rapidly removing the magnetic field, generates cold, and cools itself. By applying a strong magnetic field, it is adiabatically excited, generates heat, and heats itself. In the present invention, the process of adiabatic demagnetization is applied to the hollow part of the cylindrical magnetic shield. This is achieved by housing the operating body. That is, the third
As shown in the figure, when the cylindrical superconducting laminate 3 is placed in a magnetic field, the magnetic lines of force 9 from the outside do not penetrate into the hollow portion 33 of the superconducting laminate 3, and the magnetic field strength becomes zero. Therefore, by transferring the magnetic actuator in a strong magnetic field to the hollow part of a magnetic shield placed near the strong magnetic field, the demagnetized state of the magnetic actuator can be easily obtained. Magnetic shielding is possible using ferromagnetic materials, but magnetic shields made of ferromagnetic materials cannot completely shield magnetism under magnetic fields as strong as those applied to magnetic refrigerators. This requires a considerably large thickness of the cylinder, and the weight of the magnetic shield itself increases, making it impractical. In the present invention, as shown in FIG. 2, the annular superconductor plate is composed of a cylindrical laminate 3 consisting of an annular superconductor plate 31 and a normal conductor plate 32, and the annular superconductor plate is A closed current that generates its own magnetic field so as to cancel out the invading external magnetic field is passed through the plate surface and its interior.

外部磁場を浸透させず、この超電導体板を積層すれば、
強力な磁場を遮断する能力は増大するから、この磁気遮
蔽体を、磁場発生用の超電導コイルの近傍であって、強
磁場中に固定又は移動可能に配置しても、その中空部は
、零磁界を得ることができ、従って、断熱消磁のための
磁性作動体又は磁気遮蔽体の相対的移動距離を小さくす
ることが可能となる。このことは、完全零磁界中で完全
に消磁することができるから、冷凍サイクルは磁気熱力
学上の理想的サイクルにより近付けることができ、冷凍
熱効率を向上させることが期待でき、また、液体ヘリウ
ム温度下で作動させる冷凍機にあっては、IK以下の極
低温を実用的に達成することができることを意味する。
If we stack these superconductor plates without allowing external magnetic fields to penetrate,
Since the ability to block strong magnetic fields increases, even if this magnetic shield is placed fixedly or movably in a strong magnetic field near the superconducting coil for magnetic field generation, the hollow part A magnetic field can be obtained, thus making it possible to reduce the relative movement distance of the magnetic actuator or the magnetic shield for adiabatic demagnetization. This means that complete demagnetization can be achieved in a completely zero magnetic field, so the refrigeration cycle can be brought closer to the ideal cycle based on magnetothermodynamics, and it is expected that the refrigeration thermal efficiency will be improved. This means that cryogenic temperatures below IK can be practically achieved in refrigerators that operate below IK.

また1本発明の磁気冷凍機は、磁性作動体又は磁気遮蔽
体を往復移動させるための往復機構を有しており、第1
図c)、d)に示すように、磁気遮蔽体3を固定して、
往復機構により磁性作動体2を強磁場中と当該磁気遮蔽
体3の中空部33との区間を往復移動させて、磁性作動
体2の断熱励磁と断熱消磁との交互変化を実現すること
ができる。また、同様に、超電導コイル1の中心軸上の
最大磁界中に磁性作動体2を固定しておき、当該磁性作
動体が当該磁気遮蔽体3の中空部33に収容され、次い
で、離脱するように、磁気遮蔽体3を往復移動させるこ
とにより、断熱励磁と断熱消磁との交互変化を成し得る
Further, the magnetic refrigerator of the present invention has a reciprocating mechanism for reciprocating the magnetic operating body or the magnetic shielding body, and
As shown in figures c) and d), the magnetic shield 3 is fixed,
By reciprocating the magnetic actuating body 2 between the strong magnetic field and the hollow portion 33 of the magnetic shielding body 3 using the reciprocating mechanism, it is possible to realize alternating changes between adiabatic excitation and adiabatic demagnetization of the magnetic actuating body 2. . Similarly, the magnetic actuating body 2 is fixed in the maximum magnetic field on the central axis of the superconducting coil 1, and the magnetic actuating body is accommodated in the hollow part 33 of the magnetic shielding body 3 and then released. Furthermore, by reciprocating the magnetic shield 3, it is possible to alternate between adiabatic excitation and adiabatic demagnetization.

次に、当該磁気遮蔽体が浸漬されている液体の液面を制
御する方式では、当該磁気遮蔽体が液体に完全に浸漬さ
れて、液体温度にあるときは、当該磁気遮蔽体は、超電
導状態にあって、その中空部には、磁石からの磁力線は
透過せず、その中空部内に固定された磁性作動体は消磁
の状態にある。
Next, in the method of controlling the liquid level of the liquid in which the magnetic shield is immersed, when the magnetic shield is completely immersed in the liquid and is at the liquid temperature, the magnetic shield is in a superconducting state. In this case, lines of magnetic force from the magnet do not pass through the hollow part, and the magnetic actuating body fixed in the hollow part is in a demagnetized state.

次いで、当該液体の液面を低下させて、当該磁気遮蔽体
の一部が液面上に露出して、外部からの輻射熱を受けて
温度が上昇すると、当該磁界強度下での超電導体の臨界
温度を上回り、当該磁気遮蔽体の超電導状態は、常電導
状態に転移して、その中空部にまで磁力線は浸透して、
中空部内の磁性作動体は励磁された状態を得る。再度液
面を上昇させれば、当該磁気遮蔽体は当該臨界温度以下
に冷却され、超電導体の状態に復元され、再び当該中空
部内の磁性作動体は消磁される。以上の液面操作により
、当該磁性作動体は、励磁と消磁の行程を繰り返すこと
ができる。
Next, when the liquid level of the liquid is lowered and a part of the magnetic shield is exposed above the liquid surface and the temperature rises due to receiving radiant heat from the outside, the criticality of the superconductor under the magnetic field strength increases. When the temperature exceeds the temperature, the superconducting state of the magnetic shield changes to the normal conducting state, and the lines of magnetic force penetrate into the hollow part,
The magnetic actuating body inside the hollow part obtains an excited state. When the liquid level is raised again, the magnetic shield is cooled below the critical temperature and restored to the superconducting state, and the magnetic operating body in the hollow is demagnetized again. By the above liquid level operation, the magnetic actuating body can repeat the process of excitation and demagnetization.

(実施例) 以下に本発明の実施例を、図面に基づき説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第6図は、液体ヘリウムで冷却された超電導コイル1と
、当該コイル1の中空部内部下方に固定された超電導積
層体の磁気遮蔽体3と、昇降装置7の支持杆71の先端
に昇降可能に取付られた磁性作動体2とから成り、同図
a)に示すように、磁性作動体2は、その上昇限で、当
該コイル1の中空部中心にあって、磁性作動体2の上面
が、高温側熱浴槽4の表面と接触して冷却され、また同
図b)に示すように、その下降限では、当該磁気遮蔽体
3の中空部33に挿入されて、かつ、冷浴である低温側
熱浴5即ち目的の冷却されるべき固体5と面接している
実施例である。本装置自体は、真空槽に収容されて、熱
的に遮蔽されている。また高温側熱浴槽4は、冷却媒体
としての気体ヘリウムが、冷却機(図示せず)との間を
循環して、冷却される。低温側熱浴5即ち冷浴5には、
熱伝導の良いサファイアが好んで利用される。
FIG. 6 shows a superconducting coil 1 cooled with liquid helium, a magnetic shield 3 of a superconducting laminate fixed to the lower part inside the hollow part of the coil 1, and a support rod 71 of an elevating device 7 that can be lifted up and down. As shown in figure a), the magnetic actuator 2 is located at the center of the hollow part of the coil 1 at its upper limit, and the upper surface of the magnetic actuator 2 is located at the center of the hollow part of the coil 1. , is cooled by contacting the surface of the high-temperature side hot bath 4, and as shown in FIG. This is an embodiment in which the cold side heat bath 5 is in contact with the target solid 5 to be cooled. The device itself is housed in a vacuum chamber and is thermally shielded. Further, the high temperature side hot bath 4 is cooled by circulating gaseous helium as a cooling medium between it and a cooler (not shown). In the low temperature side heat bath 5, that is, the cold bath 5,
Sapphire is preferred because of its good thermal conductivity.

磁性作動体2は、上昇限では、強磁界中にあって、励磁
されて、熱を発するが、この熱は高温側熱浴槽4により
一定温度まで冷却される。次いで、急速に当該磁性作動
体2は、下降されて、磁気遮蔽体3の中空部33に収容
されると、断熱的に消磁され、寒冷を発生するが、同時
に冷浴5から熱を奪い、当該冷浴5を冷却する。更に、
当該磁性作動体2が上昇して、当該磁気遮蔽体3の当該
中空部33を脱出して、当該コイル1の中心部に収容さ
れると、上記同様に断熱励磁による発熱と高温側熱浴4
による冷却がおこなわれる。この一連の行程により、冷
浴5から熱浴4へ熱移動が起こり、冷浴5が冷却される
At the upper limit, the magnetic actuating body 2 is in a strong magnetic field, is excited, and generates heat, but this heat is cooled down to a constant temperature by the hot bath 4 on the high temperature side. Then, when the magnetic actuating body 2 is rapidly lowered and accommodated in the hollow part 33 of the magnetic shielding body 3, it is adiabatically demagnetized and generates cold, but at the same time it takes away heat from the cold bath 5. The cold bath 5 is cooled. Furthermore,
When the magnetic actuating body 2 rises, escapes the hollow part 33 of the magnetic shield 3, and is accommodated in the center of the coil 1, heat generation due to adiabatic excitation and high-temperature side hot bath 4 occur as described above.
Cooling is performed by Through this series of steps, heat transfer occurs from the cold bath 5 to the hot bath 4, and the cold bath 5 is cooled.

この磁気冷凍機においては、磁性作動体2は、急速に昇
降させるとともに、上限と下限では、熱浴4と冷浴5と
で、接触時間を確保するため、休止させる過程を設ける
ことが望ましく、また、超電導コイル1の極く近傍の比
較的磁界強度の大きい位置に完全零磁界を得ることがで
きるので、磁性作動体2の移動距離が短くてすみ、励磁
消磁を理想的な断熱過程に近かずけることになる。
In this magnetic refrigerator, it is desirable that the magnetic actuating body 2 be raised and lowered rapidly, and at the upper and lower limits, a process of stopping the hot bath 4 and the cold bath 5 to ensure contact time is provided. In addition, since a completely zero magnetic field can be obtained at a position close to the superconducting coil 1 where the magnetic field strength is relatively large, the moving distance of the magnetic actuator 2 is short, and the excitation and demagnetization process approaches an ideal adiabatic process. I'm going to give it to you.

第6図C)は、超電導コイル1の下端部に、当該コイル
内径と同程度の内径を有する磁気遮蔽体3を同軸状に列
設した実施例であり、超電導コイル1の中空部には、磁
気遮蔽体3が挿入されないので、コイル内径を小さくす
ることができる。さらに、当該コイル1の中空部の強磁
界全域を当該磁性作動体2のために利用できる利点があ
る。この例では、冷却されるべき低温側熱浴5を、気体
ヘリウム槽として、当該磁性作動体2と接触する摺面に
可撓性を付与して熱伝達を良好にするとともに、気体ヘ
リウムを循環するポンプ6を備えて、槽内温度の均一化
を図っている。
FIG. 6C) is an embodiment in which magnetic shielding bodies 3 having an inner diameter comparable to the inner diameter of the coil are arranged coaxially at the lower end of the superconducting coil 1, and in the hollow part of the superconducting coil 1, Since the magnetic shield 3 is not inserted, the inner diameter of the coil can be reduced. Furthermore, there is an advantage that the entire strong magnetic field in the hollow part of the coil 1 can be used for the magnetic actuating body 2. In this example, the low-temperature side heat bath 5 to be cooled is a gaseous helium bath, and the sliding surface in contact with the magnetic actuating body 2 is given flexibility to improve heat transfer, and the gaseous helium is circulated. A pump 6 is provided to equalize the temperature inside the tank.

第7図は、超電導コイル1の強磁界中に磁性作動体2を
固定し、超電導性の円筒状磁気遮蔽体3を、その中空部
33内に当該磁性作動体2を収容可能に、昇降できるよ
うに配設されている実施例であって、当該磁性作動体2
は多孔性であって、容器21に収容されており、冷却媒
体であるヘリウムは、冷却機41と冷浴51から切替バ
ルブV1と配管23とを経由して、当該磁性作動体2の
内部を挿通して、当該容器21内から配管24と切替バ
ルブv2を経由して、冷却機41と冷浴51に帰る経路
が設けられている。
In FIG. 7, a magnetic actuating body 2 is fixed in a strong magnetic field of a superconducting coil 1, and a superconducting cylindrical magnetic shield 3 can be raised and lowered so that the magnetic actuating body 2 can be accommodated in its hollow part 33. This is an embodiment in which the magnetic actuating body 2 is arranged as follows.
is porous and is housed in a container 21, and helium, which is a cooling medium, passes through the switching valve V1 and piping 23 from the cooler 41 and the cold bath 51 to the inside of the magnetic actuating body 2. A path is provided for the tube to pass through and return from the inside of the container 21 to the cooler 41 and the cold bath 51 via the piping 24 and the switching valve v2.

同図a)は、当該磁気遮蔽体3が下降限にあって、磁性
作動体2は、当該コイル1の強磁界中で励磁されて、発
生した熱は、切替バルブv1、V2により、冷却機41
との間の気体ヘリウムの循環によって、除去されて、当
該磁性作動体2は冷却される。次いで、同図b)に示す
ように、−当該磁気遮蔽体3をその収容容器33ごと、
昇降装置に連結された支持杆71により、上昇させると
、当該磁性作動体2は、当該磁気遮蔽体3の中空部33
内に収容されて、消磁されて、寒冷を発生させるが、切
替バルブ■1、■2を切替て、当該磁性作動体2と冷浴
式1との間を気体ヘリウムを循環させて、冷却すべき目
的の当該冷浴51を冷却する。
In Figure a), the magnetic shield 3 is at its lower limit, the magnetic operating body 2 is excited in the strong magnetic field of the coil 1, and the generated heat is transferred to the cooler by the switching valves v1 and V2. 41
The magnetic actuating body 2 is cooled by the circulation of gaseous helium between the two. Next, as shown in FIG.
When raised by a support rod 71 connected to a lifting device, the magnetic actuating body 2 moves into the hollow part 33 of the magnetic shielding body 3.
The magnetic actuating body 2 is housed in the magnetic body, is demagnetized, and generates cold. However, by switching the switching valves ■1 and ■2, gaseous helium is circulated between the magnetic actuating body 2 and the cold bath type 1 to cool it. The cold bath 51 for the desired purpose is cooled.

第8図は、超電導コイル1の内側に固定された磁性作動
体2を磁気遮蔽体3の中空部33に同心状に配置固定し
て、超電導性の磁気遮蔽体2が浸漬されている液体の液
面35を制御して、磁性作動体2の励磁消磁を行う磁気
冷凍機の実施例をしめすが、同図a)には、当該磁気遮
蔽体3を収容している密閉容器34と当該超電導コイル
1を収容している密閉容器14とはその最下部において
連通しており、同容器14.34は、上部よりそれぞれ
配管18.38が接続され、切替弁61を経て、若干の
差圧が設定されている高圧側配管39と低圧側配管19
に接続されている。同容器14.34には、上部に適度
の空間を残して5液体が充填されている。
FIG. 8 shows that the magnetic operating body 2 fixed inside the superconducting coil 1 is arranged and fixed concentrically in the hollow part 33 of the magnetic shield 3, and the superconducting magnetic shield 2 is immersed in the liquid. An embodiment of a magnetic refrigerator is shown in which the liquid level 35 is controlled to excite and demagnetize the magnetic actuating body 2. Figure a) shows the closed container 34 housing the magnetic shield 3 and the superconductor 3. It communicates with the closed container 14 housing the coil 1 at its lowest part, and pipes 18 and 38 are connected to the containers 14 and 34 from the top, respectively, and a slight pressure difference is generated through the switching valve 61. High pressure side piping 39 and low pressure side piping 19 set
It is connected to the. The same container 14.34 is filled with five liquids, leaving an appropriate space at the top.

当該磁気遮蔽体3を構成している超電導体板31に50
%Nb−50%Ti合金を使用した場合には、当該液体
にはヘリウムを使用することができ、この場合、ヘリウ
ムの沸点温度以下で、超電導状態であり、高磁界中であ
るから、当該沸点温度より僅か2〜3にの高温でも常電
導性となる。
50 on the superconductor plate 31 constituting the magnetic shield 3.
%Nb-50%Ti alloy, helium can be used as the liquid, and in this case, it is superconducting at a temperature below the boiling point of helium and in a high magnetic field, so the boiling point is lower than the boiling point of helium. It becomes normal conductive even at a temperature only 2 to 3 times higher than the temperature.

第8図a)は、当該磁気遮蔽体3の収容容器34中の液
体ヘリウムは、当該磁気遮蔽体3を完全に覆って、その
液面は、他方の当該超電導コイル1とほぼ同一水準にあ
り、当該磁気遮蔽体3は当該液体により冷却されて、磁
気遮蔽の状態にあるから、当該磁性作動体2は消磁され
ている。次に同図b)に示すように、切替バルブ61に
より配管38を高圧側にすると、磁気遮蔽体3の収容容
器34の液面は低下し、連通部16を伝って、液体ヘリ
ウムは、当該コイル1の容器14側の液面15を上昇さ
せるが、この結果、当該磁気遮蔽体3の上半分は、当該
液面35から露出して、周囲からの輻射熱により加温さ
れ、当該臨界温度を超えれば、超電導性を失い、当該コ
イルからの磁力線は、露出した磁気遮蔽体3を浸透し、
当該中空部33の磁性作動体2を励磁することになる。
FIG. 8a) shows that the liquid helium in the container 34 of the magnetic shield 3 completely covers the magnetic shield 3, and the liquid level is almost at the same level as the other superconducting coil 1. Since the magnetic shielding body 3 is cooled by the liquid and is in a magnetic shielding state, the magnetic operating body 2 is demagnetized. Next, as shown in Figure b), when the pipe 38 is set to the high pressure side by the switching valve 61, the liquid level in the container 34 of the magnetic shield 3 is lowered, and the liquid helium is transmitted through the communication part 16. The liquid level 15 on the side of the container 14 of the coil 1 is raised, but as a result, the upper half of the magnetic shield 3 is exposed from the liquid level 35 and is heated by radiant heat from the surroundings, raising the critical temperature. If it exceeds the magnetic field, the superconductivity is lost, and the magnetic field lines from the coil penetrate the exposed magnetic shield 3,
The magnetic actuating body 2 in the hollow portion 33 is excited.

以上のように、切替弁61の操作によって、磁気遮蔽体
3の容器34の液面35を制御して、当該磁気遮蔽体3
の上部の露出浸漬を繰り返すことにより、磁性作動体の
励磁消磁を繰り返すことができる。
As described above, by operating the switching valve 61, the liquid level 35 of the container 34 of the magnetic shield 3 is controlled, and the magnetic shield 3 is
By repeating exposing and dipping the upper part of the magnetic actuating body, the excitation and demagnetization of the magnetic actuating body can be repeated.

なお、この実施例では、磁性作動体2は、容器21内の
液体ヘリウム中に浸漬されて、当該容器の下部には、超
流動ヘリウムのみを透過するスーパーリーク25を介在
させて、冷浴27が接続されている。磁性作動体2が励
磁されたときは、当該液体ヘリウムが蒸発して、潜熱に
より冷却され、概ね大気圧下で4.1Kに保持され、次
の断熱消磁の過程で、当該液体ヘリウムを急速に冷却し
て、2に程度に達すると、上記スーパーリーク25を透
過して、当該液体ヘリウム中の超流動ヘリウムのみが、
冷浴26の容器中に収容されるが、この超流動ヘリウム
の平衡温度1.9に以下が得られる。即ち、磁性作動体
2を内包する液体ヘリウムの沸点温度4.1Kから冷浴
温度1.9Kを常時得る磁気冷凍機となる。
In this embodiment, the magnetic actuator 2 is immersed in liquid helium in a container 21, and a super leak 25 through which only superfluid helium passes is interposed in the lower part of the container, and a cold bath 27 is provided. is connected. When the magnetic actuating body 2 is excited, the liquid helium evaporates, is cooled by latent heat, and is maintained at approximately 4.1 K under atmospheric pressure, and in the next adiabatic demagnetization process, the liquid helium is rapidly evaporated. When the liquid helium cools and reaches a temperature of 2, only the superfluid helium in the liquid helium passes through the super leak 25.
The equilibrium temperature of this superfluid helium, housed in the container of the cold bath 26, is 1.9. That is, the magnetic refrigerator constantly obtains a cold bath temperature of 1.9 K from the boiling point temperature of 4.1 K of the liquid helium containing the magnetic working body 2.

以上の実施例には、磁気遮蔽体3として、円環状の超電
導体板31と常電導性の板32との積層体を使用してい
るが、超電導体の帯と常電導体の帯とを貼り合せた帯状
体を筒状に巻着してなる超電導性円筒体をもって、実施
することもできる。
In the above embodiment, a laminate of an annular superconductor plate 31 and a normal conductor plate 32 is used as the magnetic shield 3, but a superconductor band and a normal conductor band are used. It can also be carried out using a superconducting cylindrical body formed by winding bonded strips into a cylindrical shape.

第4図は、超電導体31と常電導体32の層が円筒軸と
同軸状に巻着されて筒体をなしている層状体の例であっ
て、当該円筒軸に垂直な磁力M9は当該円筒体を迂回し
て、当該中空部33には、磁力線9は浸透しないから、
磁界強度は零となり、磁性作動体2の消磁空間として利
用することができる。また、超電導体にY−Ba−Cu
−0系酸化物の焼結体を使用すれば、液体窒素温度下で
作動する冷凍機も可能で、常温超電導体の出現により常
温用の冷凍機も可能になる。
FIG. 4 shows an example of a layered body in which layers of a superconductor 31 and a normal conductor 32 are wound coaxially around a cylindrical axis to form a cylindrical body, and the magnetic force M9 perpendicular to the cylindrical axis is Since the magnetic lines of force 9 do not bypass the cylindrical body and penetrate into the hollow portion 33,
The magnetic field strength becomes zero, and it can be used as a demagnetizing space for the magnetic actuating body 2. In addition, Y-Ba-Cu is added to the superconductor.
If a sintered body of -0 series oxide is used, a refrigerator that operates at liquid nitrogen temperature is also possible, and with the advent of room temperature superconductors, a refrigerator for room temperature operation is also possible.

第5図は、コイル中心軸が一致する2個のコイル1,1
′を配置して、強磁界を作り、当該磁界中には、磁性作
動体2と第4図に示した当該磁気遮蔽体3とを配置し、
同図a)には1両コイル1゜1′の中間で中心軸より離
れた弱磁場の位置に当該磁気遮蔽体3を固定して、磁性
作動体2を当該両コイル1,1′の中間の中心軸上で励
磁し、次いで、同図b)のように、当該磁性作動体2を
当該磁気遮蔽体3の中空部33に挿入して、消磁するも
のである。
Figure 5 shows two coils 1, 1 whose central axes coincide.
' is placed to create a strong magnetic field, and in the magnetic field, the magnetic actuating body 2 and the magnetic shielding body 3 shown in FIG. 4 are placed,
In Figure a), the magnetic shielding body 3 is fixed in a weak magnetic field position away from the central axis between the two coils 1°1', and the magnetic actuating body 2 is placed between the two coils 1, 1'. The magnet is excited on the central axis of the magnetic shield 3, and then, as shown in FIG.

第5図C)は、両コイル1,1′の中心軸上の中間位置
に磁性作動体2が固定されて、励磁されており、次いで
、同図d)のように、当該磁気遮踏体3を当該磁性作動
体2を、その中空部33内に収容するように、移動させ
て、消磁するもので、昇降機構により繰り返し、当該磁
気遮蔽体3を昇降させれば、磁気冷凍機となる。2個の
コイルを同軸状に並列すれば、当該2個のコイル内径内
を通過する磁界は安定し、特にヘルムホルツ型コイルの
配置にすれば、当該コイル間の磁界強度は略一定となり
、上記の円筒軸に同軸状に巻着された層状の超電導性の
磁気遮蔽体の使用に好都合である。
In Fig. 5C), the magnetic operating body 2 is fixed at an intermediate position on the center axis of both coils 1 and 1' and is excited, and then, as shown in Fig. 5D), the magnetic stepping body 3 is moved to demagnetize the magnetic operating body 2 so as to be accommodated in the hollow part 33, and if the magnetic shielding body 3 is repeatedly raised and lowered by the lifting mechanism, it becomes a magnetic refrigerator. . If two coils are coaxially arranged in parallel, the magnetic field passing through the inner diameter of the two coils will be stabilized.In particular, if a Helmholtz coil is arranged, the magnetic field strength between the coils will be approximately constant, and the above It is advantageous to use a layered superconducting magnetic shield coaxially wound around a cylindrical shaft.

(発明の効果) 本発明の磁気冷凍機を実施すれば、次のような効果を奏
することができる。
(Effects of the Invention) By implementing the magnetic refrigerator of the present invention, the following effects can be achieved.

1)磁気遮蔽体は、超電導体板と常電導体板との積層体
であって、その中空部には、外部磁場が強大であっても
、磁力線は浸透せずに零磁場とすることができるから、
超電導コイルの発生磁場中で励磁された磁性作動体を当
該磁気遮蔽体の中空部に挿入収容して、完全に消磁する
ことができ、従って、励磁消磁過程の磁束密度変化量が
大きく、且つ零磁場での消磁により理想的な冷却サイク
ルに近かずけられるので、冷凍機の熱効率が高く得られ
る。さらに、当該磁気遮蔽体は超電導コイル内に移動可
能に配置することができ、励磁−消磁過程での当該磁気
遮蔽体又は当該磁性作動体の往復移動距離を極力短縮す
ることが可能となり、磁気冷凍機自体を小形化軽量化す
ることができる。
1) A magnetic shield is a laminate of a superconductor plate and a normal conductor plate, and even if the external magnetic field is strong, the magnetic field lines do not penetrate into the hollow part and the magnetic field becomes zero. Because I can,
The magnetic actuating body excited in the magnetic field generated by the superconducting coil can be inserted into the hollow part of the magnetic shield and completely demagnetized. Therefore, the amount of change in magnetic flux density during the excitation and demagnetization process is large and zero. By demagnetizing with a magnetic field, the cooling cycle can be approximated to an ideal one, resulting in high thermal efficiency of the refrigerator. Furthermore, the magnetic shielding body can be movably arranged inside the superconducting coil, making it possible to shorten the reciprocating distance of the magnetic shielding body or the magnetic working body during the excitation-demagnetization process as much as possible. The machine itself can be made smaller and lighter.

2)当該磁気遮蔽体の完全な遮蔽効果により、超電導コ
イルは、永久電流モードで使用することができ、コイル
電流断続に伴う電力損失が生ぜず、且つ、消磁過程では
零磁界による吸熱量が大きく確保できるから、熱効率の
高い磁気冷凍機を実現することができる。また、比較的
大きい容積の磁性作動体を使用することができるので、
高い冷却パワーを実現できる。
2) Due to the complete shielding effect of the magnetic shield, the superconducting coil can be used in persistent current mode, and there is no power loss due to intermittent coil current, and the amount of heat absorbed by the zero magnetic field is large during the demagnetization process. Since it can be secured, a magnetic refrigerator with high thermal efficiency can be realized. Also, since it is possible to use a magnetic actuator with a relatively large volume,
Achieves high cooling power.

3)超電導性磁気遮蔽体の浸漬液体の液面を制御して、
当該磁気遮蔽体を冷却加温して、磁性作動体の励磁消磁
を繰り返す方式の冷凍機にあっては、液面制御の為のバ
ルブ以外には、可動機械部が存在せず、冷凍機は極めて
静かに作動するので、精密機器の冷却部として利用価値
が高い。
3) Control the liquid level of the immersion liquid of the superconducting magnetic shield,
In a refrigerator that repeatedly excite and demagnetize the magnetic operating body by cooling and heating the magnetic shield, there are no moving mechanical parts other than the valve for controlling the liquid level, and the refrigerator is Since it operates extremely quietly, it is highly useful as a cooling section for precision equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)及び同図(c)、(d)は、本磁
気冷凍機の概念的断面図を、第2図は、本磁気冷凍機に
使用する磁気遮蔽体の斜視図を、第3図は、当該磁気遮
蔽体の近傍の外部磁場の挙動を示す磁力線図を、第4図
は、中心軸に同軸状に層状をなす磁気遮蔽体の外部磁力
線分布図を、第5図は、他の実施例の冷凍機の第1図同
様図を、第6図は、本発明の−の実施例である磁気冷凍
機の断面図であって、同図(a)は、磁性作動体が上昇
限にあって励磁されている状態を、同図(b)は、磁性
作動体が下降限にあって消磁されている状態を、第7図
は、磁気遮蔽体を移動可能とした磁気冷凍機の断面図を
、第8図は、磁気遮蔽体の冷却液の液面を制御する方式
の磁気冷凍機の断面図を夫々示す。 (符号の説明) 1・・・超電導コイル、2・・・磁性作動体、3・・・
磁気遮蔽体、4・・・高温側熱浴、5・・低温側熱浴、
6・・・循環ポンプ、7・・・昇降装置。 一以上一
Figures 1 (a), (b) and (c) and (d) are conceptual cross-sectional views of the present magnetic refrigerator, and Figure 2 is a perspective view of the magnetic shield used in the present magnetic refrigerator. 3 is a magnetic field line diagram showing the behavior of the external magnetic field in the vicinity of the magnetic shield, and FIG. 4 is an external magnetic field line distribution diagram of the magnetic shield layered coaxially around the central axis. FIG. 5 is a view similar to FIG. 1 of a refrigerator according to another embodiment, and FIG. 6 is a sectional view of a magnetic refrigerator according to an embodiment of the present invention. Figure 7 shows the state in which the magnetic actuator is at the upper limit and is excited, the figure (b) shows the state in which the magnetic actuator is at the lower limit and is demagnetized, and Figure 7 shows the state in which the magnetic shield is movable. FIG. 8 shows a sectional view of a magnetic refrigerator of a type that controls the liquid level of a cooling liquid in a magnetic shield. (Explanation of symbols) 1... Superconducting coil, 2... Magnetic operating body, 3...
Magnetic shield, 4... High temperature side heat bath, 5... Low temperature side heat bath,
6...Circulation pump, 7...Elevating device. one or more one

Claims (1)

【特許請求の範囲】 1、強磁界を発生させる磁石と、筒状の超電導性磁気遮
蔽体と、磁性作動体と、当該磁性作動体もしくは当該磁
気遮蔽体を往復移動させる往復機構とから成り、 当該往復機構によって、当該磁性作動体が当該強磁界中
において励磁される過程と、当該磁性作動体が当該磁気
遮蔽体の中空部に挿入もしくは収容されて消磁される過
程と、を繰り返すことにより、当該磁性作動体が寒冷を
発生させるようになした磁気冷凍機。 2、強磁界を発生させる磁石と、当該磁界中に配置され
た筒状の超電導性磁気遮蔽体と、当該磁気遮蔽体の中空
部に配置された磁性作動体と、当該磁気遮蔽体が浸漬さ
れる冷却液体の液面を制御する液面制御機構と、から成
り、 当該超電導性磁気遮蔽体は、当該液体の温度より高い温
度で、磁気を透過するものであって、当該液面制御機構
によって、当該磁気遮蔽体の一部が当該液面より露出す
ることにより当該磁性作動体が励磁される過程と、当該
磁気遮蔽体が当該液体中に浸漬されて当該磁性作動体が
消磁される過程と、を繰り返すことにより、当該磁性作
動体が寒冷を発生させるようになした磁気冷凍機。 3、当該筒状の超電導性磁気遮蔽体が、超電導性を示す
超電導体の環板と常電導性もしくは絶縁性を示す環板と
の積層体である請求項1もしくは2記載の磁気冷凍機。 4、当該筒状の超電導性磁気遮蔽体が、超電導体の薄層
と非磁性金属薄層との帯体を筒状に巻着成形してなる積
層体である請求項1もしくは2記載の磁気冷凍機、。 5、当該筒状の超電導性磁気遮蔽体が、酸化物超電導体
の粉末成型焼結体もしくは酸化物超電導体薄層と非磁性
金属薄層との帯体を筒状に巻着成形してなる焼結体であ
る請求項1もしくは2記載の磁気冷凍機。
[Scope of Claims] 1. Consisting of a magnet that generates a strong magnetic field, a cylindrical superconducting magnetic shield, a magnetic operating body, and a reciprocating mechanism that reciprocates the magnetic operating body or the magnetic shield, By repeating a process in which the magnetic actuating body is excited in the strong magnetic field by the reciprocating mechanism, and a process in which the magnetic actuating body is inserted or housed in the hollow part of the magnetic shielding body and demagnetized, A magnetic refrigerator in which the magnetic operating body generates cold. 2. A magnet that generates a strong magnetic field, a cylindrical superconducting magnetic shield placed in the magnetic field, a magnetic actuator placed in the hollow part of the magnetic shield, and a magnetic shield in which the magnetic shield is immersed. a liquid level control mechanism for controlling the liquid level of the cooling liquid; the superconducting magnetic shield is permeable to magnetism at a temperature higher than the temperature of the liquid; , a process in which a part of the magnetic shield is exposed from the liquid surface to excite the magnetic actuating body, and a process in which the magnetic shield is immersed in the liquid to demagnetize the magnetic actuator. A magnetic refrigerator in which the magnetic operating body generates cold by repeating . 3. The magnetic refrigerator according to claim 1 or 2, wherein the cylindrical superconducting magnetic shield is a laminate of a superconducting ring plate exhibiting superconductivity and a ring plate exhibiting normal conductivity or insulation. 4. The magnetic material according to claim 1 or 2, wherein the cylindrical superconducting magnetic shield is a laminate formed by winding and forming a strip of a superconductor thin layer and a nonmagnetic metal thin layer into a cylindrical shape. refrigerator,. 5. The cylindrical superconducting magnetic shield is formed by winding and molding a powder-molded sintered body of an oxide superconductor or a strip of a thin oxide superconductor layer and a thin nonmagnetic metal layer into a cylindrical shape. The magnetic refrigerator according to claim 1 or 2, which is a sintered body.
JP30558690A 1990-11-08 1990-11-08 Magnetic refrigerator Expired - Fee Related JP2877495B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP30558690A JP2877495B2 (en) 1990-11-08 1990-11-08 Magnetic refrigerator
US07/788,100 US5156003A (en) 1990-11-08 1991-11-05 Magnetic refrigerator
CA002055043A CA2055043C (en) 1990-11-08 1991-11-06 Magnetic refrigerator
EP91202909A EP0487130B1 (en) 1990-11-08 1991-11-06 A magnetic refrigerator
DE69101539T DE69101539T2 (en) 1990-11-08 1991-11-06 Magnetic cooling device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30558690A JP2877495B2 (en) 1990-11-08 1990-11-08 Magnetic refrigerator

Publications (2)

Publication Number Publication Date
JPH04177065A true JPH04177065A (en) 1992-06-24
JP2877495B2 JP2877495B2 (en) 1999-03-31

Family

ID=17946927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30558690A Expired - Fee Related JP2877495B2 (en) 1990-11-08 1990-11-08 Magnetic refrigerator

Country Status (1)

Country Link
JP (1) JP2877495B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210165A (en) * 2008-03-03 2009-09-17 Toshiba Corp Magnetic refrigeration device and magnetic refrigeration system
CN108716458A (en) * 2018-05-18 2018-10-30 川屹节能科技(上海)有限公司 Compressor for vapor compression refrigeration device
JP2019518928A (en) * 2016-06-06 2019-07-04 テヒニッシェ、ウニベルズィテート、ダルムシュタットTechnische Universitaet Darmstadt Cooling device and cooling method
CN113176525A (en) * 2021-04-23 2021-07-27 中国科学院空天信息创新研究院 Aviation low-temperature superconducting magnetic gradient full-tension magnetometer support frame and temperature control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210165A (en) * 2008-03-03 2009-09-17 Toshiba Corp Magnetic refrigeration device and magnetic refrigeration system
US8312730B2 (en) 2008-03-03 2012-11-20 Kabushiki Kaisha Toshiba Magnetic refrigeration device and magnetic refrigeration system
JP2019518928A (en) * 2016-06-06 2019-07-04 テヒニッシェ、ウニベルズィテート、ダルムシュタットTechnische Universitaet Darmstadt Cooling device and cooling method
CN108716458A (en) * 2018-05-18 2018-10-30 川屹节能科技(上海)有限公司 Compressor for vapor compression refrigeration device
CN113176525A (en) * 2021-04-23 2021-07-27 中国科学院空天信息创新研究院 Aviation low-temperature superconducting magnetic gradient full-tension magnetometer support frame and temperature control method
CN113176525B (en) * 2021-04-23 2023-03-31 中国科学院空天信息创新研究院 Aviation low-temperature superconducting magnetic gradient full-tension magnetometer support frame and temperature control method

Also Published As

Publication number Publication date
JP2877495B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
JP2933731B2 (en) Stationary magnetic refrigerator
CA2055043C (en) Magnetic refrigerator
JP4283994B2 (en) Reciprocating active magnetic regenerative refrigeration system
US4033734A (en) Continuous, noncyclic magnetic refrigerator and method
JP3347870B2 (en) Superconducting magnet and regenerative refrigerator for the magnet
Jeong AMR (Active Magnetic Regenerative) refrigeration for low temperature
GB2179729A (en) A method of magnetic refrigeration and a magnetic refrigerating apparatus
JP2877495B2 (en) Magnetic refrigerator
JP3285751B2 (en) Magnetic refrigerator
Park et al. Development and parametric study of the convection-type stationary adiabatic demagnetization refrigerator (ADR) for hydrogen re-condensation
JP3233811B2 (en) Magnetic refrigerator
JP3572087B2 (en) Magnetic refrigerator for cooling pressurized liquid helium
JPH04273956A (en) Stationary type magnetic refrigerating machine
JP3046457B2 (en) Magnetic chiller for cooling liquid helium
JPH0663675B2 (en) Magnetic refrigerator
JP2008241215A (en) Cold storage type cryogenic refrigerating machine
JPS60211273A (en) Magnetic refrigerator
JP2007255746A (en) Magnetic freezer and magnetic freezing method
JPH07294035A (en) Superconducting magnet apparatus
JP3281740B2 (en) Refrigeration equipment
JPH084652A (en) Cryopump
JPH0371627B2 (en)
SU1686277A1 (en) Magnetic refrigerator for superfluid helium
Deardorff et al. Magnetic refrigeration development
JPS63129265A (en) Reciprocating type magnetic refrigerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees