JPS60210746A - State analyzer for solid surface - Google Patents

State analyzer for solid surface

Info

Publication number
JPS60210746A
JPS60210746A JP59065714A JP6571484A JPS60210746A JP S60210746 A JPS60210746 A JP S60210746A JP 59065714 A JP59065714 A JP 59065714A JP 6571484 A JP6571484 A JP 6571484A JP S60210746 A JPS60210746 A JP S60210746A
Authority
JP
Japan
Prior art keywords
light
sample
excitation light
solid surface
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59065714A
Other languages
Japanese (ja)
Other versions
JPH0656367B2 (en
Inventor
Yusuke Yajima
裕介 矢島
Seiichi Murayama
村山 精一
Kanji Tsujii
辻井 完次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59065714A priority Critical patent/JPH0656367B2/en
Publication of JPS60210746A publication Critical patent/JPS60210746A/en
Publication of JPH0656367B2 publication Critical patent/JPH0656367B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To enable a state analysis of a chemical seed adsorbed on a solid surface in a non-destructive manner by measuring a Raman's scattering of sample in vacuum employing an excitation light at light in X ray area. CONSTITUTION:An excitation light 8 in an X ray area from an excitation light supply section A as obtained by analyzing an orbital radiation light with a diffraction grating irradiates a sample 10 supported on a sample base 9 in a vacuum vessel. The Raman's scattering light thereof enters a detector (such as photographic plate, diode array and scintillator) via a slit 12 and a diffraction grating 14. Based on the detection signal thereof, the state analysis can be done non-destructive for a chemical seed adsorbed on the surface of the sample 10.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、特に固体表面に吸着した化学種の構造、結合
状態、運動状態の測定に適した、固体表面の状態分析装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an apparatus for analyzing the state of a solid surface, which is particularly suitable for measuring the structure, bonding state, and movement state of chemical species adsorbed on a solid surface.

〔発明の背景〕[Background of the invention]

従来、固体表面の状態分布には、光電子分光、オージェ
電子分光、電子エネルギー損失分光などの方法が用いら
れている。しかし、これらの方法では、吸着種のエネル
ギー準位やその幅などが測定できるにすぎず、固相−気
相界面における化学反応の機構を知る上で必要な、吸着
種の表面との結合状態や、表面での運動状態などについ
ての詳しい知見を得ることは困難である。
Conventionally, methods such as photoelectron spectroscopy, Auger electron spectroscopy, and electron energy loss spectroscopy have been used to measure the state distribution on the surface of a solid. However, these methods can only measure the energy level and width of the adsorbed species, and they do not measure the bonding state of the adsorbed species with the surface, which is necessary to understand the mechanism of chemical reactions at the solid-gas phase interface. It is difficult to obtain detailed information about the surface motion and movement state of the surface.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記のような既存の表面測定方法の持
つ不充分な点を補うことが可能で、しかも測定を完全に
非破壊で行い得る、固体表面に吸着した化学種の状態分
析装置を提供することにある。
The purpose of the present invention is to provide an apparatus for analyzing the state of chemical species adsorbed on a solid surface, which can compensate for the inadequacies of existing surface measurement methods as described above, and which can perform measurements completely non-destructively. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明においてはX線領域の
光を励起光とするラマン散乱を利用している。
In order to achieve the above object, the present invention utilizes Raman scattering using light in the X-ray region as excitation light.

従来、ラマン散乱は可視光を励起光源として、主に分子
起動や格子振動の測定に用いられている。
Conventionally, Raman scattering uses visible light as an excitation light source and is mainly used to measure molecular activation and lattice vibrations.

励起光の波長を短くしてX線を用いれば、原子。If the wavelength of the excitation light is shortened and X-rays are used, atoms.

分子の電子遷移を伴うラマン散乱を観測できることが、
本発明の原理である。本発明によれば、化学種の固体表
面への吸着に伴う電子状態の変化を、非破壊で詳しく解
析することが可能である。
Being able to observe Raman scattering accompanied by electronic transitions in molecules
This is the principle of the present invention. According to the present invention, it is possible to non-destructively and in detail analyze changes in electronic states due to adsorption of chemical species to solid surfaces.

〔発明の実施例〕[Embodiments of the invention]

第1図に示すように、ラマン散乱は物質がある波長の光
lを吸収する過程と、別の波長の光2、または3を放出
する過程とが同時に起こる現象と考えられる。ここで物
質は、図中のエネルギー準位の中例えば4,5,6.7
において、初期状態4から中間状態5を経て終状態6ま
たは7へと遷移する。励起光1と、散乱光2,3とのエ
ネルギー差は、物質エネルギー準位4と6、および4と
7のエネルギー差に対応しているので、これを用いると
、例えばエネルギー準位4と6.または4とやとの間で
直接遷移が起こらないような場合でも、それらのエネル
ギー準位間のエネルギー差を決定することが可能である
。励起光1として可視領域の光を用いると、分子の振動
1回転準位や、結晶の格子振動準位などに関する知見が
得られる。
As shown in FIG. 1, Raman scattering is considered to be a phenomenon in which a substance absorbs light 1 of a certain wavelength and emits light 2 or 3 of a different wavelength simultaneously. Here, the substance has energy levels of, for example, 4, 5, 6.7 in the diagram.
, a transition is made from initial state 4 to final state 6 or 7 via intermediate state 5. The energy difference between excitation light 1 and scattered light 2 and 3 corresponds to the energy difference between material energy levels 4 and 6, and 4 and 7, so if this is used, for example, energy levels 4 and 6 .. Even if a direct transition does not occur between 4 and y, it is possible to determine the energy difference between those energy levels. When light in the visible region is used as the excitation light 1, knowledge about the one-turn vibrational level of molecules, the lattice vibrational level of crystals, etc. can be obtained.

励起光1の波長を短くしてX線領域に設定すると、原子
や分子の電子状態間で同様な現象が観測されるようにな
る。
When the wavelength of the excitation light 1 is shortened and set in the X-ray region, similar phenomena can be observed between the electronic states of atoms and molecules.

第2図に、本発明の一実施例における装置構成を示す。FIG. 2 shows a device configuration in an embodiment of the present invention.

xm発生源と所定の波長のX線を選び出す分光系とから
なる励起光供給部Aより出る励起光8は、試料台9の保
持されている試料10に照射される。試料IOの表面か
らの散乱光11の一部を、スリット12により取り出し
、スリット13を経て回折格子14に導く。ここで波長
分散された散乱光を写真乾板、ダイオードアレイ、シン
チレータ−などの検出器15により検出してスペクトル
を得る。ここで、励起光8.散乱光11の光路全体、お
よび試料10は真空容器中に収められている。また、励
起光8、および散乱光11が試料10の表面となす角度
は、互いに独立に変えることができる。
Excitation light 8 emitted from an excitation light supply section A comprising an xm generation source and a spectroscopic system that selects X-rays of a predetermined wavelength is irradiated onto a sample 10 held on a sample stage 9. A part of the scattered light 11 from the surface of the sample IO is taken out by the slit 12 and guided to the diffraction grating 14 via the slit 13. Here, the wavelength-dispersed scattered light is detected by a detector 15 such as a photographic plate, a diode array, or a scintillator to obtain a spectrum. Here, excitation light 8. The entire optical path of the scattered light 11 and the sample 10 are housed in a vacuum container. Further, the angles that the excitation light 8 and the scattered light 11 form with the surface of the sample 10 can be changed independently of each other.

励起光供給部Aの一実施例を第3図に示す。第2図にお
ける励起光8を、第3図では軌道放射光(SOR)17
から得ている。電子蓄積リングの一部であるマグネット
部16で電子が加速されることにより発生する軌道放射
光17を、回折格子19、スリット20により波長選択
して励起光8を得る。第3図における波長選択用の分光
系の構成をより複雑にして、励起光8の波長を変えても
全散光の結像位置や励起光8の進行方向が変化しないよ
うな分光系を使用することもできる。
An embodiment of the excitation light supply section A is shown in FIG. The excitation light 8 in Fig. 2 is the orbital synchrotron radiation (SOR) 17 in Fig. 3.
I'm getting it from Excitation light 8 is obtained by selecting the wavelength of orbital radiation 17 generated by accelerating electrons in a magnet section 16 that is a part of an electron storage ring using a diffraction grating 19 and a slit 20. The configuration of the spectroscopic system for wavelength selection in FIG. 3 is made more complicated, and a spectroscopic system is used in which the imaging position of the totally scattered light and the traveling direction of the excitation light 8 do not change even if the wavelength of the excitation light 8 is changed. You can also do that.

第4図は励起光供給部Aの別の実施例である。FIG. 4 shows another embodiment of the excitation light supply section A.

プラズマX線源1Bにおいて面状の放電が先端部で収束
、ピンチする際に発生するX線を回折格子19で波長分
散し、その一部を取り出して励起光8とする。光源とし
て他のxtagを使用することも可能である。
In the plasma X-ray source 1B, the X-rays generated when the planar discharge converges and pinches at the tip are wavelength-dispersed by the diffraction grating 19, and a portion thereof is extracted and used as excitation light 8. It is also possible to use other xtags as light sources.

上記の装置において、励起光の試料面に対する視射角を
、試料材料の臨界角よりも小さく設定すると、試料内部
への光の侵入がなくなるので、表面のみでの散乱光が検
出できる。
In the above apparatus, if the viewing angle of the excitation light with respect to the sample surface is set to be smaller than the critical angle of the sample material, light will not penetrate into the sample, so that scattered light only on the surface can be detected.

第5図は、本発明になる装置の別の実施例の構成図であ
る。励起光用の回折格子19により分散された光のうち
所定の波長成分をスリット20により取り出し、これを
励起光8として試料10に照射する。散乱光11は、回
折格子14により波長分散して写真乾板、ダイオードア
レイ、シンチレータ−などの検出器15により検出した
スペクトルを得る。
FIG. 5 is a block diagram of another embodiment of the apparatus according to the present invention. A predetermined wavelength component of the light dispersed by the excitation light diffraction grating 19 is taken out by the slit 20 and is irradiated onto the sample 10 as excitation light 8 . The scattered light 11 is wavelength-dispersed by a diffraction grating 14 to obtain a spectrum detected by a detector 15 such as a photographic plate, a diode array, or a scintillator.

次に、第6図、および第7図により、本実施例における
、第5図中の励起光用回折格子19の分散の方向2と試
料10の傾きとの関係、および励起光8の試料10に対
する入射方向、散乱光11の検出方向、励起光8の試料
10の面上への結像線21との関係を説明する。
Next, FIGS. 6 and 7 show the relationship between the dispersion direction 2 of the excitation light diffraction grating 19 in FIG. The relationship between the incident direction of the scattered light 11, the detection direction of the scattered light 11, and the imaging line 21 of the excitation light 8 on the surface of the sample 10 will be explained.

第6図は、本実施例の試料部分を第5図における励起光
用回折格子19の分散の方向、すなわち第5図の2軸方
向より見た部分図である。試料10は、その面が2軸と
平行で、しかも励起光8が試料面に対して平行に近い角
度で入射するように設置されており、散乱光11は、励
起光8の試料10への入射方向に近く、しかも試料面に
対して平行に近い方向より検出する。
FIG. 6 is a partial view of the sample portion of this example viewed from the direction of dispersion of the excitation light diffraction grating 19 in FIG. 5, that is, from the biaxial direction of FIG. The sample 10 is installed so that its surface is parallel to the two axes and the excitation light 8 is incident at an angle close to parallel to the sample surface. Detection is performed from a direction close to the incident direction and parallel to the sample surface.

第7図は、本実施例の試料部分を、第5図におけるy軸
の方向、すなわち励起光用回折格子19の分散方向2と
、励起光8の進行方向のいずれに対しても垂直な方向よ
り見た部分図である。一般に、点状光源から出た光は、
回折格子により分散されると分散の方向と垂直な線状に
結像する。
FIG. 7 shows the sample portion of this example in a direction perpendicular to both the y-axis direction in FIG. It is a partial view seen from above. Generally, the light emitted from a point light source is
When dispersed by a diffraction grating, an image is formed in a line perpendicular to the direction of dispersion.

第7図において、試料10の面上への励起光8の結像線
21の2軸方向の幅は、試料面が2軸に対して平行であ
れば、励起光8の試料面に対する入射角が変化しても、
はぼ一定に保たれる。したがって、試料面に平行に近く
、しかも結像線21と励起光8のつくる面に入る方向、
ないしは、それに近い方向に第5図における検出用回折
格子14を配置した本実施例の場合、この検出用回折格
子14より見た結像線21からの散乱光11は、近似的
に点光源と見なせる。このような条件においては、散乱
光をピンホール等を通過させることなく、直接検出用回
折格子14に導いても、分散光は点光源から出る光と同
様な結像をする。二二で、検出用回折格子14として、
光源までの距離が結像位置にほとんど影響を与えない、
たとえば、フラットフィールド型凹面回折格子を用いる
と、通常の回折格子を用いた場合以上に点光源からの光
に近い結像を、検出器15の位置に得ることができる。
In FIG. 7, the width of the imaging line 21 of the excitation light 8 on the surface of the sample 10 in the biaxial direction is determined by the angle of incidence of the excitation light 8 on the sample surface if the sample surface is parallel to the two axes. Even if the
remains more or less constant. Therefore, the direction that is close to parallel to the sample surface and enters the plane formed by the imaging line 21 and the excitation light 8,
Or, in the case of this embodiment in which the detection diffraction grating 14 in FIG. I can see it. Under such conditions, even if the scattered light is directly guided to the detection diffraction grating 14 without passing through a pinhole or the like, the scattered light forms an image similar to light emitted from a point light source. 22, as the detection diffraction grating 14,
The distance to the light source has little effect on the imaging position.
For example, when a flat field concave diffraction grating is used, an image closer to the light from a point source can be obtained at the position of the detector 15 than when a normal diffraction grating is used.

以上説明したような本実施例の方法においては、励起光
8の入射角、および散乱光11の検出の方向の両方を、
試料面に対して平行に近く設定しであるにもかかわらず
、励起光8が試料10を経ずに直接検出器15に入るこ
とに対する対策を行う必要がない。しかも、散乱光11
の分光を行う際に、これをピンホール等で点光源化する
必要がないため、散乱光11を損失なく検出することが
できる。したがって、高い検出感度が得られる。
In the method of this embodiment as explained above, both the angle of incidence of the excitation light 8 and the direction of detection of the scattered light 11 are
Although it is set close to parallel to the sample surface, there is no need to take measures against the excitation light 8 directly entering the detector 15 without passing through the sample 10. Moreover, the scattered light 11
When performing spectroscopy, there is no need to convert the light into a point light source using a pinhole or the like, so the scattered light 11 can be detected without loss. Therefore, high detection sensitivity can be obtained.

一般に、分光系のエネルギー分解能ΔE(eV)。Generally, the energy resolution ΔE (eV) of a spectroscopic system.

波長分解能Δλ/λ、光の波長λ(人)の間には、ΔE
=1.25X10’ X(Aλ/λ)/λの関係がある
ので、Δλ/λ=5X10−’の分光系を用いてλ=1
0人の励起光の散乱を1ltlllした場合、1sV以
下のエネルギー分解能で散乱光の測定を行うことができ
る。ラマン散乱において遷移エネルギーが通常0.5 
e V以上である電子遷移が観測されるためには、励起
光8の波長は500Å以下のX線領域であることが必要
である。また。
Between wavelength resolution Δλ/λ and light wavelength λ (human), ΔE
Since there is a relationship of = 1.25X10'
If the scattering of excitation light by 0 people is 1ltllll, the scattered light can be measured with an energy resolution of 1 sV or less. In Raman scattering, the transition energy is usually 0.5
In order to observe an electronic transition of eV or more, the wavelength of the excitation light 8 needs to be in the X-ray region of 500 Å or less. Also.

分光系に波長分解能は上記波長領域では10−4以下で
あるのが現状なので、吸着による電子状態の変化を観測
し得る程度のエネルギー分解能(≦1eV)を得るため
には、励起光8の波長は5Å以上であることが必要がで
ある。
Currently, the wavelength resolution of a spectroscopic system is 10-4 or less in the above wavelength range, so in order to obtain an energy resolution (≦1 eV) that allows observation of changes in the electronic state due to adsorption, the wavelength of the excitation light 8 must be must be 5 Å or more.

このように、本発明になる装置において、上記のような
性能をもつ分光系を使用すれば、散乱X線のスペクトル
を観測することによって、表面に吸着した化学種の電子
遷移を、吸着に起因する電子状態の変化を検出するのに
充分な精度で解析することができる。
In this way, in the device of the present invention, if a spectroscopic system with the above-mentioned performance is used, by observing the spectrum of scattered can be analyzed with sufficient precision to detect changes in electronic states.

〔発明の効果〕〔Effect of the invention〕

励起電子状態は、吸着種の表面での運動や表面化学反応
に対して重要な役割を担っているので、例えば半導体プ
ロセス技術における、プラズマCVD、光CVDなどの
ように、表面の動的な性質を利用した技術の発展のため
には、その振舞いを充分に理解しておくことが必須であ
る。
Excited electronic states play an important role in the movement of adsorbed species on the surface and in the surface chemical reactions. In order to develop technology that uses , it is essential to fully understand its behavior.

本発明によれば、通常の光吸収を経た遷移が、対称性の
制約のために禁止されている準位についての知見を得る
ことが可能である。また、光電子分光法の場合、電子の
被占有状態に関する情報が得られるのみであるのに対し
て、本発明では励起電子状態を検出することができる。
According to the present invention, it is possible to obtain knowledge about levels in which transition through normal optical absorption is prohibited due to symmetry constraints. Further, in the case of photoelectron spectroscopy, only information regarding occupied states of electrons can be obtained, whereas in the present invention, excited electronic states can be detected.

さらに、本発明は測定できる情報において上記にような
新しい機能を持つことの他、電子、イオン線などの粒子
線照射を用いず、励起光とわずかにエネルギーの異なる
散乱光を検出することを測定手段としているために、試
料に著しい擾乱を加えることなく試料のありのままの性
質をとらえることが可能であるという特徴も持っている
。この特徴は、同一試料について連続的に測定を行い、
その変拡を追跡するような動的計測を行う場合に特に有
効に利用できる。
Furthermore, in addition to having the above-mentioned new functions in terms of measurable information, the present invention detects scattered light with slightly different energy from the excitation light without using particle beam irradiation such as electron or ion beams. Because it is used as a method, it also has the characteristic that it is possible to capture the true nature of the sample without adding significant disturbance to the sample. This feature allows continuous measurement of the same sample.
It can be used particularly effectively when performing dynamic measurements to track changes and expansions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はラマン散乱−の原理を説明する図、第2図は本
発明の一実施例になる装置の基本構成図、第3図は本発
明の一実施例の一部分を説明する図、第4図は本発明の
別の実施例の一部分を説明する図、第5図は本発明のさ
らに別の実施例になる装置の基本構成図、第6図、およ
び第7図は第5図における実施例の入射および散乱X線
の状態を説明する図である。 l・・・励起光、2,3・・・ラマン散乱光、4・・・
始状態、5・・・中間状態、6,7・・・終状態、A・
・・励起光供給部、8・・・励起光、9・・・試料台、
10・・・試料、11・・・散乱光、12.13・・・
スリット、14・・・検出用回折格子、15・・・光検
出器、16川マグネツト、17・・・軌道放射光、18
・・・プラズマX線源、19・・・励起用回折格子、2
0・・・スリット、21・・・結像線。 閉 1 図 γ 第 2 口 第 3 図 第40
FIG. 1 is a diagram explaining the principle of Raman scattering, FIG. 2 is a basic configuration diagram of an apparatus that is an embodiment of the present invention, and FIG. 3 is a diagram explaining a part of an embodiment of the present invention. FIG. 4 is a diagram illustrating a part of another embodiment of the present invention, FIG. 5 is a basic configuration diagram of an apparatus according to still another embodiment of the present invention, and FIGS. It is a figure explaining the state of incident and scattered X-rays of an example. l...Excitation light, 2,3...Raman scattered light, 4...
Initial state, 5... intermediate state, 6, 7... final state, A.
...excitation light supply unit, 8...excitation light, 9...sample stage,
10... Sample, 11... Scattered light, 12.13...
Slit, 14... Diffraction grating for detection, 15... Photodetector, 16 River magnet, 17... Orbital synchrotron radiation, 18
... Plasma X-ray source, 19... Diffraction grating for excitation, 2
0...Slit, 21... Image forming line. Closed 1 Figure γ 2nd mouth 3 Figure 40

Claims (1)

【特許請求の範囲】 1、励起光源、励起光用分光系、試料台、散乱光用分光
系、光検出器から成る固体表面のラマン散乱測定装置に
おいて、光源としてX線源を用い、光路および試料を真
空に保持する機能を備えた容器を設けたことを特徴とす
る、固体表面の状態分析装置。 2、励起用のX線として軌道輻射光を用いることを特徴
とする特許請求の範囲第1項記載の固体表面の状態分析
装置。 3、励起光源としてプラズマX線源を用いることを特徴
とする特許請求の範囲第1項記載の固体表面の状態分析
装置。 4、励起用のX線の波長を5人から500人の範囲とす
ることを特徴とする特許請求の範囲第1項記載の固体表
面の状態分析装置。 5、入射X線の試料に対する視射角を、臨界角よりも小
さく設定することを特徴とする特許請求の範囲第1項記
載の固体表面の状態分析装置。 6、散乱光の検出を、試料面に対して小さな視射角で行
うことを特徴とする特許請求の範囲第1項記載の固体表
面の状態分析装置。 7、試料面が、励起光用光器の分散の方向と平行である
ことを特徴とする特許請求の範囲第1項記載の固体表面
の状態分析装置。 8、散乱光の検出を、励起光用分光器の分散の方向と垂
直な方向から行うことを特徴とする特許請求の範囲第7
項記載の固体表面の状態分析装置。 9、励起光の入射方向、あるいはそれに近い方向に散乱
される光を検出することを特徴とする特許請求の範囲第
1項記載の固体表面の状態分析装置。
[Claims] 1. A Raman scattering measurement device for a solid surface comprising an excitation light source, an excitation light spectrometer, a sample stage, a scattered light spectrometer, and a photodetector, using an X-ray source as the light source, An apparatus for analyzing the state of a solid surface, characterized by having a container with a function of holding a sample in a vacuum. 2. An apparatus for analyzing the state of a solid surface as set forth in claim 1, characterized in that orbital radiation light is used as the X-ray for excitation. 3. An apparatus for analyzing the state of a solid surface as set forth in claim 1, characterized in that a plasma X-ray source is used as an excitation light source. 4. The apparatus for analyzing the state of a solid surface as set forth in claim 1, wherein the wavelength of the excitation X-ray is in the range of 5 to 500. 5. The solid surface condition analysis apparatus according to claim 1, wherein the glancing angle of the incident X-rays with respect to the sample is set smaller than the critical angle. 6. The solid surface state analysis device according to claim 1, wherein the detection of the scattered light is performed at a small glancing angle with respect to the sample surface. 7. The solid surface state analysis device according to claim 1, wherein the sample surface is parallel to the direction of dispersion of the excitation light optical device. 8. Claim 7, characterized in that the scattered light is detected in a direction perpendicular to the direction of dispersion of the excitation light spectrometer.
A device for analyzing the state of a solid surface as described in . 9. The solid surface state analysis device according to claim 1, which detects light scattered in the direction of incidence of the excitation light or in a direction close to it.
JP59065714A 1984-04-04 1984-04-04 Solid surface condition analyzer Expired - Lifetime JPH0656367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59065714A JPH0656367B2 (en) 1984-04-04 1984-04-04 Solid surface condition analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59065714A JPH0656367B2 (en) 1984-04-04 1984-04-04 Solid surface condition analyzer

Publications (2)

Publication Number Publication Date
JPS60210746A true JPS60210746A (en) 1985-10-23
JPH0656367B2 JPH0656367B2 (en) 1994-07-27

Family

ID=13294959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59065714A Expired - Lifetime JPH0656367B2 (en) 1984-04-04 1984-04-04 Solid surface condition analyzer

Country Status (1)

Country Link
JP (1) JPH0656367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259027A (en) * 1986-05-02 1987-11-11 Hitachi Ltd Scanning type stress measuring method and its device
JPH02143131A (en) * 1988-11-25 1990-06-01 Hitachi Ltd Method and device for stress measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259027A (en) * 1986-05-02 1987-11-11 Hitachi Ltd Scanning type stress measuring method and its device
JPH02143131A (en) * 1988-11-25 1990-06-01 Hitachi Ltd Method and device for stress measurement

Also Published As

Publication number Publication date
JPH0656367B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
US7680243B2 (en) X-ray measurement of properties of nano-particles
Szlachetko et al. Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray microscopy beamline ID21 (ESRF)
WO2004005905A1 (en) X-ray inspection by coherent-scattering from variably disposed scatterers identified as suspect objects
JP2002530671A (en) X-ray analyzer including parabolic X-ray mirror and quartz monochromator
JPH09511068A (en) Method for GE-XRF X-ray analysis of material and apparatus for implementing this method
JP2013511022A (en) Dual isotope notch observer for isotope identification, analysis and imaging with a single energy gamma ray source
KR920003050A (en) Inspection method of external phase precipitate of single crystal material
JP2002189004A (en) X-ray analyzer
JP3968350B2 (en) X-ray diffraction apparatus and method
JPH10318737A (en) Measuring method for film thickness
Dubus et al. First phase-contrast tomography with thermal neutrons
US6285736B1 (en) Method for X-ray micro-diffraction measurement and X-ray micro-diffraction apparatus
JPS60210746A (en) State analyzer for solid surface
JP5332801B2 (en) Sample analyzer and sample analysis method
US20060056590A1 (en) Methods and apparatus of sample analysis
JP2002529699A (en) X-ray diffractometer with x-ray optical reference channel
Sakurai et al. A grazing-incidence reflectometer for BL-39XU at SPring-8
JPH0627056A (en) Method for alalyzing composition and structure of substance
RU2137114C1 (en) Method of small-angle introscopy and device for its realization ( versions )
Bigler et al. Quantitative mapping of atomic species by X-ray absorption spectroscopy and contact microradiography
JP3339267B2 (en) X-ray analysis method and X-ray analyzer
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
JPS6353457A (en) 2-d scan type state analyzer
JP2002333409A (en) X-ray stress measuring device
JP3610370B2 (en) X-ray analysis method and apparatus