JPS60208841A - Manufacture of dielectric separating substrate - Google Patents

Manufacture of dielectric separating substrate

Info

Publication number
JPS60208841A
JPS60208841A JP6318184A JP6318184A JPS60208841A JP S60208841 A JPS60208841 A JP S60208841A JP 6318184 A JP6318184 A JP 6318184A JP 6318184 A JP6318184 A JP 6318184A JP S60208841 A JPS60208841 A JP S60208841A
Authority
JP
Japan
Prior art keywords
substrate
chamfering
round shape
polishing
separating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6318184A
Other languages
Japanese (ja)
Other versions
JPH0312774B2 (en
Inventor
Susumu Matsuoka
進 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP6318184A priority Critical patent/JPS60208841A/en
Publication of JPS60208841A publication Critical patent/JPS60208841A/en
Publication of JPH0312774B2 publication Critical patent/JPH0312774B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Abstract

PURPOSE:To prevent the breakdown at the outer surface part of the raw material of a dielectric separating substrate during polishing processes, by performing chamfering in the first process of the polishing processes, predicting a part, which is to become the dielectric separating substrate at the end of the polishing processes, and performing machining, by which the outer surface part of the divided substrate becomes a round shape. CONSTITUTION:Chamfering of the raw material of a dielectric separating substrate 11 is performed in polishing processes. Thereafter, a supporting layer 15 on one surface of the raw material of the separating substrate 11 and a semiconductor single-crystal layer 12 on the other surface thereof are polished to the specified thicknesses, respectively. A part, which is to become the separating substrate at the end of the polishing processes (a part enclosed by broken lines 16 and 17 in the Figure), is predicted beforehand, and the chamfering is performed so that the outer surface of the separating substrate becomes a round shape. The polished and removed parts on both sides of the predicted part are formed in slant surfaces, which are continued to the round shape.

Description

【発明の詳細な説明】 (技術分野) この発明は誘電体分離基板の製造方法に係シ、物に防を
体分離基板素材の研鮪方法、さらに詳しくは誘電体分離
基板素材の面取り方法に関するO(従来技術) 従来の誘電体分離基板の製造方法、特に誘電体分離基板
素材の研磨工程を第1図(a)ないしくe)を順次参照
して説明する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a dielectric isolation substrate, and more particularly to a method for chamfering a dielectric isolation substrate material. O (Prior Art) A conventional method for manufacturing a dielectric isolation substrate, particularly a polishing process of a dielectric isolation substrate material, will be explained with reference to FIGS. 1(a) to 1(e).

第1図(a)において、1は誘電体分離基板素材であり
、この分離基板素材1は、シリコン単結晶基板20表面
(図では下面)にV溝3を形成した後、そのV溝3の内
壁を含む基板2の表面に絶縁膜4を被着し、さらにこの
絶縁膜4上に(図で杜絶縁 ′膜4下に)支持体層とし
てのシリコン多結晶層5を形成して構成される。・ この誘電体分離基板素材1のシリコン多結晶層5の表面
側(図では下面側)を、その表面が後工程での平坦な基
準面となるべく研磨する(第1図(b))。ここでの研
磨量は、シリコン多結晶層5が支持体層として依然とし
て充分な厚みを確保する範囲内とする。
In FIG. 1(a), 1 is a dielectric isolation substrate material, and this isolation substrate material 1 is made by forming a V-groove 3 on the surface (lower surface in the figure) of a silicon single-crystal substrate 20. It is constructed by depositing an insulating film 4 on the surface of the substrate 2 including the inner wall, and further forming a polycrystalline silicon layer 5 as a support layer on this insulating film 4 (below the insulating film 4 in the figure). Ru. - The surface side (lower surface side in the figure) of the silicon polycrystalline layer 5 of this dielectric isolation substrate material 1 is polished so that the surface will serve as a flat reference surface in the subsequent process (FIG. 1(b)). The amount of polishing here is within a range that still ensures a sufficient thickness of the silicon polycrystalline layer 5 as a support layer.

次に、シリコン多結晶層5の平坦な表面を基準面として
シリコン単結晶基板20誕面側(図では上面側)を、V
@3の底部上に最終仕上げ時のポリッシング取り代置が
残る厚さまで研磨除去する(第1図(C))。
Next, using the flat surface of the silicon polycrystalline layer 5 as a reference plane, the silicon single crystal substrate 20 birth surface side (top surface side in the figure) is
Polish and remove the polishing material to a thickness that leaves a polishing residue on the bottom of @3 (Fig. 1 (C)).

しかる後、誘電体分離基板素材1の外周部を第1図(d
)に示すようにラウンド形状に面取シ加工する。この面
取シ加工は、例えばセミコンダクタワールド1983年
3月号P53〜P58に記載され、ているように、なら
い砥石による研削で行うことができる。
After that, the outer periphery of the dielectric isolation substrate material 1 is shown in FIG.
), process the chamfer into a round shape. This chamfering process can be performed by grinding with a profiling whetstone, as described in, for example, Semiconductor World March 1983 issue, pages 53 to 58.

しかる後、シリコン単結晶基板2の製画側を、最終仕上
げポリッシングとして第1図(e)に示すように、■溝
3の底部が露出するまで研磨除去する。
Thereafter, the drawing side of the silicon single crystal substrate 2 is polished and removed until the bottom of the groove 3 is exposed, as shown in FIG. 1(e).

これによシ、誘電体分離基板が完成する。With this, the dielectric isolation substrate is completed.

ところで、第1図(a)に示す誘電体分離基板素材1を
製造するためにシリコン多結晶層5を形成する際、シリ
コン単結晶基板2の外周側面にも厚み成分と同程度のシ
リコン多結晶が戟長するので、誘電体分離基板素材1の
外周部のエツジ形状は凹凸となシ、あるいは鋭利な部分
がエツジ部にできる。そのため、最終仕上げポリッシン
グの厘前まで面取り加工を行わない上記@勅方法におい
ては、面取多工程までの研磨工程中に誘電体分離基板素
材1の外周部を欠いて不良としてしまうことが多かった
By the way, when forming the silicon polycrystalline layer 5 in order to manufacture the dielectric isolation substrate material 1 shown in FIG. Since the dielectric isolation substrate material 1 is elongated, the edge shape of the outer peripheral portion of the dielectric isolation substrate material 1 is uneven, or a sharp portion is formed at the edge portion. Therefore, in the above-mentioned method in which chamfering is not performed until the final polishing, the outer periphery of the dielectric isolation substrate material 1 is often chipped and defective during the polishing process up to the multiple chamfering steps. .

この欠点を解決するには、研磨工程の最初の工程として
面取勺加工を行うのが薙ましい。しかし、その場合、面
取シ加工時の形状が研磨完了時には大きく変わシ、面取
シの意味をなさなくなることがある。例えば第2図(a
)に示すように面取シ加工時にはラウンド形状を有して
いたものが、研磨完了時には、同図(b)に示すように
、特に大量の研磨除去量を必要とするシリコン単結晶基
板2側のエツジ部6において鋭利な形状ができ、デバイ
スプロセスでの欠けの原因となった。
To solve this drawback, it is best to perform chamfering as the first step of the polishing process. However, in that case, the shape during chamfering may change significantly upon completion of polishing, and the chamfering may become meaningless. For example, in Figure 2 (a
) As shown in Figure (b), the silicon single crystal substrate 2 side, which had a round shape during the chamfering process, but which requires a particularly large amount of polishing removal after polishing is completed, as shown in Figure (b). A sharp shape was formed at the edge portion 6, which caused chipping during the device process.

(発明の目的) この発明は上記の点に鑑みなされたもので、その目的は
、研磨工程中に誘電体分離基板素材の外周部を欠くこと
を防止でき、しかも研磨完了時に基板外周部に鋭利な部
分のないラウンド形状を正確に得ることのできる誘電体
分離基板の製造方法を提供することにある。
(Objective of the Invention) The present invention has been made in view of the above points, and its purpose is to prevent the outer periphery of the dielectric isolation substrate material from being chipped during the polishing process, and to prevent sharp edges from forming on the outer periphery of the substrate upon completion of polishing. An object of the present invention is to provide a method for manufacturing a dielectric isolation substrate that can accurately obtain a round shape without any rough parts.

(発明の概焚) この発明の要点は、研磨工程の最初の工程に面取シ加工
を行い、その際研磨工程完了時に誘電体分離基板となる
部分をあらかじめ予測して、その分離基板の外周部がラ
ウンド形状となるように、しかも前記予測部分の内側の
研磨除去部の外周部が前記ラウンド形状と連続するか1
面となるように面取シ加工を行うことにある。
(Summary of the Invention) The main point of this invention is to perform chamfering in the first step of the polishing process, and at that time, predict in advance the portion that will become the dielectric isolation substrate upon completion of the polishing process, and 1, so that the part has a round shape, and whether the outer peripheral part of the polishing removed part inside the predicted part is continuous with the round shape.
The purpose is to perform a chamfering process to create a flat surface.

(実施例) 以下この発明の一実施例を第3図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

第3図(a)において、11は誘電体分離基板素材であ
シ、この分離基板索材11は、(100)面を有するシ
リコン単結晶基板・12の表面(図では下面)にV溝1
3を脈さ10〜50μm程度に形成した後、そのV溝1
3の内壁を営む基板12の表面に熱シリコン酸化膜から
なる絶縁膜14を1μm厚程度に被勉し、さらにこの絶
縁膜14上に(図では絶縁膜14下に)支持体層として
のシリコン多結晶層15を350μm〜420μm厚程
度に形成して構成される。この分離基板素材11におい
て、研磨工程完了時に誘電体分離基板として残る部分を
予測すれば、図中破線16.17の面で囲まれた厚み成
分t (350〜400μm)をもった領域となる。こ
こで、破線16は、正確に制御されたV溝13の底部の
位置で決定され、破817はシリコン多結晶層15の基
準面出し後の位置を示すもので、その位置は、シリコン
多結晶層15が支持体層として光分な厚みを有する範囲
で狂態に決定できる。
In FIG. 3(a), reference numeral 11 is a dielectric isolation substrate material.
3 with a pulse length of about 10 to 50 μm, then the V groove 1
An insulating film 14 made of a thermal silicon oxide film is coated to a thickness of about 1 μm on the surface of the substrate 12 forming the inner wall of the substrate 3, and a silicon support layer is further formed on this insulating film 14 (below the insulating film 14 in the figure). The polycrystalline layer 15 is formed to have a thickness of approximately 350 μm to 420 μm. If we predict the portion of this separation substrate material 11 that will remain as a dielectric separation substrate upon completion of the polishing process, it will be a region having a thickness component t (350 to 400 μm) surrounded by the broken line 16.17 in the figure. Here, the broken line 16 is determined at the position of the accurately controlled bottom of the V-groove 13, and the broken line 817 indicates the position of the silicon polycrystalline layer 15 after standard leveling; The thickness can be arbitrarily determined as long as the layer 15 has a thickness equivalent to that of the support layer.

次に、上記分離基板索材11に対して面J4I2シ加工
を行う。その際、面取り加工は、第3図(b)に示すよ
うに、破線16および17で囲まれた分離基板となる部
分の外周部がラウンド形状となるように、しかもその部
分の上下両側の研磨除去部の外周部が、前記ラウンド形
状に連続する斜面となるように行う。すなわち、シリコ
ン単糺晶基板12の裏面(図では上面)18およびシリ
コン多結晶層15の表面(図では下面)19上に図中A
およびBで示した面取り幅(50〜500μm)が実在
し、さらに破線16および17で示された面上にもA′
iよびB′の面取シ幅(10〜30μm)が実在するこ
とを条件としだ面取シ形状とする。この実施例では、厚
み成分を領域の中心線20上付近に中心をもつ半径%の
円と、面18および面19の表面よ#)0くθ〈90°
の角にで前記円の接点へむすぶ斜面をもったラウンド形
状とした。
Next, surface J4I2 is processed on the separated board cable material 11. At that time, the chamfering process is performed so that the outer periphery of the part that will become the separated substrate surrounded by broken lines 16 and 17 has a round shape, as shown in FIG. This is done so that the outer periphery of the removed portion becomes a slope that continues into the round shape. That is, on the back surface (upper surface in the figure) 18 of the silicon monocrystalline substrate 12 and the surface (lower surface in the figure) 19 of the silicon polycrystalline layer 15,
The chamfer width (50 to 500 μm) shown by and B actually exists, and also on the surface shown by broken lines 16 and 17 A'
The chamfer shape is defined as the condition that the chamfer widths (10 to 30 μm) of i and B' exist. In this example, the thickness component is defined as a circle with a radius of % centered near the center line 20 of the region and the surfaces of surfaces 18 and 19.
It was made into a round shape with a slope connecting to the contact point of the circle at the corner.

次に、シリコン多結晶層15の表面1tll(図では下
面側)を第3図(C)に示すように仮線17の位置まで
研磨除去して、基準面19’の面出しを行う。
Next, the surface 1tll (lower surface side in the figure) of the silicon polycrystalline layer 15 is polished down to the position of the temporary line 17 as shown in FIG. 3(C), and the reference surface 19' is leveled.

その後、シリコン多結晶層15の面19′を基準として
、半導体単結晶層としてのシリコン単結晶基板12の殻
面側(図では上面側)を、V〜13の底部上に最長仕上
は時のポリッシング取シ装置が残る厚さまで研磨除去す
る(第3図(d))。
Thereafter, with the surface 19' of the silicon polycrystalline layer 15 as a reference, the shell side (upper surface side in the figure) of the silicon single crystal substrate 12 as a semiconductor single crystal layer is placed on the bottom of V~13 to achieve the longest finish. The polishing removal device is removed by polishing until the thickness remains (FIG. 3(d)).

しかる後、シリコン単結晶基板12の裏面側を、最終仕
上げポリツシ゛レグとして第3図(e)に示すように、
V#13の底部が露出するまで研磨除去する。これによ
シ、誘電体分離基板が光成する。
Thereafter, the back side of the silicon single crystal substrate 12 is polished as a final polishing leg, as shown in FIG. 3(e).
Polish and remove until the bottom of V#13 is exposed. As a result, a dielectric isolation substrate is optically formed.

なお、上記方法において、面I@り加工は、従来技術の
項で示した文献にBピ載されているようにならい砥石で
行うことができる。また、シリコン多結晶層15および
シリコン単結晶基板12の研磨は、砥石による研削また
はラッピングで行うことができる。
Incidentally, in the above method, the surface I@ processing can be performed using a profiling grindstone as described in the document B listed in the section of the prior art. Further, the silicon polycrystalline layer 15 and the silicon single crystal substrate 12 can be polished by grinding with a grindstone or by lapping.

(発明の効果) 以上の一実施例から明らかなように、この発明の方法に
よれば、研磨工程の最初に面取シ加工を施す。したがっ
て、研磨工程中に誘電体分離基板素材の外周部を欠くこ
とを防止できるもので、従来の方法では欠けの発生確率
が90チ程度あったが、これをこの発明によれば零に等
しくできた。
(Effects of the Invention) As is clear from the above embodiment, according to the method of the present invention, chamfering is performed at the beginning of the polishing process. Therefore, chipping of the outer periphery of the dielectric isolation substrate material during the polishing process can be prevented.In the conventional method, the probability of chipping occurring was about 90 inches, but with this invention, this can be reduced to zero. Ta.

また、この発明の方法によれば、研磨工程完了時に分離
基板となる部分をあらかじめ予測して、その分離基板の
外周部がラウンド形状となるように面取フ加工を施した
から、研磨先了時においても基板外周部に鋭利な部分の
ないラウンド形状を正確に得ることができる。したがっ
て、デバイスプロセスで欠けが発生することもなくなる
Furthermore, according to the method of the present invention, the part that will become the separated substrate upon completion of the polishing process is predicted in advance, and the chamfering process is performed so that the outer periphery of the separated substrate has a round shape. Even at times, it is possible to accurately obtain a round shape with no sharp parts on the outer periphery of the substrate. Therefore, chipping will not occur in the device process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の誘電体分離基板の製造方法な示す断面図
、第2図は第1図の方法による欠点を解決する方法によ
る問題点を説明するための断面図、第3図はこの発明の
誘電体分離基板の製造方法の一実施例を示す断面図であ
る。 11・・・諌電体分離奏板素材、12・・・シリコン単
結晶基板、13・・・V#、14・・・絶縁膜、15・
・・シリコン多結晶層。 第1図 第2図 第3図
Fig. 1 is a cross-sectional view showing a conventional method for manufacturing a dielectric isolation substrate, Fig. 2 is a cross-sectional view illustrating problems caused by a method for solving the drawbacks of the method shown in Fig. 1, and Fig. 3 is a cross-sectional view showing the method according to the present invention. FIG. 2 is a cross-sectional view showing an example of a method for manufacturing a dielectric isolation substrate. DESCRIPTION OF SYMBOLS 11... Electric isolation plate material, 12... Silicon single crystal substrate, 13... V#, 14... Insulating film, 15...
...Silicon polycrystalline layer. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 誘電体分離基板素材の面取ル加工を研磨工程で行った後
、前記分離基板素材の一方の面側の支持体層および他方
の面側の半導体単結晶層をそれぞれ所定の厚さまで研磨
するようにし、しかも前記面取り加工は、研磨工程完了
時に分離基板となる部分をあらかじめ予測して、その分
離基板の外周部がラウンド形状となるように、しかもそ
の予測部分の両側の研磨除去部の外周部が前記ラウンド
形状と連続する斜面となるように行うことを特徴とする
誘電体分離基板の製造方法。
After chamfering the dielectric separation substrate material in a polishing process, the support layer on one side of the separation substrate material and the semiconductor single crystal layer on the other side are each polished to a predetermined thickness. In addition, the chamfering process is performed by predicting in advance the part that will become the separated substrate upon completion of the polishing process, so that the outer periphery of the separated substrate will have a round shape, and the outer periphery of the polishing removed portion on both sides of the predicted part. A method for manufacturing a dielectric isolation substrate, characterized in that the step is performed so that the slope forms a continuous slope with the round shape.
JP6318184A 1984-04-02 1984-04-02 Manufacture of dielectric separating substrate Granted JPS60208841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6318184A JPS60208841A (en) 1984-04-02 1984-04-02 Manufacture of dielectric separating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6318184A JPS60208841A (en) 1984-04-02 1984-04-02 Manufacture of dielectric separating substrate

Publications (2)

Publication Number Publication Date
JPS60208841A true JPS60208841A (en) 1985-10-21
JPH0312774B2 JPH0312774B2 (en) 1991-02-21

Family

ID=13221814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6318184A Granted JPS60208841A (en) 1984-04-02 1984-04-02 Manufacture of dielectric separating substrate

Country Status (1)

Country Link
JP (1) JPS60208841A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4629320B2 (en) * 2003-08-20 2011-02-09 株式会社フジ医療器 Massage machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353962A (en) * 1976-10-27 1978-05-16 Oki Electric Ind Co Ltd Production of semicnductor wafers
JPS59188921A (en) * 1983-04-12 1984-10-26 Nec Corp Manufacture of dielectric isolation substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353962A (en) * 1976-10-27 1978-05-16 Oki Electric Ind Co Ltd Production of semicnductor wafers
JPS59188921A (en) * 1983-04-12 1984-10-26 Nec Corp Manufacture of dielectric isolation substrate

Also Published As

Publication number Publication date
JPH0312774B2 (en) 1991-02-21

Similar Documents

Publication Publication Date Title
US6110391A (en) Method of manufacturing a bonding substrate
JPH0636414B2 (en) Manufacturing method of semiconductor element forming substrate
US5851924A (en) Method for fabricating semiconductor wafers
JPS6141133B2 (en)
US6113721A (en) Method of bonding a semiconductor wafer
KR101645634B1 (en) Bonded wafer production method
JP2000031099A (en) Fabrication of semiconductor wafer
US4567646A (en) Method for fabricating a dielectric isolated integrated circuit device
EP0860862B1 (en) Method of manufacturing a bonding substrate
US5804495A (en) Method of making SOI structure
JPS60208841A (en) Manufacture of dielectric separating substrate
JPS61120424A (en) Method of polishing dielectric isolated substrate
JPH05226305A (en) Manufacture of laminated wafer
JP3625376B2 (en) Wafer grinding method and apparatus
JPS61152358A (en) Grinding method for semiconductor wafer
JP2001338899A (en) Method for manufacturing semiconductor wafer and semiconductor wafer
JPH06314676A (en) Semiconductor wafer
JPS59188921A (en) Manufacture of dielectric isolation substrate
WO1997027621A9 (en) Selective-etch edge trimming process for manufacturing semiconductor-on-insulator wafers
JPS6058579B2 (en) Method of manufacturing semiconductor wafers
JPH09298172A (en) Semiconductor wafer and its manufacture
JP2000091282A (en) Manufacture of high flatness wafer
JP2000243731A (en) Manufacture of high-flatness wafer
JP2001071244A (en) Precise chamfering method for semiconductor wafer
WO1997027621A1 (en) Selective-etch edge trimming process for manufacturing semiconductor-on-insulator wafers

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term