JPS60209259A - Catalyst for oxidation and its preparation - Google Patents

Catalyst for oxidation and its preparation

Info

Publication number
JPS60209259A
JPS60209259A JP59065085A JP6508584A JPS60209259A JP S60209259 A JPS60209259 A JP S60209259A JP 59065085 A JP59065085 A JP 59065085A JP 6508584 A JP6508584 A JP 6508584A JP S60209259 A JPS60209259 A JP S60209259A
Authority
JP
Japan
Prior art keywords
catalyst
acid
quinolines
quinoline
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59065085A
Other languages
Japanese (ja)
Other versions
JPH0456665B2 (en
Inventor
Hideaki Tsuneki
英昭 常木
Rikuo Uejima
植嶋 陸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP59065085A priority Critical patent/JPS60209259A/en
Publication of JPS60209259A publication Critical patent/JPS60209259A/en
Publication of JPH0456665B2 publication Critical patent/JPH0456665B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled catalyst having excellent selectivity coefficient to methacrylic acid, yield, and activity and the strength of the catalyst by using molybdovanadolinic acid having a cubic crystal structure, and prepared in the presence of quinolines and/or derivatives of quinolines. CONSTITUTION:Molybdovanadolinic acid prepared in the presence of quinolines and/or the derivatives of quinolines, and having a cubic crystal structure with about 11.85Angstrom lattice constant is used as a catalyst. The catalyst is used for the gaseous phase catalytic oxidation of aliphatic aldehydes or fatty acids having 4C such as methacrolein, isobutylaldehyde, and butyric acid, and is also used as a hetropolyacid compd. catalyst for manufacturing methacrylic acid. The selectivity coefficient to methacrylic acid, yield, and activity are excellent, and the strength of the catalyst is improved.

Description

【発明の詳細な説明】 本発明は酸化用触媒およびその調整法に関する。詳しく
述べると本発明はメタクロレイン、インブチルアルデヒ
ドおよびイソ酪酸などの炭素数4の脂肪族アルデヒドあ
るいは脂肪酸をそれぞれ接触気相酸化し、メタクリル酸
を製造するためのへテロポリ酸化合物触媒およびその調
製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxidation catalyst and a method for preparing the same. Specifically, the present invention provides a heteropolyacid compound catalyst for producing methacrylic acid by catalytic gas phase oxidation of C4 aliphatic aldehydes or fatty acids such as methacrolein, imbutyraldehyde, and isobutyric acid, and a method for preparing the same. Regarding.

ヘテ四ポリ酸は強い酸性を示し、また酸化剤となシ他の
物質を容易に酸化し、それ自体還元されるが適当な酸素
源の存在下で容易に再酸化されることから気相酸化用触
媒としての能力が高く評価され、近年とくにヘテロポリ
酸化合物の中でもモリプドバナドリン酸において研究開
発が活発になされている。
Hetetetrapolyacids are strongly acidic and can easily oxidize other substances such as oxidizing agents, and although they themselves are reduced, they are easily reoxidized in the presence of an appropriate oxygen source, so they can be oxidized in the gas phase. It has been highly evaluated for its ability as a commercial catalyst, and in recent years research and development has been particularly active on molypdovanadophosphoric acid among heteropolyacid compounds.

具体的に述べると、メタクロレイン、イソブチルアルデ
ヒドおよびイン酪酸のいずれかを原料に用い気相酸化せ
しめてメタクリル酸を製造する一般的な工程において触
媒としてヘテロポリ酸化合物の一種であるモリブドバナ
ドリン酸の使用が数多く提案されている。モリブドバナ
ドリン酸は気相酸化において強い酸化活性を有すること
を特徴とはしているが、反面その強い酸化力の故に、目
的生成物が更に酸化される逐次反応がおこりやすく目的
生成物を選択性よくかつ収率よくえることが困難である
という欠点を有している。そしてまたモリブドバナドリ
ン酸は実用触媒の製造という点から見れば触媒の成型性
、および機械的強度が非常に悪く、強度を増す種々の製
法をとった場合、触媒の物性の変化によシ収率が低下す
るのが一般的であ)、工業的使用に十分耐えうる強度を
持ちかつ収率も十分満足できる触媒をえるというととが
困難であった。
Specifically, molybdovanadophosphoric acid, a type of heteropolyacid compound, is used as a catalyst in the general process of producing methacrylic acid by gas-phase oxidation using either methacrolein, isobutyraldehyde, or inbutyric acid as a raw material. Many uses have been proposed. Molybdovanadophosphoric acid is characterized by having strong oxidizing activity in gas phase oxidation, but on the other hand, because of its strong oxidizing power, sequential reactions that further oxidize the target product tend to occur. It has the disadvantage that it is difficult to obtain with good selectivity and yield. Furthermore, from the point of view of producing practical catalysts, molybdovanadophosphoric acid has very poor catalyst formability and mechanical strength, and when various manufacturing methods are used to increase the strength, changes in the physical properties of the catalyst result in poor catalyst formability and mechanical strength. However, it has been difficult to obtain a catalyst that is strong enough to withstand industrial use and has a sufficiently satisfactory yield.

モリプドバナドリン酸あるいはりンーモリブデンを生成
分としてこれに他の元素を加えた組成物を触媒として使
用し、メタクロレイン、イソブチルアルデヒドおよびイ
ソ酪酸のなかからえらばれた一種を原料とし気相酸化せ
しめメタクリル酸を製造する例としては、特開昭48−
158’17号、特開昭49−126616号、特開昭
52−105113号、特開昭53−82715号、特
開昭55−400324号、特開昭56−15238号
、特公昭50−23013号各公報などに報告されてい
る。しかしながらこれらは目的物であるメタクリル酸の
収率は低く工業的使用に際して満足できるものではない
A composition consisting of molypdovanadophosphoric acid or phosphorus-molybdenum as a product and other elements added thereto is used as a catalyst, and one selected from methacrolein, isobutyraldehyde, and isobutyric acid is used as a raw material in a gas phase. As an example of producing oxidized methacrylic acid, there is
158'17, JP 49-126616, JP 52-105113, JP 53-82715, JP 55-400324, JP 56-15238, JP 50-23013 It is reported in various publications. However, these methods have a low yield of methacrylic acid, which is the target product, and are not satisfactory for industrial use.

また、特開昭57−12830号公報にモリブドバナド
リン酸を5員環および/または6員環の含窒素へテロ環
化合物の存在下に触媒組成物を調製する方法が開示され
ているが、これらの方法による触媒を用いた場合メタク
リル酸の収率はかなり高いものの、反応時における原料
ガスの空間速度が低く、そのためメタクリル酸空時収率
が低く工業用触媒性能としては不満の残るところでおる
Furthermore, JP-A No. 57-12830 discloses a method for preparing a catalyst composition from molybdovanadophosphoric acid in the presence of a nitrogen-containing heterocyclic compound having a 5-membered ring and/or a 6-membered ring. Although the yield of methacrylic acid is quite high when catalysts made by these methods are used, the space velocity of the raw material gas during the reaction is low, so the space-time yield of methacrylic acid is low and the performance of the catalyst for industrial use remains unsatisfactory. is.

本発明者らは、モリブドバナドリン酸の構造、メタクリ
ル酸生成のための活性、選択性および触媒強度について
鋭意研究を重ねた結果、キノリン類および/またはキノ
リン類誘導体の存在下に調製された、立方晶系の結晶構
造をもつりンーモリブデンーバナジウムおよび酸素から
なるモリプドバナドリン酸を触媒とし、たとえばメタク
ロレインの接触気相酸化をおこなったところメタクリル
酸への選択率、収率および活性とも非常にすぐれたもの
となり、しかも触媒強度が非常に改善されることを見い
出し、ここに気相酸化に有利な触媒およびその調製法を
完成するに至った。
The present inventors have conducted intensive research on the structure of molybdovanadratic acid, its activity for producing methacrylic acid, its selectivity, and its catalytic strength. For example, when catalytic gas phase oxidation of methacrolein was carried out using molybdovanadophosphoric acid, which has a cubic crystal structure and consists of phosphorus-molybdenum-vanadium and oxygen, the selectivity to methacrylic acid, yield, and They found that the activity was very good and the strength of the catalyst was greatly improved, and they have now completed a catalyst that is advantageous for gas phase oxidation and a method for preparing the same.

す表わち、本発明は以下の如く特定されるものである。Specifically, the present invention is specified as follows.

(1)格子定数が約1t、ssiの立方晶系の結晶構造
を有してなることを特徴とする遊離のモリプドバナドリ
ン酸よシなる酸化触媒。
(1) An oxidation catalyst comprising free molypdovanadophosphoric acid, characterized by having a lattice constant of about 1t and a cubic crystal structure of ssi.

(2)キノリン類および/またはキノリン類誘導体の存
在下に調製されてなることを特徴とする格子定数が約1
1.85Xの立方晶系の結晶構造を有してなる遊離のモ
リブドバナドリン酸よシなる酸化触媒の調製法。
(2) It is prepared in the presence of quinolines and/or quinoline derivatives, and has a lattice constant of about 1.
A method for preparing an oxidation catalyst comprising free molybdovanadophosphoric acid having a 1.85X cubic crystal structure.

以下さらに詳しく本発明を説明する。本発明において使
用されるキノリン類およびその誘導体は、モリブドパナ
ドリン酸と水不溶性の塩を形成し、しかも容易に脱離可
能な化合物があげられる。とくに好ましいキノリン類化
合物としてはキノリン、イソキノリンあるいはメチルキ
ノリンであり、それらの誘導体化合物としてとくにこれ
ら化合物を硝酸塩、硫酸塩、塩酸塩といった水溶性の無
機塩類として使用することが好ましい。
The present invention will be explained in more detail below. The quinolines and derivatives thereof used in the present invention include compounds that form water-insoluble salts with molybdopanadophosphoric acid and can be easily eliminated. Particularly preferred quinoline compounds are quinoline, isoquinoline, or methylquinoline, and as derivative compounds thereof, it is particularly preferred to use these compounds in the form of water-soluble inorganic salts such as nitrates, sulfates, and hydrochlorides.

上記以外の含窒素化合物、たとえばメチルアミン、エチ
ルアミンなどの如き脂肪族アミンは触媒調製時へテロポ
リ酸による分解反応が起ったシして、目的とする塩はえ
られず、またピリジン、ピペラジン、ピロリンなどの含
窒素へテロ環化合物を用いた場合には、同様の不溶性の
モリプドバナドリン酸塩を生成するものの、えられる触
媒の細孔容積および比表面積が不十分なため、空間速度
の高い場合には十分な活性をえることが困難であった。
Nitrogen-containing compounds other than those mentioned above, such as aliphatic amines such as methylamine and ethylamine, undergo a decomposition reaction with heteropolyacid during catalyst preparation, so the desired salt cannot be obtained, and pyridine, piperazine, When a nitrogen-containing heterocyclic compound such as pyrroline is used, similar insoluble molypdovanadophosphate is produced, but the resulting catalyst has insufficient pore volume and specific surface area, resulting in a space velocity It was difficult to obtain sufficient activity when the concentration was high.

本発明触媒の調製に際し、原料物質としては、種々のも
のが使用できる。
In preparing the catalyst of the present invention, various raw materials can be used.

モリブデン化合物としては、たとえば三酸化モリブデン
、モリブデン酸、モリブデン酸ナトリウム、パラモリブ
デン酸アンモニウム、モリブドリン酸など。
Examples of molybdenum compounds include molybdenum trioxide, molybdic acid, sodium molybdate, ammonium paramolybdate, and molybdophosphoric acid.

バナジウム化合物としては、たとえば五酸化バナジウム
、メタバナジン酸アンモニウム、メタバナジン酸ナトリ
ウム、シュウ酸バナジル、硫酸バナジルなど。
Examples of vanadium compounds include vanadium pentoxide, ammonium metavanadate, sodium metavanadate, vanadyl oxalate, vanadyl sulfate, and the like.

リン化合物としては、たとえばオルトリン酸、リン酸水
素二ナトリウム、リン酸−アンモニウム、リン酸ニアン
モニウムなどがそれぞれ例示される。
Examples of the phosphorus compound include orthophosphoric acid, disodium hydrogen phosphate, ammonium phosphate, and niummonium phosphate.

本発明におけるモリプドバナドリン酸の調製におけるキ
ノリン類の作用をたとえばキノリンを用いた場合につい
て述べると次の通シである。
The action of quinolines in the preparation of molypdovanadric acid in the present invention, for example, when quinoline is used, is as follows.

公知の方法で調製した原子比でP:Mo:V=1 : 
11 : 1で表わされる組成のモリプドバナドリン酸
はきわめて水溶性の化合物でその結晶構造は、含有する
結晶水により大きく変化する。
Atomic ratio P:Mo:V=1 prepared by a known method:
Moripdovanadric acid having a composition of 11:1 is an extremely water-soluble compound, and its crystal structure changes greatly depending on the crystal water it contains.

すなわち高含水量(モリプドバナドリン酸1分子に対し
水29〜30分子)のときは、格子定数約2 a、 s
 Xのダイヤモンド型の構造をとシ、また中台水量(モ
リプドバナドリン酸1分子に対し水13〜14分子)の
ときは三斜晶系の構造をとり、X線回折(対陰極Cu 
−Kα)による測定では、回折線は2θが7.9 ”、
8,96.9.2−126.8”および27.1 ”等
に数多く見られることが知られている。
That is, when the water content is high (29 to 30 molecules of water per molecule of molypdovanadophosphoric acid), the lattice constant is approximately 2 a, s.
When the diamond-shaped structure of
-Kα), the diffraction line has a 2θ of 7.9”,
8,96.9.2-126.8" and 27.1".

モリプドバナドリン酸を水に溶解すると、赤褐色の溶液
となるがこれにキノリンの硝酸塩水溶液を添加していく
と橙黄色の沈澱が生成し、上澄液は無色透明になる。こ
の沈澱の赤外線吸収スペクトルからキノリニウムイオン
の存在が確認され、またキノリンに帰属される吸収はな
いことからモリプドバナドリン酸キノリニウム塩を生成
する反応は量論的であシ、余分なキノリンの吸着等はな
いと考えられる。この沈澱は1価の塩基との塩であるに
もかかわらずX線回折の測定によると、この段階での構
造はアルカリ金属塩、アンモニウム塩、ピリジニウム塩
のごとき立方晶系構造をとらず、きわめて非晶質であシ
、この結晶状態の違いがえられた触媒の高活性に寄与し
ていると考えられる。
When molypdovanadric acid is dissolved in water, it becomes a reddish-brown solution, but when an aqueous solution of quinoline nitrate is added to this solution, an orange-yellow precipitate is formed, and the supernatant becomes colorless and transparent. The presence of quinolinium ions was confirmed from the infrared absorption spectrum of this precipitate, and since there was no absorption attributed to quinoline, the reaction to produce quinolinium salt of molypdovanadophosphate was stoichiometric, and the excess It is thought that there is no adsorption of quinoline. Although this precipitate is a salt with a monovalent base, X-ray diffraction measurements show that the structure at this stage does not have a cubic structure like that of alkali metal salts, ammonium salts, or pyridinium salts, and is extremely Although the catalyst is amorphous, it is thought that this difference in crystalline state contributes to the high activity of the obtained catalyst.

えられたこの沈澱をさらに窒素気流中300〜600℃
の高温で処理すると濃紺の還元色に変化し、これを空気
中再び200〜400’Cの範囲で処理すると黄緑色の
物質がえられる。この物質の赤外線吸収スペクトルの測
定結果では、キノリンおよびキノリニウムイオンに帰属
される吸収はなく、モリプドバナドリン酸の特性吸収の
みが認められた。
The resulting precipitate was further heated at 300 to 600°C in a nitrogen stream.
When treated at a high temperature of , the color changes to a dark blue reduced color, and when this is treated again in air at a temperature in the range of 200 to 400'C, a yellow-green substance is obtained. In the measurement results of the infrared absorption spectrum of this substance, there was no absorption attributed to quinoline or quinolinium ions, and only the characteristic absorption of molypdovanadric acid was observed.

X線回折の測定結果では、格子定数約11.85Xの立
方晶系の結晶構造をもつことが認められ、出発物質であ
る遊離のモリプドバナドリン酸あるいはキノリンとの反
応で生成したモリプドバナドリン酸キノリニウム塩など
の結晶構造とは異なシ、モリブドバナドリン酸のアルカ
リ金属塩と類似の結晶構造であった。
The results of X-ray diffraction measurements show that it has a cubic crystal structure with a lattice constant of approximately 11.85X, indicating that it has a cubic crystal structure with a lattice constant of approximately 11.85X. The crystal structure was different from that of quinolinium salts of dovanadophosphate, but was similar to that of alkali metal salts of molybdovanadophosphate.

またX線回折線図の線幅が大きく、この物質はきわめて
微細な結晶からなることが認められた。
Furthermore, the line width in the X-ray diffraction diagram was large, indicating that this substance was composed of extremely fine crystals.

そしてまた、見られた物質は水溶性であり、水に溶解し
たのち、該水溶液を蒸発乾燥後、X線回折の測定をおこ
なったところ2θが約8.9”約26.8”のときに回
折線が現われ、その結晶構造は遊離のモリプドバナドリ
ン酸の三斜晶系の構造に近いものであった。このことか
ら、キノリンはモリプドバナドリン酸の結晶構造をそれ
のアルカリ金属塩などに見られる立方晶系の構造に変え
ると共に結晶を微細にする作用を有することが分かった
。またキノリン以外のキノリン類化合物やその誘導体を
用いた場合にもいずれも同様の作用が認められた。
Furthermore, the observed substance was water-soluble, and after dissolving it in water, the aqueous solution was evaporated to dryness, and X-ray diffraction was measured. Diffraction lines appeared and the crystal structure was close to the triclinic structure of free molypdovanadophosphate. From this, it was found that quinoline has the effect of changing the crystal structure of molypdovanadric acid to the cubic structure seen in its alkali metal salts and making the crystals finer. Similar effects were also observed when quinoline compounds other than quinoline and their derivatives were used.

次に本発明による触媒調製法をたとえば、キノリンを用
いて調製した場合を例として述べる。
Next, the catalyst preparation method according to the present invention will be described using, for example, a case where the catalyst is prepared using quinoline.

公知の方法で見られたモリプドバナドリン酸を水に溶解
し、そこへキノリンの無機塩(たとえば硫酸キノリンな
ど)水溶液を加え、水に不溶性の沈澱をえる。もしくは
モリプデ/、バナジウムおよびリンそれぞれの水溶性化
合物を水に溶解しキノリンの無機塩水溶液を加え、溶液
を酸性に調製して水に不溶性の沈澱をえる。これらの沈
澱はX線回折および赤外線吸収スペクトルの測定結果か
らモリブドバナドリン酸のキノリニウム塩と認められ、
またこの沈澱は公知の方法で見られるモリプドバナドリ
ン酸のアルカリ金属塩かアンモニウム塩が沢過困難であ
るのにくらべ粒子が大きいため容易に濾過でき触媒調製
上きわめて大きな有利性を有する。かくしてえられた不
溶性物質を出発原料とし、成型をおこない触媒先駆体を
える。つぎにこの先駆体に含まれる揮発成分を除去する
ため高温で乾燥する。温度については揮発成分の種類お
よび物性により異なるがioo〜300℃の範囲である
。また乾燥に際し雰囲気中の酸素濃度は揮発性分の分解
抑制からも5チ(容量濃度)以下にすることが好ましい
。つぎにこの乾燥品をさらに不活性ガス(たとえば窒素
、ヘリウム、アルゴン、炭酸ガスなど)あるいは還元性
ガス(たとえば−酸化炭素、メタン、エタン、プロパン
など)の雰囲気中、300〜600℃の範囲400℃の
範囲で活性化をおこない触媒とする。
Moripdovanadric acid obtained by a known method is dissolved in water, and an aqueous solution of an inorganic salt of quinoline (for example, quinoline sulfate) is added thereto to obtain a water-insoluble precipitate. Alternatively, water-soluble compounds of molypide/vanadium and phosphorus are dissolved in water, an aqueous solution of an inorganic salt of quinoline is added, and the solution is made acidic to obtain a water-insoluble precipitate. These precipitates were recognized as quinolinium salts of molybdovanadophosphoric acid based on the measurement results of X-ray diffraction and infrared absorption spectra.
Furthermore, since the particles are large, this precipitate can be easily filtered, which is very advantageous in the preparation of the catalyst, as compared to the alkali metal salt or ammonium salt of molypdovanadophosphoric acid, which is difficult to filter out in the known methods. The insoluble substance thus obtained is used as a starting material and molded to obtain a catalyst precursor. Next, this precursor is dried at high temperature to remove volatile components contained in it. The temperature varies depending on the type and physical properties of volatile components, but is in the range of 100°C to 300°C. Further, during drying, it is preferable that the oxygen concentration in the atmosphere be 5 liters (volume concentration) or less in order to suppress the decomposition of volatile components. Next, this dried product is further heated in an atmosphere of an inert gas (e.g., nitrogen, helium, argon, carbon dioxide, etc.) or a reducing gas (e.g., carbon oxide, methane, ethane, propane, etc.) at a temperature of 400°C in the range of 300 to 600°C. It is activated as a catalyst in the temperature range of ℃.

あるいはまたは、上記乾燥品を、空気を不活性ガスで希
釈し、酸素濃度を5%(容量濃度)以下とした雰囲気下
で室温より350〜400℃の範囲まで昇温しキノリン
の脱離と活性化を同時におこない触媒としてもよい。
Alternatively, the above dried product is heated to a temperature in the range of 350 to 400°C from room temperature in an atmosphere in which air is diluted with an inert gas and the oxygen concentration is 5% (volume concentration) or less, and quinoline is desorbed and activated. may be used as a catalyst by simultaneously carrying out the reaction.

これら本発明の触媒を気相酸化によるメタクリル酸の製
造に用いた場合、その選択性および触媒の活性ともキノ
リン処理をほどこさない触媒にくらべ非常にすぐれてお
り、しかもこの触媒は性能が良いばかりでなく、キノリ
ン類および/またはキノリン類誘導体を用いることによ
シ比表面積が10〜14 m” / tとキノリン類を
用いない場合にくらべて2〜6倍と大きくなシ、細孔容
積も0.35〜0.45 rnl/lとキノリン類を用
いない場合にくらべて1.5〜3倍に増加し、その結果
より多孔質となって出来上り触媒の嵩比重が小さくなる
と共に、触媒の成型性、機械的強度さらには調製時の再
現性も非常に良くなることが確認された。
When these catalysts of the present invention are used in the production of methacrylic acid by gas phase oxidation, their selectivity and catalytic activity are extremely superior compared to catalysts that are not treated with quinoline, and this catalyst has excellent performance. However, by using quinolines and/or quinolines derivatives, the specific surface area is 10 to 14 m''/t, which is 2 to 6 times larger than that when quinolines are not used, and the pore volume is also increased. 0.35 to 0.45 rnl/l, which is 1.5 to 3 times higher than when quinolines are not used, and as a result, the finished catalyst becomes more porous and the bulk specific gravity of the catalyst becomes smaller. It was confirmed that moldability, mechanical strength, and even reproducibility during preparation were significantly improved.

本発明に従って触媒の調製時にキノリンまたはその誘導
体を用いない場合は調製時の沈澱濾過および成型が困難
であシ、たとえば成型助剤を添加し成型した場合でも触
媒強度、粉化度とも若干は改良されるものの、反面性能
低下がいちじるしく実用触媒として使用できないもので
ある。またキノリン類またはその誘導体の代シにピリジ
ンなどを使用した場合、触媒性能および強度とも改善さ
れるものの、空時収率がいまだ低く経済性からすれば不
満の残るところである。
If quinoline or its derivatives are not used in the preparation of the catalyst according to the present invention, precipitation filtration and molding during preparation are difficult; for example, even when molding is performed with the addition of a molding aid, the catalyst strength and degree of pulverization are slightly improved. However, on the other hand, the performance deteriorates so much that it cannot be used as a practical catalyst. Furthermore, when pyridine or the like is used in place of quinolines or their derivatives, although the catalyst performance and strength are improved, the space-time yield is still low and is unsatisfactory from an economic standpoint.

この事実からも本発明におけるキノリン類およびその誘
導体の使用効果がいかに大きいかがわかるものである。
This fact also shows how effective the use of quinolines and their derivatives are in the present invention.

本発明によるこれらの効果は、キノリン類およびその誘
導体によるモリプドバナドリン酸の結晶構造さらに触媒
の表面および細孔構造に変化をおよばず効果と考えられ
る。その結果活性が高くなシ、それ放生時収率が飛躍的
に大きくなるという利点が導びかれた。
These effects of the present invention are considered to be due to the fact that the quinolines and their derivatives do not cause changes in the crystal structure of molypdovanadric acid, as well as in the surface and pore structure of the catalyst. As a result, the advantages of high activity and dramatically increased yield upon release were derived.

これらの触媒は性能が良いばかりでなく、それ自体成型
性もよく、また機械的強度も強く、したがって無担体で
も使用できるが酸化反応に使用した場合の触媒層での除
熱効果を考えれば担体の使用も可能である。担体として
は一般的には不活性な担体たとえばシリカ、アルミナ、
セライト、シリコンカーバイドなどが好ましいが、これ
らに限定されるものではない。
These catalysts not only have good performance, but also have good moldability and strong mechanical strength, so they can be used without a support, but if you consider the heat removal effect in the catalyst layer when used in an oxidation reaction, a support is required. It is also possible to use The carrier is generally an inert carrier such as silica, alumina,
Celite, silicon carbide, etc. are preferred, but are not limited to these.

本発明の調製に際して、キノリン類およびその誘導体の
添加時期は先に述べた時期のほか、触媒原料物質すべて
を水溶液中で混合する段階でもよい。キノリン類および
その誘導体の使用量はモリプドバナドリン酸の10倍モ
ルまでの量で用いることができるが、好ましくは0.5
〜6倍モルの範囲である。またキノリン類およびその誘
導体と他の含窒素へテロ環化合物たとえばピリジンなど
と併用することも可能である。
In the preparation of the present invention, the quinolines and their derivatives may be added at the time mentioned above, or at the stage where all catalyst raw materials are mixed in an aqueous solution. The amount of quinolines and their derivatives used can be up to 10 times the mole of molypdovanadric acid, but preferably 0.5
It is in the range of ~6 times the mole. It is also possible to use quinolines and their derivatives in combination with other nitrogen-containing heterocyclic compounds such as pyridine.

本発明の触媒は、メタクロレインおよび/またはイソブ
チルアルデヒドおよび/またはイソ酪酸などを含有する
反応ガスの気相酸化反応に使用される。酸素源としては
工業的には空気が有利である。希釈剤としては、たとえ
ば窒素、炭酸ガス、ヘリウム、アルゴンの如き不活性ガ
ス、−酸化炭素、水蒸気などを用いることができるが水
蒸気の使用は収率向上に好ましい。
The catalyst of the present invention is used in a gas phase oxidation reaction of a reaction gas containing methacrolein and/or isobutyraldehyde and/or isobutyric acid. Air is industrially advantageous as an oxygen source. As the diluent, for example, nitrogen, carbon dioxide, helium, an inert gas such as argon, -carbon oxide, water vapor, etc. can be used, but the use of water vapor is preferable in order to improve the yield.

酸化反応において対象とされる原料濃度は0.5〜10
容量チの範囲が好ましい。また原料に対する酸素の容量
比は0.5〜10の範囲で、好ましくは1〜5の範囲で
ある。原料ガスの空間速度は50(1−10,000h
r ” (8TP)の範囲で、好ましくは1,000〜
5,000hr ’(STP)の範囲が適当である。ま
た反応温度は用いる原料の種類にもよるが220〜35
0℃の範囲である。
The raw material concentration targeted in the oxidation reaction is 0.5 to 10
A range of capacitance is preferred. Further, the volume ratio of oxygen to the raw material is in the range of 0.5 to 10, preferably in the range of 1 to 5. The space velocity of the raw material gas is 50 (1-10,000 h
r'' (8TP), preferably from 1,000 to
A range of 5,000 hr' (STP) is appropriate. In addition, the reaction temperature depends on the type of raw materials used, but it is 220 to 35
It is in the range of 0°C.

本発明による触媒を用いるに際し、反応装置は一般に固
定床の形式のものを用い乙が、流動床、移動床のいずれ
の形式のものをも用いることができる。
When using the catalyst according to the present invention, the reactor is generally of a fixed bed type, but either a fluidized bed or a moving bed type can be used.

以下本品よる触媒の調製′法およびそれを用いての反応
例を具体的に説明するが、実施例および比較例中の転化
率、選択率および単流収率はつぎの定義に従うものとす
る。
A method for preparing a catalyst using this product and a reaction example using the same will be explained below in detail, and the conversion rate, selectivity, and single flow yield in Examples and Comparative Examples shall comply with the following definitions.

実施例1 三酸化モリブデン144.Of、五酸化バナジウム8.
27 ?およびリン酸(85重量%)10.5tを水1
1に加え5時間加熱還流した。見られた暗赤色の溶液を
濾過し、微量の不溶性固体をf別した後濃縮乾固し、赤
褐色の結晶をえた。
Example 1 Molybdenum trioxide 144. Of, vanadium pentoxide8.
27? and 10.5 t of phosphoric acid (85% by weight) to 1 t of water.
1 and heated under reflux for 5 hours. The resulting dark red solution was filtered to remove a trace amount of insoluble solids, and then concentrated to dryness to give reddish brown crystals.

X線回折、螢光X線分析および赤外吸収スペクトルによ
る測定結果から、この結晶は酸素を除く原子比でP :
 Mo : V = 1.09 : 12 : 1.0
9なる組成の三斜晶系の構造のモリプドバナドリン酸で
あることを確認した。えられた結晶を乾燥しそのうちの
81.71Fを温水10omA’に溶解し、これに、キ
ノリン21.5 fを濃度2規定の硝酸水溶液83.3
 mlに溶解した溶液を添加すると、不溶性の沈澱が生
じた。この沈澱を濾過し、水洗後、直径5111%高さ
51HILの円柱状に成型し、焼成することによって、
酸素を除く原子比でP:Mo :V= 1 : 11 
: 1なる組成の触媒酸化物をえた。この触媒は成型性
がよく、また圧縮破壊強度が3.0 kg /ペレット
以上であり、十分な機械的強度をもったものであった。
From the results of X-ray diffraction, fluorescent X-ray analysis, and infrared absorption spectroscopy, this crystal has an atomic ratio of P: excluding oxygen.
Mo: V = 1.09: 12: 1.0
It was confirmed that it was molypdovanadric acid with a triclinic structure of composition 9. The obtained crystals were dried, 81.71 F of them were dissolved in 10 omaA' of warm water, and 21.5 F of quinoline was added to 83.3 F of an aqueous solution of nitric acid with a concentration of 2N.
An insoluble precipitate formed upon addition of the solution in ml. This precipitate is filtered, washed with water, formed into a cylindrical shape with a diameter of 5111% and a height of 51HIL, and fired.
Atomic ratio excluding oxygen: P:Mo:V=1:11
: A catalyst oxide with a composition of 1 was obtained. This catalyst had good moldability, a compressive fracture strength of 3.0 kg/pellet or more, and sufficient mechanical strength.

またこの触媒のBET比表面積、細孔容積および充填密
度は、それぞれ12.8 rrt/y、 o、39m1
/lおよび0、78 t/crlであった。この触媒の
赤外吸収スペクトルではキノリンおよびキノリニウムイ
オンの特性吸収はまったく認められず、モリプドバナド
リン酸に特有の吸収のみが見られた。この触媒は水溶性
でオシ、遊離のモリプドバナドリン酸に特有の性質を示
した。しかし、X線回折の測定では主な回折線(Cu−
にα)は、2θが26.0°、10.5″″、18.3
°、21.2@、35.5’等のときに現われ、格子定
数が約11.85Aの立方晶系の構造であることがわか
り、遊離のモリプドバナドリン酸で通常みられる三斜晶
系の構造とはまったく異なっておシ、モリプドバナドリ
ン酸アルカリ金属塩のそれに近いものであった。この触
媒50m1を内径251mのステンレス製0字管に充填
し310℃の溶融塩浴中に浸漬し、該管内に容量比でメ
タクロレイン:酸素:窒素:水蒸気=1: 3 : 3
6 : 10の原料混合ガスを空間速度2000hr’
で通じ表1に示す結果をえた。
In addition, the BET specific surface area, pore volume, and packing density of this catalyst are 12.8 rrt/y, o, and 39 m1, respectively.
/l and 0.78 t/crl. In the infrared absorption spectrum of this catalyst, no characteristic absorption of quinoline or quinolinium ions was observed, and only absorption characteristic of molypdovanadophosphoric acid was observed. This catalyst was water-soluble and exhibited properties typical of free molypdovanadric acid. However, in X-ray diffraction measurements, the main diffraction line (Cu-
α) is 2θ is 26.0°, 10.5″″, 18.3
°, 21.2@, 35.5', etc., and it was found to have a cubic structure with a lattice constant of about 11.85A, and the triclinic structure normally seen in free molypdovanadophosphate. The crystal structure was completely different from that of the alkali metal salt of molypdovanadophosphate. 50 ml of this catalyst was packed into a stainless steel O-tube with an inner diameter of 251 m and immersed in a molten salt bath at 310°C, and the volume ratio of methacrolein: oxygen: nitrogen: water vapor = 1: 3: 3 was placed inside the tube.
6:10 raw material mixed gas at a space velocity of 2000 hr'
The results shown in Table 1 were obtained.

比較例1 実施例1において、キノリンを添加する前に中350℃
で3時間焼成して触媒とした。なおこの触媒は成型性も
悪く圧縮破壊強度もlkl?/ベレット以下と弱く、そ
して比表面積、細孔容積とも実施例1の触媒にくらべか
なυ小さく、しかも嵩比重は極端に大きいものでおった
。X線回折の測定では2θが8.9@および26.8’
のとき主な回折線が現われ、その結晶構造は三斜晶系の
モリブドバナドリン酸に近いものであった。
Comparative Example 1 In Example 1, the temperature was increased to 350°C before adding quinoline.
It was calcined for 3 hours and used as a catalyst. Furthermore, this catalyst has poor moldability and compressive fracture strength of lkl? The catalyst was weak, less than /Bellet, had a specific surface area and pore volume smaller than the catalyst of Example 1, and had an extremely large bulk specific gravity. In X-ray diffraction measurement, 2θ is 8.9@ and 26.8'
At this time, a major diffraction line appeared, and its crystal structure was close to that of triclinic molybdovanadophosphate.

この触媒を用い実施例1と同じ条件で反応をおこなって
表2に示す結果をえた。
Using this catalyst, a reaction was carried out under the same conditions as in Example 1, and the results shown in Table 2 were obtained.

比較例2 実施例1において使用するキノリンをピリジンにかえ、
またその量を13.61Fとした以外は実施例1と同様
の調製法で触媒をえた。この触媒のX線回折の測定結果
からその結晶構造は実施例1と同様の立方晶系ではあっ
たが、比表面積および細孔容積は実施例1の触媒にくら
べかなり小さいものであった。この触媒を用い実施例1
と同じ条件で反応をおこない表2の結果をえた。
Comparative Example 2 The quinoline used in Example 1 was replaced with pyridine,
A catalyst was also obtained in the same manner as in Example 1 except that the amount was changed to 13.61F. The results of X-ray diffraction measurements of this catalyst showed that the crystal structure was a cubic system similar to that of Example 1, but the specific surface area and pore volume were considerably smaller than those of the catalyst of Example 1. Example 1 using this catalyst
The reaction was carried out under the same conditions as above and the results shown in Table 2 were obtained.

実施例2 実施例1において用いたキノリンをインキノリンにかえ
た以外は、同様に調製し触媒をえた。
Example 2 A catalyst was prepared in the same manner as in Example 1, except that the quinoline used in Example 1 was changed to inquinoline.

この触媒はX線回折の測定結果から実施例1の触媒と同
様、立方晶系の構造をもつことがわかった。この触媒を
用い反応温度を315℃とした以外は実施例1と同じ条
件で反応をおこない表1の結果をえた。
It was found from the results of X-ray diffraction that this catalyst had a cubic crystal structure, similar to the catalyst of Example 1. The reaction was carried out under the same conditions as in Example 1 except that this catalyst was used and the reaction temperature was 315°C, and the results shown in Table 1 were obtained.

実施例3 実施例1において用いるキノリンをメチルキノリンにか
えまたその使用量を23.9 fとした以外は同様に調
製し触媒をえた。この触媒を用い反応温度t−300℃
とした以外は実施例1と同じ条件で反応をおこない表1
の結果をえた。
Example 3 A catalyst was prepared in the same manner as in Example 1 except that methylquinoline was used instead of quinoline and the amount used was 23.9 f. Using this catalyst, the reaction temperature was t-300°C.
The reaction was carried out under the same conditions as in Example 1 except that Table 1
I got the result.

実施例4 加熱した水2001RIにパラモリブデン酸アンモニウ
ム88.3 fとメタバナジン酸アンそニウム5.3t
を溶解し撹拌した。この溶液にリン酸(85重量% )
 5.24 tを加えつづいてキノリン21.5fを1
0規定の硝酸水溶液90iLlに溶解した溶液を加える
と橙黄色の沈澱が生じた。
Example 4 Ammonium paramolybdate 88.3 f and amsonium metavanadate 5.3 t in heated water 2001RI
was dissolved and stirred. Add phosphoric acid (85% by weight) to this solution.
Continue adding 5.24t and then add 21.5f of quinoline to 1
When a solution dissolved in 90 lL of 0N nitric acid aqueous solution was added, an orange-yellow precipitate was formed.

これをr過し見られた粘土状物質を直径51RI、高さ
5關の円柱形に成型し200℃で15時間乾燥後窒素気
流中430℃で3時間焼成し、つづいて空気気流中35
0℃で3時間焼成し酸素を除く原子比でP :Mo :
V=1 : 11 : 1なる組成の触媒をえた。この
触媒は実施例1と同様、遊離のモリブドバナドリン酸で
あシなから、立方晶系の結晶構造をもつことがX線回折
および赤外吸収スペクトルの測定結果から明らかとなっ
た。なおこの触媒は成型性もよく圧縮破壊強度も3.0
 kgI/ペレット以上あった。この触媒を用い反応温
度を320℃とした以外は実施例1と同じ条件で反応を
おこない表1の結果をえた。
The resulting clay-like material was molded into a cylinder with a diameter of 51 RI and a height of 5 mm, dried at 200°C for 15 hours, fired at 430°C in a nitrogen stream for 3 hours, and then heated in an air stream for 35 hours.
After firing at 0°C for 3 hours, the atomic ratio excluding oxygen was P:Mo:
A catalyst having a composition of V=1:11:1 was obtained. As in Example 1, this catalyst was made of free molybdovanadophosphoric acid, and therefore it was revealed from the measurement results of X-ray diffraction and infrared absorption spectrum that it had a cubic crystal structure. Furthermore, this catalyst has good moldability and compressive fracture strength of 3.0.
It was more than kgI/pellet. The reaction was carried out under the same conditions as in Example 1 except that this catalyst was used and the reaction temperature was 320°C, and the results shown in Table 1 were obtained.

比較例3 実施例4において、キノリンを加えない以外は、同様の
調製法で触媒をえた。この触媒を用い、実施例4と同じ
条件で反応をおこない表2の結果をえた。
Comparative Example 3 A catalyst was obtained in the same manner as in Example 4, except that quinoline was not added. Using this catalyst, a reaction was carried out under the same conditions as in Example 4, and the results shown in Table 2 were obtained.

比較例4 実施例4において、キノリンを使用する代シにピリジン
13.69を用いる以外は、同様の調製法で触媒をえた
。この触媒を用い実施例4と同じ条件で反応をおこない
表2の結果をえた。
Comparative Example 4 A catalyst was obtained in the same manner as in Example 4, except that pyridine 13.69 was used instead of quinoline. Using this catalyst, a reaction was carried out under the same conditions as in Example 4, and the results shown in Table 2 were obtained.

実施例5 実施例1の触媒を用い原料のメタクルレインをインブチ
ルアルデヒドにかえた以外は実施例1と同じ条件で反応
をおこない表3に示す結果をえた。
Example 5 A reaction was carried out under the same conditions as in Example 1 except that the catalyst of Example 1 was used and the raw material methaklerein was replaced with inbutyraldehyde, and the results shown in Table 3 were obtained.

比較例5 比較例1の触媒を用い実施例5の反応と同じ条件でイン
ブチルアルデヒドの酸化をおこなったところ表3に示す
結果となった。
Comparative Example 5 When inbutyraldehyde was oxidized using the catalyst of Comparative Example 1 under the same conditions as the reaction of Example 5, the results shown in Table 3 were obtained.

実施例6 実施例1の触媒5oynlを内径25顛のステンレス管
0字管に充填し310℃の溶融塩浴中に浸漬し、該管内
に容量比でイソ酪酸:酸素:窒素:水蒸気=1:1:2
2:1の原料ガスを空間速度3000 h1″で通じイ
ソ酪酸の酸化をおこない表3に示す結果をえた。
Example 6 5 oynl of the catalyst of Example 1 was filled into a stainless steel O-shaped tube with an inner diameter of 25 mm, immersed in a 310°C molten salt bath, and the volume ratio of isobutyric acid: oxygen: nitrogen: water vapor = 1: 1:2
Isobutyric acid was oxidized by passing a 2:1 raw material gas at a space velocity of 3000 h1'', and the results shown in Table 3 were obtained.

比較例6 比較例1の触媒を用い、実施例6の反応と同じ条件でイ
ソ酪酸の酸化をおこなったところ表3に示す結果となっ
た。
Comparative Example 6 When the catalyst of Comparative Example 1 was used to oxidize isobutyric acid under the same conditions as in Example 6, the results shown in Table 3 were obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)格子定数が約1tssXの立方晶系の結晶構造を
有してなることを特徴とする遊離のモリブドバナドリン
酸よシなる酸化触媒。
(1) An oxidation catalyst consisting of free molybdovanadophosphoric acid, which is characterized by having a cubic crystal structure with a lattice constant of about 1 tssX.
(2) キノリン類および/またはキノリン類誘導体の
存在下に調製されてなることを特徴とする格子定数が約
11.85Xの立方晶系の結晶構造を有してなる遊離の
モリブドバナドリン酸よりなる酸化触媒の調製法。
(2) Free molybdovanadophosphoric acid having a cubic crystal structure with a lattice constant of about 11.85X, which is prepared in the presence of quinolines and/or quinoline derivatives. A method for preparing an oxidation catalyst consisting of:
JP59065085A 1984-04-03 1984-04-03 Catalyst for oxidation and its preparation Granted JPS60209259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59065085A JPS60209259A (en) 1984-04-03 1984-04-03 Catalyst for oxidation and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59065085A JPS60209259A (en) 1984-04-03 1984-04-03 Catalyst for oxidation and its preparation

Publications (2)

Publication Number Publication Date
JPS60209259A true JPS60209259A (en) 1985-10-21
JPH0456665B2 JPH0456665B2 (en) 1992-09-09

Family

ID=13276745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59065085A Granted JPS60209259A (en) 1984-04-03 1984-04-03 Catalyst for oxidation and its preparation

Country Status (1)

Country Link
JP (1) JPS60209259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050770A (en) * 2007-08-24 2009-03-12 Mitsubishi Rayon Co Ltd Method for manufacturing catalyst for producing methacrylic acid and catalyst and method for producing methacrylic acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712830A (en) * 1980-06-26 1982-01-22 Nippon Shokubai Kagaku Kogyo Co Ltd Oxidation catalyst and its preparation
JPS57171443A (en) * 1981-04-16 1982-10-22 Nippon Shokubai Kagaku Kogyo Co Ltd Oxidizing catalyst and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712830A (en) * 1980-06-26 1982-01-22 Nippon Shokubai Kagaku Kogyo Co Ltd Oxidation catalyst and its preparation
JPS57171443A (en) * 1981-04-16 1982-10-22 Nippon Shokubai Kagaku Kogyo Co Ltd Oxidizing catalyst and preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050770A (en) * 2007-08-24 2009-03-12 Mitsubishi Rayon Co Ltd Method for manufacturing catalyst for producing methacrylic acid and catalyst and method for producing methacrylic acid

Also Published As

Publication number Publication date
JPH0456665B2 (en) 1992-09-09

Similar Documents

Publication Publication Date Title
US4419270A (en) Oxidation catalyst
KR101579702B1 (en) Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof
JPS6025189B2 (en) catalyst composition
US4024074A (en) Catalyst for the oxidation of methanol to formaldehyde and process for preparing the same
JPS5826329B2 (en) Seizouhou
JPS62120351A (en) Manufacture of aromatic nitrile
JPS6123020B2 (en)
JPS582232B2 (en) Method for producing acrylonitrile
JPS63145249A (en) Production of methacrylic acid and/or methacrolein
JP2004008834A (en) Method for producing catalyst for use in manufacturing methacrylic acid
JPS6033539B2 (en) Oxidation catalyst and its preparation method
EP0543019B1 (en) Process for preparing catalyst for producing methacrylic acid
JPS60209259A (en) Catalyst for oxidation and its preparation
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
US4218382A (en) Production of maleic anhydride from four-carbon hydrocarbons using catalysts prepared by water reflux techniques
JPH0213652B2 (en)
JPS584012B2 (en) Anisaldehyde
JPS6035179B2 (en) Oxidation catalyst and its preparation method
JPS60209258A (en) Oxidation catalyst and its manufacture
JPH0463139A (en) Catalyst for production of methacrylic acid
JP4017864B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JPS6035178B2 (en) Oxidation catalyst and its preparation method
JPS591244B2 (en) Method for producing methacrolein, methacrylic acid and 1,3↓-butadiene
JPS6115855B2 (en)
JPH0686932A (en) Production of catalyst for producing methacrylic acid