JPS60209931A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS60209931A
JPS60209931A JP6369784A JP6369784A JPS60209931A JP S60209931 A JPS60209931 A JP S60209931A JP 6369784 A JP6369784 A JP 6369784A JP 6369784 A JP6369784 A JP 6369784A JP S60209931 A JPS60209931 A JP S60209931A
Authority
JP
Japan
Prior art keywords
thin film
film layer
polymer film
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6369784A
Other languages
Japanese (ja)
Inventor
Reiji Nishikawa
西川 羚二
Toshiyuki Suzuki
俊行 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6369784A priority Critical patent/JPS60209931A/en
Publication of JPS60209931A publication Critical patent/JPS60209931A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enable suppression of curling in the stage of forming successively the 1st and 2nd thin film layers with time intervals on both surfaces of a high polymer film substrate by specifying the relation between the thickness of the 1st thin film layer and the thickness of the 2nd thin film layer. CONSTITUTION:The 1st thin film layer is formed on one surface of a high polymer film base body then the 2nd thin film layer is formed on the other surface of the above-described high polymer film base body. The relation alphaF<alphaT and delta1>delta2 is satisfied where the coefft. of thermal expansion of the high polymer film base body is designated as alphaF, the coefft. of the 1st and 2nd thin film layer as alphaT, the thickness of the 1st thin film layer as delta1 and the thickness of the 2nd thin film layer as delta2. Formation of the thin films is continuously executed in a vacuum vessel 1. The high polymer film base body 10 consisting of PET, etc. wound on a supply roller 2 is continuously delivered from the roller 2 and is wound on a main roller 4a via an auxiliary roller 3a according to need. The body 10 is taken up on a take-up roller 6 via an auxiliary roller 3c by which a series of thin film forming stages is completed.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、高分子フィルム基体の両面に薄膜層を形成
する方法に係り、特にディスク状垂直磁気記録媒体にお
ける記録層の形成に好適な薄膜形成方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for forming thin film layers on both sides of a polymer film substrate, and in particular, a method for forming a thin film suitable for forming a recording layer in a disk-shaped perpendicular magnetic recording medium. Regarding the method.

[発明の技術的背景とその問題点] 近年、磁気記録媒体の媒体面に垂直な方向の磁化を利用
して高密度の記録を行なう垂直磁化記録方式が注目され
ている。この垂直磁化記録のための磁気記録媒体(垂直
磁気記録媒体という)としては、膜面に垂直な方向に磁
化容易軸を有するco−Cr系スパッタ薄膜を記録層と
するものが代表的である。このような垂直磁気記録媒体
は、ボリイミドに比して耐熱性の劣るポリエチレンテレ
フタレートフィルム(PETフィルム)のような高分子
フィルムを基体とし、その片面または両面に上記co−
Cr系スパッタ薄膜を形成することによって作製される
ものであり、磁気テープや、ディスク状磁気記録媒体、
特にフロッピーディスクへの適用が考えられている。
[Technical Background of the Invention and Problems thereof] In recent years, perpendicular magnetization recording methods that perform high-density recording using magnetization in a direction perpendicular to the medium surface of a magnetic recording medium have attracted attention. A typical magnetic recording medium for this perpendicular magnetization recording (referred to as a perpendicular magnetic recording medium) is one in which the recording layer is a co-Cr sputtered thin film having an axis of easy magnetization perpendicular to the film surface. Such perpendicular magnetic recording media are based on a polymer film such as polyethylene terephthalate film (PET film), which has inferior heat resistance compared to polyimide, and has the above co-coated film on one or both sides.
It is manufactured by forming a Cr-based sputtered thin film, and is used for magnetic tapes, disk-shaped magnetic recording media,
In particular, application to floppy disks is being considered.

ところで、垂直磁気記録媒体の中でも特にフロッピーデ
ィスクのようなディスク状媒体では、磁気特性が良好で
あることとともに、媒体の平坦性が良いこと、つまりカ
ールのほとんどないことが強く要求される。しかしなが
ら現在、ディスク状垂直磁気記録媒体として考えられて
いるのは、高分子フィルム基体上にスパッタ法または真
空蒸着法等の物理的手法により形成されたco−Cr等
のCO系合金膜を記録層とするものである。このような
媒体では、高分子フィルム基体の一方の面のみに薄膜層
を形成した場合は勿論、基体両面にほぼ同一条件で薄膜
層を形成した場合でも、特に基体の一方の面に第1の薄
WAl!liを形成した後、他方の面に第2の薄膜層を
形成した場合、すなわち表裏の薄膜層の形成が時間を置
いて行なわれる場合には、カールの発生が認められる。
Incidentally, among perpendicular magnetic recording media, especially disk-shaped media such as floppy disks, it is strongly required that the medium has good magnetic properties and good flatness, that is, has almost no curl. However, what is currently being considered as a disk-shaped perpendicular magnetic recording medium is a recording layer consisting of a CO-based alloy film such as co-Cr formed on a polymer film substrate by a physical method such as sputtering or vacuum evaporation. That is. In such a medium, not only when a thin film layer is formed on only one side of a polymer film substrate, but also when a thin film layer is formed on both sides of the substrate under almost the same conditions, the first Thin WAl! When a second thin film layer is formed on the other side after forming the li, that is, when the front and back thin film layers are formed after a period of time, curling is observed.

また、再生出力を大きくするため、高分子フィルム基体
の実質の温度を上げる等の方法により薄膜層の膜面に垂
直な方向の保磁力HCよを大きくした場合、カールは著
しく増加する傾向がある。
Furthermore, if the coercive force HC in the direction perpendicular to the film surface of the thin film layer is increased by increasing the actual temperature of the polymer film substrate in order to increase the reproduction output, curling tends to increase significantly. .

このようなカールの存在は、薄膜!が金属膜であるため
にフレキシビリティが小さいことも加わって、磁気記録
媒体と磁気ヘッドとのスペーシングを極力小さい状態で
安定に保つことを著しく困難にする。従って垂直磁化記
録方式の長所である高密度記録を達成するためには、カ
ールを十分に小さくして、薄膜層面をほとんど平坦な状
態にすることが不可欠となってくる。
The existence of such curls is a thin film! Since it is a metal film, it has low flexibility, which makes it extremely difficult to keep the spacing between the magnetic recording medium and the magnetic head as small and stable as possible. Therefore, in order to achieve high-density recording, which is an advantage of the perpendicular magnetization recording method, it is essential to make the curl sufficiently small so that the surface of the thin film layer is almost flat.

[発明の目的] この発明の目的は、高分子フィルム基体の両面に薄膜層
を時間を置いて形成する場合において、薄膜層でのカー
ルの発生が少なく、薄膜層をほとんど平坦な状態とする
ことができる一WIm形成方法を提供覆ることである。
[Objective of the Invention] The object of the present invention is to reduce the occurrence of curling in the thin film layer and to make the thin film layer almost flat when forming the thin film layer on both sides of a polymer film substrate over time. One objective is to provide a method for forming WIm that can be covered.

[発明の概要] この発明に係る薄膜形成方法は、高分子フィルム基体の
一方の面に第1の薄膜層を形成し、次いで前記高分子フ
ィルム基体の他方の面に第2の薄膜層を形成するに際し
、高分子フィルム基体の熱膨張率をαF、第1および第
2の薄膜層の熱膨張率をαT、第1の薄膜層の厚さを6
1.第2の薄膜層の厚さを62としたとき、αF〈α丁
、かつδ1〉δ2なる関係を満たすようにしたことを特
徴としている。
[Summary of the Invention] A thin film forming method according to the present invention includes forming a first thin film layer on one surface of a polymer film substrate, and then forming a second thin film layer on the other surface of the polymer film substrate. In this case, the coefficient of thermal expansion of the polymer film substrate is αF, the coefficient of thermal expansion of the first and second thin film layers is αT, and the thickness of the first thin film layer is 6.
1. It is characterized in that when the thickness of the second thin film layer is 62 mm, the following relationship is satisfied: αF <α th, and δ1> δ2.

[発明の効果] この発明によれば、上記のように高分子フィルム基体の
熱膨張率αFを第1および第2の薄膜層の熱膨張率αT
より小さ≦し、かつ第1の薄膜層の厚さδ1を第2の薄
膜層の厚さδ2より大きくすることによって、薄膜層の
カールの発生を極めて少なくすることができる。
[Effects of the Invention] According to the present invention, as described above, the coefficient of thermal expansion αF of the polymer film substrate is determined by the coefficient of thermal expansion αT of the first and second thin film layers.
By making the thickness δ1 of the first thin film layer larger than the thickness δ2 of the second thin film layer, curling of the thin film layer can be extremely reduced.

このようにカールが少なくなる理由については、従来に
おいて第1および第2の薄膜層の形成をほぼ同一条件で
行なっているにも拘らずカールが発生するメカニズムと
ともに、今のところ良くは解明されていない。カールの
発生要因として、WJl1層形成時に高分子フィルム基
体の熱的変化(例えば熱収縮)が生じることを十分に考
える必要はあるが、熱収縮の大小に拘らず同様のカール
発生傾向を示すことから、他の要因も考える必要がある
The reason why curling decreases in this way is not well understood at present, as well as the mechanism by which curling occurs even though the first and second thin film layers are conventionally formed under almost the same conditions. do not have. Although it is necessary to fully consider the thermal change (for example, heat shrinkage) of the polymer film substrate during formation of the WJ1 layer as a cause of curl, it is important to note that the same tendency for curl to occur regardless of the magnitude of heat shrinkage. Therefore, other factors need to be considered as well.

定性的に考察すれば、第1の薄膜層形成時においては基
体は単なる高分子フィルムのみであるのに対し、第2の
薄膜層形成時においては基体は実質的に、既に反対側の
面に形成されている第1の薄膜層と高分子フィルムとの
積層膜と考えることができ、その実効的熱膨張率および
ヤング率が第1の薄膜層形成時より変化していることが
カールの発生する主な原因と考えられる。特に主ローラ
を有する連続薄膜形成装置により表裏の薄膜層形成が時
間をおいてなされる場合、第2の薄膜層の形成時には高
分子フィルム基体のフリキシビリティが小さく、従って
高分子フィルム基体と主ローラ闇の熱伝導が小さくなり
、^分子フィルム基体の実効温度が高めになることも影
響していると考えられる。このことから、第2の薄膜層
は実効温度が高い分だけ第1の薄膜層より薄くする必要
がある。
Considering qualitatively, when the first thin film layer is formed, the substrate is just a polymer film, whereas when the second thin film layer is formed, the substrate is already substantially on the opposite side. It can be thought of as a laminated film of the first thin film layer and a polymer film, and curl occurs because its effective coefficient of thermal expansion and Young's modulus have changed since the first thin film layer was formed. This is considered to be the main cause. In particular, when forming thin film layers on the front and back sides with a continuous thin film forming apparatus having a main roller, the flexibility of the polymer film base is small when forming the second thin film layer, and therefore the flexibility of the polymer film base and the main It is thought that this is also due to the fact that the heat conduction of the roller becomes smaller and the effective temperature of the molecular film substrate becomes higher. For this reason, the second thin film layer needs to be made thinner than the first thin film layer by the amount of the higher effective temperature.

従って、高分子フィルム基体と第1および第2の薄膜層
の熱膨張率の差と、第1および第2の薄膜層の厚さの差
との関係を適当に選定すれば、第1の薄膜層の形成時に
基体が熱的変化を起こすことによって生じたカールは、
第2の薄膜層の形成時に基体に対して反対方向から同程
度の熱的変化が与えられることでちょうど相殺される形
となり、結果的にカールの非常に少ない薄膜層が得られ
るということになる。実際にはその他の効果も寄与して
いることが予想されるが、残念ながらよく分っていない
Therefore, if the relationship between the difference in thermal expansion coefficient between the polymer film substrate and the first and second thin film layers and the difference in thickness between the first and second thin film layers is appropriately selected, the first thin film Curls caused by thermal changes in the substrate during layer formation are
When the second thin film layer is formed, the same degree of thermal change is applied to the substrate from the opposite direction, so that it is exactly offset, and as a result, a thin film layer with very little curl is obtained. . In reality, other effects are expected to contribute, but unfortunately they are not well understood.

[発明の実施例] この発明を一実施例により詳細に説明する。第1図はこ
の発明のWJIllI形成方法を実施する装置の一例と
しての連続薄膜形成装置の構成を示すものである。
[Embodiment of the Invention] The present invention will be explained in detail by way of an embodiment. FIG. 1 shows the configuration of a continuous thin film forming apparatus as an example of an apparatus for carrying out the WJIllI forming method of the present invention.

第1図において1は真空槽であり、この真空槽1内で薄
膜形成が連続的に行なわれる。すなわち、供給ローラ2
からこのローラ2に巻回されているPET等からなる高
分子フィルム基体10を連続的に送り出し、必要に応じ
て補助ローラ3aを経て主ローラ4aに巻付ける。この
主ロー54a上を高分子フィルム基体10が走行する際
に、主ローラ4aに対向して置かれたスパッタターゲッ
ト5a(例えばCrを22重量%含むCo−Cr合金タ
ーゲット)から膜形成物を供給することにより、第2図
(a)に示すように基体10の一方の面上に第1の薄膜
層11を厚さδまたけ連続形成する。
In FIG. 1, reference numeral 1 denotes a vacuum chamber, and thin film formation is continuously performed within this vacuum chamber 1. That is, supply roller 2
From there, the polymer film base 10 made of PET or the like wound around this roller 2 is continuously sent out, and is wound around the main roller 4a via an auxiliary roller 3a as necessary. When the polymer film substrate 10 runs on this main roller 54a, a film forming material is supplied from a sputter target 5a (for example, a Co-Cr alloy target containing 22% by weight of Cr) placed opposite the main roller 4a. As a result, as shown in FIG. 2(a), the first thin film layer 11 is continuously formed over one surface of the substrate 10 to a thickness δ.

次いで、補助ローラ3bを経てもう1つの主ローラ4b
上に高分子フィルム基体10を案内し、この主ローラ4
b上を高分子フィルム基体1oが走行する際に、主ロー
54bに対向して置かれた前記スパッタターゲット5a
とほぼ同じ組成を有するスパッタターゲット5bがら膜
形成物を供給することにより、第2図(b)に示すよう
に基体10の他方の面に第2の薄膜層12を厚さδ2(
δl〉δ2)だけ連続形成する。その後、高分子フィル
ム基体10を補助ローラ3Cを経て巻取リローラ6に巻
取って一連の薄膜形成工程を終了する。
Next, the main roller 4b passes through the auxiliary roller 3b.
The polymer film base 10 is guided above the main roller 4.
When the polymer film substrate 1o runs on b, the sputter target 5a is placed facing the main row 54b.
By supplying a film forming material from the sputtering target 5b having approximately the same composition as , the second thin film layer 12 is formed on the other surface of the substrate 10 to a thickness of δ2 (as shown in FIG. 2(b)).
δl>δ2) are continuously formed. Thereafter, the polymer film substrate 10 is wound up on the take-up and rewind roller 6 via the auxiliary roller 3C, thereby completing the series of thin film forming steps.

第3図は熱i層重がCo−Crより小さい2種類の耐熱
性高分子フィルム基体■■を用い、第1の薄膜層の厚さ
δ五を約0.6μm一定とし、第2のRIM!I層の厚
さδ2を変えたときのカール量の変化を示したものであ
る。第4図は用いた2種類の高分子フィルム基体■■お
よび薄1!層であるco−Qr合金膜の熱膨張率の測定
結果であり、測定は理学mti製の熱膨張計によって行
なった。
Figure 3 shows two types of heat-resistant polymer film substrates with thermal i-layer weights smaller than Co-Cr, the thickness δ of the first thin film layer being constant at about 0.6 μm, and the second RIM ! It shows the change in curl amount when the thickness δ2 of the I layer is changed. Figure 4 shows the two types of polymer film substrates used: ■■ and Thin 1! These are the results of measuring the coefficient of thermal expansion of the co-Qr alloy film, which is a layer, and the measurement was performed using a thermal dilatometer manufactured by Rigaku Mti.

測定条件は次表の通りである。The measurement conditions are shown in the table below.

L なお、高分子フィルム基体に水が各員に含まれている場
合、加熱時に水が放出され、それに伴う寸法変化も重な
って生じることがら、基体の脱水がほぼ完全になされた
ときの寸法変化をもって熱膨張率をめた。スパッタ時、
高分子フィルム基体はガス放出工程により水はほとんど
放出されている。また、薄膜層(Co−Cr膜)の熱膨
張率は高分子フィルム基体を溶解して単独のC0−Cr
膜を作り、はぼ同一条件で測定したが、この値は多結晶
バルクの状態での値とほぼ一致した。なお、カール量は
直径85amのフロッピーディスクとして打ち抜いたも
のについて、第5図に示す寸法りで定義した。
L Note that if the polymer film substrate contains water in each member, the water will be released during heating, and the accompanying dimensional change will also occur, so the dimensional change when the substrate is almost completely dehydrated. The coefficient of thermal expansion was determined by . During sputtering,
Most of the water in the polymer film substrate is released by the gas release process. In addition, the coefficient of thermal expansion of the thin film layer (Co-Cr film) is determined by melting the polymer film base and forming a single C0-Cr film.
A film was made and measured under almost the same conditions, and this value almost matched the value in the polycrystalline bulk state. Note that the curl amount was defined based on the dimensions shown in FIG. 5 for a punched floppy disk with a diameter of 85 am.

第3図の測定結果かられかるように、αFく0丁なる高
分子フィルム基体を用い、がっδl〉δ2を満たす適当
な厚さの第1および第2の薄m層を形成したときに、カ
ールの少ないほぼ平坦なフロッピーディスクが得られた
。このようにして得られたフロッピーディスクを用いて
実際に記録・再生を行なったところ、エンベロープの均
一な再生出力が得られた。
As can be seen from the measurement results in Fig. 3, when the first and second thin m layers of appropriate thickness satisfying δl>δ2 are formed using a polymer film substrate of αF , a nearly flat floppy disk with little curl was obtained. When actual recording and playback was performed using the floppy disk thus obtained, a playback output with a uniform envelope was obtained.

換言すれば高分子フィルム基体の熱膨張率を第1および
第2の薄膜層のそれより小さくし、かつ第1および第2
の薄膜層の厚さを等しくした場合には、第1の薄膜層を
形成した状態では第1の薄膜層側が凹状となるカール(
負のカール)が発生し、第2のmy層を形成した状態で
は逆に第1の薄膜層側が凸状、第2の薄膜層側が凹状と
なるカール(正のカール)が発生する。これは前述した
ように第1の薄膜層が形成された状態では高分子フィル
ム基体のヤング率が実効的に高い状態にあるために、高
分子フィルム基体と主ローラ等の高分子フィルム基体の
接する系との熱伝導が異なる結果、第2の薄膜層の厚さ
が第1の薄膜層の厚さと同程度であると、第2の薄膜層
の形成時に基体に与えられる熱応力が大き過ぎるからで
あると考えられる。この点、この発明のように第2の薄
膜層の厚さを第1の薄膜層の厚さより適当に小さくする
と、第2の薄膜層の形成時に基体に与えられる熱応力が
適度な値となって、第1の薄膜層の形成時に生じた負の
カールがちょうど打消され、正以上説明したように、こ
の発明によれば高分子フィルム基体の両面に第1および
第2の薄膜層を順次時間を置いて形成するに際し、カー
ルの発生を効果的に抑制することができる。従って、例
えばフロッピーディスクのようなディスク状磁気記録媒
体の製造に適用すれば、平坦性の良い媒体を得ることが
できるという利点がある。
In other words, the coefficient of thermal expansion of the polymer film substrate is made smaller than that of the first and second thin film layers, and
When the thicknesses of the thin film layers are made equal, when the first thin film layer is formed, the first thin film layer side becomes concave (curl).
Conversely, when the second my layer is formed, a curl (positive curl) occurs in which the first thin film layer side is convex and the second thin film layer side is concave. This is because the Young's modulus of the polymer film base is effectively high in the state in which the first thin film layer is formed as described above, so the contact between the polymer film base and the main roller, etc. As a result of the difference in heat conduction with the system, if the thickness of the second thin film layer is comparable to the thickness of the first thin film layer, the thermal stress applied to the substrate during formation of the second thin film layer will be too large. It is thought that. In this regard, if the thickness of the second thin film layer is made appropriately smaller than the thickness of the first thin film layer as in the present invention, the thermal stress applied to the substrate during formation of the second thin film layer will be at an appropriate value. As explained above, according to the present invention, the negative curl that occurred during the formation of the first thin film layer is just cancelled, and according to the present invention, the first and second thin film layers are sequentially formed on both sides of the polymer film substrate over time. When forming by placing, it is possible to effectively suppress the occurrence of curls. Therefore, when applied to the production of disk-shaped magnetic recording media such as floppy disks, it is advantageous that media with good flatness can be obtained.

また、この発明はバッチ方式でなく高分子フィルム基体
への張力の与え方に制限があり、かつ主として基体の長
手方向にしか張力を加えられず、さらに基体と主ローラ
との間の摩擦状態の1tlIWJが困難なローラを用い
た連続81M形成工程において、カールが少なく平坦な
III!を形成する場合に有効である。
In addition, this invention is not a batch method, and there are restrictions on how to apply tension to the polymer film substrate, and tension can only be applied mainly in the longitudinal direction of the substrate, and furthermore, the friction between the substrate and the main roller is limited. In the continuous 81M forming process using a roller that is difficult to perform 1tlIWJ, a flat III with little curl! It is effective when forming

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のIl!形成方法で用いる連続sm形
成装置の概略的な構成を示す図、第2図はこの発明の一
実施例の薄膜形成工程を説明するための断面図、第3図
は高分子フィルム基体に最初に形成される第1の薄膜層
の厚さを一定とし後に形成される第2の薄膜層の厚さを
変えたときのカール量の変化を示す図、第4図は実施例
で使用した高分子フィルム基体および薄膜層(Go−O
r合金膜)の熱膨張率の測定結果を示す図、第5図はカ
ール量の評価法を説明するための図である。 1・・・真空槽、2・・・供給ローラ、3a〜3C・・
・補助ローラ、4a、4b・・・主ローラ、5a、5b
・・・スパッタターゲット、6・・・巻取りローラ、1
0・・・高分子フィルム基体、11・・・第1の薄膜層
、12・・・第2の薄膜層。 出願人代理人 弁理士 鈴江武彦 第1図 第2図
FIG. 1 shows Il! of this invention. FIG. 2 is a cross-sectional view for explaining the thin film forming process of an embodiment of the present invention, and FIG. 3 is a diagram showing the schematic configuration of a continuous SM forming apparatus used in the forming method. A diagram showing the change in curl amount when the thickness of the first thin film layer that is formed is constant and the thickness of the second thin film layer that is formed later is changed. Figure 4 shows the polymer used in the example. Film substrate and thin film layer (Go-O
FIG. 5 is a diagram showing the measurement results of the thermal expansion coefficient of the r-alloy film) and is a diagram for explaining the evaluation method of the amount of curl. 1... Vacuum chamber, 2... Supply roller, 3a to 3C...
・Auxiliary rollers, 4a, 4b...Main rollers, 5a, 5b
... Sputter target, 6... Winding roller, 1
0... Polymer film base, 11... First thin film layer, 12... Second thin film layer. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (1)高分子フィルム基体の一方の面に第1の薄膜層を
形成した後、前記高分子フィルム基体の他方の面に第2
の薄膜層を形成する薄膜形成方法において、前記高分子
フィルム基体の熱膨張率をαF、第1および第2の薄膜
層の熱膨張率をαTとし、第1の薄膜層の厚さを61.
第2の薄膜層の厚さを62としたとき、αF〉α丁、か
つδ1〈δ2なる関係を満たすようにしたことを特徴と
する薄膜形成方法。 (2) 高分子フィルム基体への第1および第2の薄膜
層の形成を、高分子フィルム基体を連続的に走行させつ
つ、この高分子フィルム基体の走行方向において異なる
位置で行なうことを特徴とする特許請求の範囲第1項記
載の薄膜形成方法。 (a 第1および第2の薄膜層はコバルト合金か門弟1
項または第2項記載の1膜形成方法。 (4)第1および第2の薄膜層の少なくとも一方はディ
スク状垂直磁気記録媒体の記録層であることを特徴とす
る特許請求の範囲第1項、第2項または第3項記載の薄
膜形成方法。
[Scope of Claims] (1) After forming a first thin film layer on one side of the polymer film base, a second thin film layer is formed on the other side of the polymer film base.
In the method for forming a thin film layer, the coefficient of thermal expansion of the polymer film substrate is αF, the coefficients of thermal expansion of the first and second thin film layers are αT, and the thickness of the first thin film layer is 61.
A method for forming a thin film, characterized in that, when the thickness of the second thin film layer is 62, the relationships αF>α and δ1<δ2 are satisfied. (2) The formation of the first and second thin film layers on the polymer film base is performed at different positions in the running direction of the polymer film base while the polymer film base is continuously running. A thin film forming method according to claim 1. (a The first and second thin film layers are made of cobalt alloy or
The method for forming a single film according to item 1 or 2. (4) Thin film formation according to claim 1, 2 or 3, wherein at least one of the first and second thin film layers is a recording layer of a disk-shaped perpendicular magnetic recording medium. Method.
JP6369784A 1984-03-31 1984-03-31 Formation of thin film Pending JPS60209931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6369784A JPS60209931A (en) 1984-03-31 1984-03-31 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6369784A JPS60209931A (en) 1984-03-31 1984-03-31 Formation of thin film

Publications (1)

Publication Number Publication Date
JPS60209931A true JPS60209931A (en) 1985-10-22

Family

ID=13236825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6369784A Pending JPS60209931A (en) 1984-03-31 1984-03-31 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS60209931A (en)

Similar Documents

Publication Publication Date Title
US5314745A (en) Magnetic recording medium having a glass substrate, heat retaining non magnetic metal layer formed over the substrate, amorphous nip layer, Cr layer and magnetic layer
JP2697227B2 (en) Magnetic recording medium and method of manufacturing the same
JPH03185623A (en) Vapor deposition magnetic recording medium
JPS60209931A (en) Formation of thin film
JPS60209930A (en) Formation of thin film
JPS6379968A (en) Production of magnetic recording medium
JPH0393024A (en) Metallic thin film type magnetic recording medium
JPH04188430A (en) Magnetic recording tape having excellent abrasion resistance and corrosion resistance and manufacture thereof
JPS61242332A (en) Device for producing vertical magnetic recording medium
JPH01165029A (en) Production of magnetic recording medium
JPH0572015B2 (en)
JPH07101500B2 (en) Perpendicular magnetic recording medium
JPS60138723A (en) Magnetic recording medium
JPS60150237A (en) Production of magnetic recording medium
JPS60133542A (en) Production of magnetic recording medium
JPH0554173B2 (en)
JPS6220138A (en) Production of magnetic recording medium
JPH0916959A (en) Manufacture of magnetic recording medium
JPH047013B2 (en)
JPS60205818A (en) Magnetic recording medium
JPH03225623A (en) Production of perpendicular magnetic recording medium and device therefor
JPS6267721A (en) Thin film type magnetic recording medium
JPS6074609A (en) Continuous film forming equipment
JPH03266219A (en) Production of magnetic recording medium
JPS62175925A (en) Vertical magnetic recording medium and its production