JPH047013B2 - - Google Patents

Info

Publication number
JPH047013B2
JPH047013B2 JP25469387A JP25469387A JPH047013B2 JP H047013 B2 JPH047013 B2 JP H047013B2 JP 25469387 A JP25469387 A JP 25469387A JP 25469387 A JP25469387 A JP 25469387A JP H047013 B2 JPH047013 B2 JP H047013B2
Authority
JP
Japan
Prior art keywords
substrate
film
magnetic
magnetic disk
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25469387A
Other languages
Japanese (ja)
Other versions
JPH0198120A (en
Inventor
Kyuzo Nakamura
Yoshifumi Oota
Michio Ishikawa
Noriaki Tani
Yukinori Hashimoto
Yoshikazu Takahashi
Masayuki Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP25469387A priority Critical patent/JPH0198120A/en
Publication of JPH0198120A publication Critical patent/JPH0198120A/en
Publication of JPH047013B2 publication Critical patent/JPH047013B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気デイスク基板、特に薄膜型磁気
デイスク基板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a magnetic disk substrate, particularly a thin film type magnetic disk substrate.

(従来の技術) 近時、メツキやスパツタで磁性薄膜を基板に形
成し記録層として用いるいわゆる薄膜型磁気デイ
スクが、記録密度が高いので注目されている。こ
の種のデイスクに用いられる基板は、表面を極め
て平滑に仕上げたもの、或いは更に円周方向に多
種の微細な線状溝を一面に形成するいわゆるテク
スチヤー処理を施したものの2種類が常用されて
いる。
(Prior Art) Recently, so-called thin-film magnetic disks, in which a magnetic thin film is formed on a substrate by plating or sputtering and used as a recording layer, have attracted attention because of their high recording density. There are two types of substrates commonly used for this type of disk: those with extremely smooth surfaces, and those with so-called texture processing, in which various fine linear grooves are formed on the entire surface in the circumferential direction. There is.

磁気デイスクの記録再生は、よく知られている
ように、ヘツドが0.1〜0.5μm程デイスク表面よ
り浮上している状態で行なわれる。この浮上量
(ギヤツプ)は記録再生特性に大きな影響を与え
るもので、デイスク表面にうねりや凹凸があると
浮上量がデイスクの場所により不均一になつた
り、実効的な浮上量が増加し、その結果再生出力
にモジユレーシヨンが発生したり或いは記録密度
が悪化する問題が生ずる。薄膜型磁気デイスクの
場合、デイスク表面の凹凸やうねりは、殆どデイ
スク基板の表面の凹凸やうねりが原因である。従
つて、従来はデイスク基板は鏡面研摩を施して表
面の平滑性を得ており、使われる材質を研摩性の
すぐれているもの、例えばAl上にNiP硬質厚膜
をメツキしたもの、Alの表面をアルマイト処理
したの、或いはガラス、セラミツクス等が用いら
れている。また更にデイスクとヘツドの接触面積
を小さくし、デイスク表面とヘツドの摩擦を円滑
にするめ、前記材質の基板を鏡面に仕上げたのち
適当な粗さの研摩紙や研摩剤を用いて円周方向に
無数の線状溝を形成するテクスチヤー処理を施し
ている。
As is well known, recording and reproducing on a magnetic disk is performed with the head floating about 0.1 to 0.5 .mu.m above the disk surface. This flying height (gap) has a large effect on the recording and reproducing characteristics, and if the disk surface has undulations or irregularities, the flying height may become uneven depending on the location of the disk, or the effective flying height may increase. As a result, problems arise in which modulation occurs in the reproduced output or the recording density deteriorates. In the case of a thin-film magnetic disk, most of the unevenness and waviness on the disk surface are caused by the unevenness and waviness on the surface of the disk substrate. Therefore, in the past, disk substrates were mirror-polished to obtain a smooth surface, and the materials used were those with excellent abrasiveness, such as NiP hard thick film plated on Al, or Al surfaces. Anodized aluminum, glass, ceramics, etc. are used. Furthermore, in order to reduce the contact area between the disk and the head and to smooth the friction between the disk surface and the head, the substrate made of the above material is finished to a mirror surface, and then polished in the circumferential direction using abrasive paper or an abrasive agent of appropriate roughness. Texture treatment is applied to form countless linear grooves.

一方、前記の基板材料は高価であり、また鏡面
に研摩するとコスト高になるので、粗研摩した
Al等の非磁性基体上にポリイミドのような耐熱
性高分子を塗布した安価なデイスク基板が提案さ
れている。この耐熱性高分子の膜の役割は、その
上に形成される磁性膜とAl等の非磁性基体との
電気化学的作用による腐蝕を防止することと、平
滑な表面を得ることである。また耐熱性の高分子
材を用いる理由は、前記磁性膜の作製プロセスで
基板温度が上昇すること、さらに長時間使用した
時の経時変化が小さく信頼性があるためである。
本発明はこの磁気デイスク基板を製作する方法に
関するものである。
On the other hand, the above-mentioned substrate materials are expensive, and polishing them to a mirror surface increases the cost, so rough polishing is required.
An inexpensive disk substrate has been proposed in which a heat-resistant polymer such as polyimide is coated on a non-magnetic substrate such as Al. The role of this heat-resistant polymer film is to prevent corrosion due to electrochemical interaction between the magnetic film formed thereon and a non-magnetic substrate such as Al, and to obtain a smooth surface. Further, the reason why a heat-resistant polymer material is used is that the substrate temperature rises in the process of manufacturing the magnetic film, and furthermore, it is reliable because it shows little change over time when used for a long time.
The present invention relates to a method of manufacturing this magnetic disk substrate.

また、出願人は、先に、真空処理室中で2種以
上のモノマーを蒸発させ、これを基体上で重合さ
せて化学量論的組成比を有する合成樹脂被膜を形
成する方法として、真空の室内で該基体の温度を
これらモノマーの蒸発温度のうち高い方の温度よ
りも高くすると共に該真空室の内壁の温度を該基
体の温度よりも高くするようにして該モノマーを
該基体に蒸着する方法(全方向同時蒸着重合法)
を提案した(特開昭61−261322及び特願昭61−
206764)。
In addition, the applicant has proposed a method for forming a synthetic resin film having a stoichiometric composition by first evaporating two or more monomers in a vacuum processing chamber and polymerizing them on a substrate. The monomer is vapor-deposited onto the substrate by raising the temperature of the substrate indoors to a temperature higher than the higher of the evaporation temperatures of these monomers and the temperature of the inner wall of the vacuum chamber to higher than the temperature of the substrate. Method (omnidirectional simultaneous vapor deposition polymerization method)
(Japanese Patent Application Laid-Open No. 61-261322 and Patent Application No. 1983-
206764).

(発明が解決しようとする問題点) 前記したAl等の非磁性基体に耐熱性高分子材
を塗布する方法としては、スピンコート法とスプ
レイ法が提案されているが、スピンコート法では
円心側よりも外周側で塗布膜厚が厚くなつてしま
うこと及び基体の両面に同時に塗布することが出
来ないことの欠点があり、またスプレイ法ではデ
イスク基体の表面上の膜厚が不均一になり易いこ
と及び膜厚のコントロールが事実上できないこと
の欠点がある。また、両方法ともテクスチヤー処
理した基体上にテクスチヤー状態を残したまま塗
布することは出来ない。従つて従来の塗布方法で
耐熱性高分子材を塗布したデイスク基板を用いて
磁気デイスクを作製すると、再生出力のモジユレ
ーシヨンが発生したり、デイスク間で再生出力に
差が生じるという問題があり、しかも、テクスチ
ヤー状態を作成できないので摩擦係数が大きくな
る問題があつた。即ちデイスク基板の表面の凹凸
の状態を制御することは殆ど不可能であつた。
(Problems to be Solved by the Invention) Spin coating and spraying have been proposed as methods for applying a heat-resistant polymer material to a non-magnetic substrate such as Al, but spin coating Disadvantages include that the coating film is thicker on the outer circumferential side than on the outer edge, and that it is not possible to coat both sides of the substrate at the same time.Also, with the spray method, the coating thickness on the surface of the disk substrate is uneven. The drawbacks are that it is easy to use and that the film thickness cannot be controlled in practice. Furthermore, neither method allows coating onto a textured substrate while leaving the texture intact. Therefore, when a magnetic disk is manufactured using a disk substrate coated with a heat-resistant polymer material using a conventional coating method, there are problems such as modulation of the playback output and differences in the playback output between disks. However, since it was not possible to create a textured state, there was a problem that the coefficient of friction increased. That is, it has been almost impossible to control the unevenness of the surface of the disk substrate.

本発明は、非磁性基体の表面に耐熱性高分子材
を形成する場合に於ける前記欠点を解決し、非磁
性基体の表面が粗仕上げであつても平滑な表面の
デイスク基板を製造出来る方法を提案することを
目的とするものである。
The present invention solves the above-mentioned drawbacks in forming a heat-resistant polymer material on the surface of a non-magnetic substrate, and provides a method for producing a disk substrate with a smooth surface even if the surface of the non-magnetic substrate is rough-finished. The purpose is to propose the following.

(問題点を解決するための手段) 本発明は、出願人の先に提案した前記全方向同
時蒸着重合法を利用して前記問題点を解決するも
ので、アルミニウム、セラミツクス、ガラス等の
非磁性基体の表面に耐熱性有機高分子膜を有する
磁気デイスクの基板を、内壁を加熱した真空容器
中に2種以上のモノマーを蒸発させ、その蒸発成
分を該真空容器内の加熱した該非磁性基体の表面
で重合させる蒸着重合法により製造するようにし
た。
(Means for Solving the Problems) The present invention solves the above problems by using the omnidirectional simultaneous vapor deposition polymerization method previously proposed by the applicant. A magnetic disk substrate having a heat-resistant organic polymer film on the surface of the substrate is placed in a vacuum container with a heated inner wall, in which two or more monomers are evaporated, and the evaporated components are transferred to the heated non-magnetic substrate in the vacuum container. It was manufactured using a vapor deposition polymerization method that polymerizes on the surface.

(作用) 真空容器の内壁を加熱し、該真空容器中に2種
類以上のモノマー例えばピロメリト酸二無水物と
4、4′−ジアミノジフエニールエーテルを蒸発さ
せると、その蒸発成分は該真空容器内の加熱した
非磁性基体の表面で蒸着重合し、ポリイミドの耐
熱性有機高分子膜が形成される。この作用は出願
人が先に提案した蒸着重合法とほぼ同様である
が、その蒸着過程に於いて次のような特異な作用
が見られ、本発明に於いてはこの特異な作用を利
用して磁気デイスクの基板を製造するようにし
た。即ち各モノマーの蒸発成分は非磁性基体の表
面で蒸着重合し耐熱性有機高分子膜となるが、該
非磁性基体の表面の平均的粗さに体して堆積する
高分子膜の膜厚が小さい場合には、該高分子の表
面の粗さは殆ど該基体の表面の粗さと同等にな
り、該膜厚を厚くすると該高分子膜の表面の粗さ
は次第に平滑になつてゆき、例えば該基体の平均
的表面粗さの約2倍の厚さに該高分子膜を形成す
るとその表面粗さは基体表面の粗さの約1/2に減
少する作用が見られた。
(Function) When the inner wall of the vacuum container is heated and two or more types of monomers, such as pyromellitic dianhydride and 4,4'-diaminodiphenyl ether, are evaporated in the vacuum container, the evaporated components are absorbed into the vacuum container. is vapor-deposited and polymerized on the surface of the heated non-magnetic substrate, forming a heat-resistant organic polymer film of polyimide. This effect is almost the same as the vapor deposition polymerization method previously proposed by the applicant, but the following unique effect is observed in the vapor deposition process, and the present invention utilizes this unique effect. The company began manufacturing magnetic disk substrates using the same technology. That is, the evaporated components of each monomer are evaporated and polymerized on the surface of the non-magnetic substrate to form a heat-resistant organic polymer film, but the thickness of the deposited polymer film is small compared to the average roughness of the surface of the non-magnetic substrate. In some cases, the surface roughness of the polymer film is almost the same as the surface roughness of the substrate, and as the film thickness increases, the surface roughness of the polymer film gradually becomes smoother. When the polymer film was formed to a thickness approximately twice the average surface roughness of the substrate, the surface roughness was found to be reduced to approximately 1/2 of the roughness of the substrate surface.

従つて、粗研摩状態のAl製基体のような安価
な基体を用い平滑な表面の高分子膜を形成するに
は、該高分子膜の堆積膜厚を厚くすればよく、テ
クスチヤー処理を施した基体を用いて耐熱性有機
高分子間の形成後もテクスチヤー状態を得ようと
する場合には、堆積膜厚を薄くすればよい。しか
も基体の両面に同時に高分子膜を形成出来、その
高分子の表面全体を平滑に出来るので生産性も良
く、再生出力のモジユレーシヨンが発生せず、大
量の基体を処理しても膜厚制御をモノマーの蒸発
を制御することにより容易に制御出来る。
Therefore, in order to form a polymer film with a smooth surface using an inexpensive substrate such as a roughly polished Al substrate, it is sufficient to increase the thickness of the deposited polymer film. When attempting to obtain a textured state even after the formation of heat-resistant organic polymers using a substrate, the thickness of the deposited film may be reduced. Moreover, the polymer film can be formed on both sides of the substrate at the same time, and the entire surface of the polymer can be smoothed, resulting in good productivity, no modulation of the reproduction output, and even when processing a large number of substrates, it is possible to control the film thickness. This can be easily controlled by controlling the evaporation of the monomer.

(実施例) 本発明の実施に使用された装置は第1図示の如
くであり、真空排気口1を備えた真空容器2の外
周にヒータ3を設けて該真空容器2の内壁を加熱
するようにし、外部に設けた複数個のモノマーの
蒸発源4a,4bから夫々バルブ5とヒータ6を
備えたパイプ7を介して該真空容器2内にモノマ
ーガス導入ノズル8a,8bを導入するようにし
た。9a,9bの各蒸発源4a,4bを加熱する
ヒーダで、各ヒータ9a,9bを夫々独立して制
御することにより各蒸発源4a,4bの温度を任
意に制御出来るようにした。10はアルミニウ
ム、セラミツクス、ガラス等の非磁性基体を示
し、その複数枚を各基体10の中心に形成した取
付穴により軸状の治具11に取付けて真空容器2
内に収め、周囲から基体加熱用ヒータ12で加熱
するようにした。13は主バルブである。
(Example) The apparatus used to carry out the present invention is as shown in the first diagram, and a heater 3 is provided around the outer periphery of a vacuum container 2 equipped with a vacuum exhaust port 1 to heat the inner wall of the vacuum container 2. Monomer gas introduction nozzles 8a and 8b are introduced into the vacuum container 2 from a plurality of externally provided monomer evaporation sources 4a and 4b through pipes 7 each equipped with a valve 5 and a heater 6. . By independently controlling each heater 9a, 9b using a heater for heating each evaporation source 4a, 4b, the temperature of each evaporation source 4a, 4b can be arbitrarily controlled. Reference numeral 10 indicates non-magnetic substrates such as aluminum, ceramics, glass, etc., and a plurality of non-magnetic substrates such as aluminum, ceramics, glass, etc. are attached to a shaft-shaped jig 11 through a mounting hole formed in the center of each substrate 10, and the vacuum vessel 2 is attached.
The substrate was placed inside the substrate and heated from the surrounding area using a heater 12 for heating the substrate. 13 is a main valve.

以上のような装置を用いて次のように磁気デイ
スク基板を製造した。
A magnetic disk substrate was manufactured in the following manner using the apparatus described above.

実施例 1 一方の蒸発源4aに原料モノマーとしてピロメ
リト酸二無水物を充填し、もう一方の蒸発源4b
に原料モノマーとして4、4′−ジアミノジフエニ
ルエーテルを充填する。その後、主バルブ13を
開けて真空容器2内及び各蒸発源4a,4b内を
1×10-5Torr以下に排気する。次に蒸発源4a,
4bのパイプ7,7のバルブ5,5を閉じ、真空
容器2の内壁が180℃、基体10が180℃になるよ
うにヒータ3及び基体加熱用ヒータ12を作動さ
せると共にピロメリト酸二無水物が170℃、4、
4′−ジアミノジフエニルエーテルが160℃になる
ように蒸発源4a,4bのヒータ9a,9bを
夫々制御し乍ら作動させる。その後、バルブ5,
5を開けてモノマーガス導入ノズル8a,8bか
らモノマーガスを導入し、基体10上に蒸発成分
を蒸着重合させる。該基体10は表面粗さが0.1μ
mの粗研摩状態の直径5.25インチのAl製の非磁性
基体を用いた。該基体10は180℃に加熱されて
いるのでモノマーの蒸発成分は単独では基体表面
に析出せず、各モノマーの重合物のみが層状に析
出した。その析出速度は1050〓/minであつた。
得られた層状の重合物はポリイミドからなる耐熱
性有機高分子で、400℃までの昇温による重合減
少率は10%以下の極めて耐熱性のあるものであつ
た。ポリイミドの堆積膜厚とその表面粗さの関係
は第2図の曲線Aで示す如くであり、アリミニウ
ムの基体10の表面粗さは0.1μmであつたが、堆
積膜厚を厚くするとその膜の表面は平滑になつて
ゆき、膜厚を0.2μm即ち基体10の表面粗さの2
倍にすると膜表面の粗さは約半分の0.05μmにな
り、1.0μm堆積させると表面粗さは0.008μmとな
り、磁気デイスク基板として充分な平滑さが得ら
れた。
Example 1 One evaporation source 4a is filled with pyromellitic dianhydride as a raw material monomer, and the other evaporation source 4b is filled with pyromellitic dianhydride as a raw material monomer.
4,4'-diaminodiphenyl ether is charged as a raw material monomer. Thereafter, the main valve 13 is opened to exhaust the inside of the vacuum container 2 and each evaporation source 4a, 4b to 1×10 −5 Torr or less. Next, the evaporation source 4a,
The valves 5, 5 of the pipes 7, 7 of 4b are closed, and the heater 3 and the substrate heating heater 12 are operated so that the inner wall of the vacuum container 2 is at 180°C and the substrate 10 is at 180°C, and the pyromellitic dianhydride is heated. 170℃, 4,
The heaters 9a and 9b of the evaporation sources 4a and 4b are controlled and operated so that the temperature of 4'-diaminodiphenyl ether is 160°C. After that, valve 5,
5 is opened, monomer gas is introduced from monomer gas introduction nozzles 8a and 8b, and the evaporated components are vapor-deposited and polymerized on the substrate 10. The base 10 has a surface roughness of 0.1μ
A non-magnetic substrate made of Al and having a diameter of 5.25 inches was used in a roughly polished state. Since the substrate 10 was heated to 180° C., the evaporated components of the monomers did not precipitate alone on the substrate surface, but only polymerized products of each monomer precipitated in a layered manner. The deposition rate was 1050〓/min.
The obtained layered polymer was a heat-resistant organic polymer made of polyimide, and was extremely heat-resistant, with a polymerization reduction rate of less than 10% when the temperature was raised to 400°C. The relationship between the thickness of the polyimide deposited film and its surface roughness is as shown by curve A in FIG. The surface becomes smooth, and the film thickness is reduced to 0.2 μm, that is, 2 times the surface roughness of the substrate 10.
When the film was doubled, the roughness of the film surface was approximately half that of 0.05 μm, and when 1.0 μm was deposited, the surface roughness was 0.008 μm, which was sufficiently smooth for a magnetic disk substrate.

1.0μmの厚さのポリイミドを堆積したこの基板
10にスパツタ法でCr膜を1000〓、70%Co−20
%Ni−10%Cr合金膜を650〓、C膜を400〓連続
的に成膜して磁気デイスクを作成した。このデイ
スクの磁気特性は、Brδ=530Gμm、Hc=800
Oe、S・R=0.85で従来のNiPメツキAl基板と
同様の特性が得られた。このことは、スパツタ中
にポリイミド膜から有害な放出ガスが出ていない
ことを意味する。この磁気デイスクの記録再生特
性を評価したところ、1.25MHzの再生出力、
(Eop)=1.8mV、分解能91%、モジユレーシヨ
ン=±4.5%の特性が得られた。ヘツドの浮上も
安定していた。また表面と裏面の再生出力の差は
±5%以下であつた。また同時に作成した5枚の
基体について全く同じ条件で磁気デイスクを作成
し、磁気特性、記録再生特性を測定したところそ
の差は±7%以下であつた。
On this substrate 10 on which polyimide was deposited with a thickness of 1.0 μm, a Cr film of 1000% and 70% Co-20 was applied by sputtering.
A magnetic disk was fabricated by successively depositing 650% Ni-10%Cr alloy film and 400% C film. The magnetic properties of this disk are Brδ=530Gμm, Hc=800
At Oe, S・R=0.85, the same characteristics as the conventional NiP-plated Al substrate were obtained. This means that no harmful gases are emitted from the polyimide film during sputtering. When we evaluated the recording and playback characteristics of this magnetic disk, we found that it had a playback output of 1.25MHz,
Characteristics of (Eop) = 1.8 mV, resolution 91%, and modulation = ±4.5% were obtained. The levitation of the head was also stable. Moreover, the difference in reproduction output between the front and back sides was less than ±5%. Furthermore, magnetic disks were prepared under exactly the same conditions for five substrates prepared at the same time, and the magnetic properties and recording/reproducing properties were measured, and the difference was found to be less than ±7%.

尚、基体10上のポリイミド膜の膜厚分布も測
定したが、5枚の基体間、および1枚の基体面内
での分布はいずれも5%以下であつた。また、基
体10に更に耐熱性の良いポリイミド膜を形成す
るためには、蒸発源4a,4bのバルブ5,5を
閉じて蒸着重合を停止したのち、250℃10分の熱
処理を施すことが好ましく、その場合上記重合減
少は5%以下となる。
The film thickness distribution of the polyimide film on the substrate 10 was also measured, and the distribution among the five substrates and within the plane of one substrate was both 5% or less. In order to form a polyimide film with better heat resistance on the substrate 10, it is preferable to close the valves 5 and 5 of the evaporation sources 4a and 4b to stop the evaporation polymerization, and then perform heat treatment at 250°C for 10 minutes. In that case, the polymerization reduction will be 5% or less.

実施例 2 非磁性基体10として、これに鏡面研摩したの
ち平均粗さ0.08μmのテクスチヤー処理を施した
アルミニムウ基体を用い、実施例1と同様の方法
でポリイミドの耐熱性有機高分子膜を形成した。
ポリイミドの堆積膜厚を変化させてテクスチヤー
の凹凸を測定したところ第3図の曲線Bの如くと
なつた。この結果から分るように、0.05μmのポ
リイミド膜を形成してもこの表面に於いては基体
10自体のテクスチヤー状態が殆ど保持されてい
る。この0.05μmのポリイミド膜を形成したテク
スチヤーデイスク基板に前記実施例1と同様の方
法によりCr、CoNiCr、C膜を連続スパツタして
磁気デイスクを作成した。このデイスクについて
耐摩耗性試験であるCSSテストを行なつたとこ
ろ、1万回のCSSテスト後の摩擦係数は0.32で、
ヘツドクラツシユの発生は認められなかつた。比
較のために、テクスチヤーを処理をしていない
NiPメツキAl基板(市販されている従来基板)
上にCr、CoNiCr、C膜を連続スパツタして磁気
デイスクを作成し、1万回のCSSテストを行なつ
たことろ、摩擦係数は1.8となり、またヘツドに
よる摩耗跡が認められた。以上の結果から、テク
スチヤー処理をした基体上に本発明方法によりポ
リイミドを成膜すると、基体のテクスチヤー処理
状態を損なうことなくポリイミドのオーバーコー
トができることが分る。
Example 2 A heat-resistant organic polymer film of polyimide was formed in the same manner as in Example 1, using an aluminum substrate mirror-polished and textured to an average roughness of 0.08 μm as the non-magnetic substrate 10. .
When the unevenness of the texture was measured by changing the thickness of the deposited polyimide film, the results were as shown by curve B in FIG. 3. As can be seen from this result, even when a 0.05 μm polyimide film is formed, the texture of the substrate 10 itself is almost maintained on this surface. A magnetic disk was fabricated by successively sputtering Cr, CoNiCr, and C films on the textured disk substrate on which the 0.05 μm polyimide film was formed in the same manner as in Example 1. When this disk was subjected to a CSS test, which is a wear resistance test, the friction coefficient after 10,000 CSS tests was 0.32.
No occurrence of head crush was observed. For comparison, textures are not processed.
NiP plated Al substrate (commercially available conventional substrate)
A magnetic disk was made by continuously sputtering Cr, CoNiCr, and C films on top of the disk, and after 10,000 CSS tests, the friction coefficient was 1.8, and wear marks caused by the head were observed. The above results show that when a polyimide film is formed on a textured substrate by the method of the present invention, a polyimide overcoat can be formed without damaging the textured state of the substrate.

尚、耐熱性有機高分子膜として、ポリアミド、
ポリ尿素等であつても同様に本発明方法を適用で
きる。
In addition, as a heat-resistant organic polymer film, polyamide,
The method of the present invention can be similarly applied to polyurea and the like.

(発明の効果) 以上のように本発明に於いては、内壁を加熱し
た真空容器中で2種類以上のモノマーを蒸発さ
せ、その蒸発成分を該真空容器内の加熱された非
磁性基体の表面で重合させることにより耐熱性有
機高分子膜を有する磁気デイスク基板を製造する
ようにしたので、該高分子膜の堆積膜厚を変化さ
せることにより希望する表面平滑性を得ることが
出来、安価な粗研摩の基体を用いて平滑な磁気デ
イスク基板を作成し或いはテクスチヤー処理を施
した基体を用いてそのテクスチヤー状態を損なわ
ずに耐熱性有機高分子膜をオーバーコートした磁
気デイスク基板を作成することが可能になり、し
かも基体の内面に同時に該高分子膜を形成し得る
ので量産性も良く、形成された該高分子膜の膜厚
が均一になるので、磁気デイスクとしての再生出
力のモジユレーシヨンが発生せず、また大量に生
産しても膜厚の制御が容易であり均一に形成出来
るので記録再生特性を均一となし得る等の効果が
ある。
(Effects of the Invention) As described above, in the present invention, two or more types of monomers are evaporated in a vacuum container whose inner wall is heated, and the evaporated components are transferred to the surface of the heated nonmagnetic substrate in the vacuum container. Since a magnetic disk substrate having a heat-resistant organic polymer film is manufactured by polymerizing with It is possible to create a smooth magnetic disk substrate using a roughly polished substrate, or to create a magnetic disk substrate overcoated with a heat-resistant organic polymer film using a textured substrate without impairing the texture state. Moreover, since the polymer film can be simultaneously formed on the inner surface of the substrate, it is easy to mass-produce, and the thickness of the formed polymer film is uniform, allowing for modulation of the reproduction output as a magnetic disk. Moreover, even if the film is produced in large quantities, the film thickness can be easily controlled and formed uniformly, so that the recording and reproducing characteristics can be made uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に使用した装置の1
例の線図、第2図はポリイミドの堆積膜厚とその
表面粗さとの関係を示す線図、第3図はポリイミ
ドの堆積膜厚とテクスチヤー粗さとの関係を示す
線図である。 2……真空容器、3,9a,9b,12……ヒ
ータ、4a,4b……蒸発源、10……非磁性基
体。
Figure 1 shows one of the devices used to carry out the method of the present invention.
FIG. 2 is a diagram showing the relationship between the thickness of a deposited polyimide film and its surface roughness, and FIG. 3 is a diagram showing the relationship between the thickness of a deposited polyimide film and texture roughness. 2... Vacuum container, 3, 9a, 9b, 12... Heater, 4a, 4b... Evaporation source, 10... Nonmagnetic substrate.

Claims (1)

【特許請求の範囲】 1 アルミニウム、セラミツクス、ガラス等の非
磁性基体の表面に耐熱性有機高分子膜を有する磁
気デイスクの基板を、内壁を加熱した真空容器中
に2種以上のモノマーを蒸発させ、その蒸発成分
を該真空容器内の加熱した該非磁性基体の表面で
重合させる蒸着重合法により製造することを特徴
とする磁気デイスク基板の製造方法。 2 前記非磁性基体は、その表面に微細な線状溝
が一面に形成されたものであることを特徴とする
特許請求の範囲第1項に記載の磁気デイスク基板
の製造方法。
[Claims] 1. A magnetic disk substrate having a heat-resistant organic polymer film on the surface of a non-magnetic substrate such as aluminum, ceramics, glass, etc. is placed in a vacuum container whose inner wall is heated, and two or more types of monomers are evaporated therein. A method for producing a magnetic disk substrate, characterized in that the evaporated component is produced by a vapor deposition polymerization method in which the evaporated component is polymerized on the heated surface of the non-magnetic substrate in the vacuum container. 2. The method of manufacturing a magnetic disk substrate according to claim 1, wherein the nonmagnetic substrate has fine linear grooves formed all over its surface.
JP25469387A 1987-10-12 1987-10-12 Production of magnetic disk substrate Granted JPH0198120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25469387A JPH0198120A (en) 1987-10-12 1987-10-12 Production of magnetic disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25469387A JPH0198120A (en) 1987-10-12 1987-10-12 Production of magnetic disk substrate

Publications (2)

Publication Number Publication Date
JPH0198120A JPH0198120A (en) 1989-04-17
JPH047013B2 true JPH047013B2 (en) 1992-02-07

Family

ID=17268549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25469387A Granted JPH0198120A (en) 1987-10-12 1987-10-12 Production of magnetic disk substrate

Country Status (1)

Country Link
JP (1) JPH0198120A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310915B2 (en) * 2012-08-27 2013-10-09 東京エレクトロン株式会社 Film forming apparatus and cleaning method thereof

Also Published As

Publication number Publication date
JPH0198120A (en) 1989-04-17

Similar Documents

Publication Publication Date Title
JPH03104017A (en) Magtetic recording medium having smooth surface
JPH047013B2 (en)
JPH01220217A (en) Magnetic recording medium and manufacture thereof
JPH0554173B2 (en)
JPS6379234A (en) Production of magnetic recording medium
JPS5888828A (en) Magnetic recording medium and its manufacture
JPS6122433A (en) Production of magnetic recording medium
JPS61196430A (en) Production of magnetic recording medium
JPS61187127A (en) Manufacture of magnetic recording medium
JPS60121522A (en) Magnetic recording medium and its production
JPS5868229A (en) Magnetic recording medium
JPS60150237A (en) Production of magnetic recording medium
JPH01169719A (en) Magnetic disk and its manufacture
JPH02101155A (en) Method and device for formation of film to substrate
JPS60133542A (en) Production of magnetic recording medium
JPS6124023A (en) Manufacture of magnetic recording medium
JPH04132015A (en) Perpendicular magnetic recording tape consisting of cocr and production thereof
JPH03194725A (en) Magnetic recording medium
JPS60205818A (en) Magnetic recording medium
JPS6126938A (en) Production of vertically magnetized recording medium
JPH0338650B2 (en)
JPS62143229A (en) Production of magnetic recording medium
JPH0256726A (en) Magnetic recording medium
JPH02149917A (en) Magnetic recording medium
JPS59175030A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20080207