JPS60208716A - Optical fiber - Google Patents

Optical fiber

Info

Publication number
JPS60208716A
JPS60208716A JP59063205A JP6320584A JPS60208716A JP S60208716 A JPS60208716 A JP S60208716A JP 59063205 A JP59063205 A JP 59063205A JP 6320584 A JP6320584 A JP 6320584A JP S60208716 A JPS60208716 A JP S60208716A
Authority
JP
Japan
Prior art keywords
optical fiber
layer
thermosetting resin
resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59063205A
Other languages
Japanese (ja)
Other versions
JPH0422242B2 (en
Inventor
Tanisada Nose
野世 渓定
Takayoshi Nakasone
隆義 中曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP59063205A priority Critical patent/JPS60208716A/en
Publication of JPS60208716A publication Critical patent/JPS60208716A/en
Publication of JPH0422242B2 publication Critical patent/JPH0422242B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To prevent clouding and embrittling of a buffer layer by using a nonstyrenic resin as a thermosetting resin when an optical fiber strand, on which a buffer layer of silicone is formed, is coated with a fiber-reinforced thermosetting resin. CONSTITUTION:A buffer layer 3 of silicone is formed on the outer circumference of an optical fiber constituted of a core part 1 and a clad part 2, and a layer 5 of fiber-reinforced thermosetting resin (hereinafter called FRP layer) is formed on the outer circumference of the obtained optical fiber strand 4. The FRP layer 5 is formed by immersing a reinforcing fiber into a mixture contg. a polymerizable monomer (e.g., glycidyl methacrylate) consisting of a nonstyrenic compd., a curing agent, and an unsaturated alkyd resin to impregnate the fiber, and coating the mixture on the outer circumference of the strand 4. A thermoplastic resin layer 6 is subsequently coated on the outer circumference of the FRP layer 5, and the FRP layer 5 is then cured by heating to obtain the desired optical fiber.

Description

【発明の詳細な説明】 本発明は、光ファイバに関し、特に光フアイバ素線のコ
ーティング層の変質を防止する光ファイバに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber, and more particularly to an optical fiber that prevents deterioration of a coating layer of an optical fiber.

近年電気通信の分野で、広帯域、無:み府、低損失、軽
量などの特質を備えた光ファイバク゛−プルを用いる通
信システムが実用化されている。
BACKGROUND OF THE INVENTION In recent years, in the field of telecommunications, communication systems using optical fibers, which have characteristics such as broadband, wireless communication, low loss, and light weight, have been put into practical use.

光フアイバケーブルは、光信号を伝送するう芙系ガラス
で形成したコア部と、この信号をコア部内に閉止するク
ラッド部から基本的に構成され、クラッド部の外周には
、機械的強度の補強、転送信頼性の向上などの目的でプ
ライマリ−コート。
Optical fiber cables basically consist of a core made of glass that transmits optical signals, and a cladding that seals the signals within the core.The outer periphery of the cladding is reinforced with mechanical strength. , primary coat for purposes such as improving transfer reliability.

バッファコートなどの各種のコーディングか施されて、
通常この状態のものを光フ1イパ素線と称している。。
Various coatings such as buffer coat are applied,
A wire in this state is usually called an optical fiber wire. .

上記光フアイバ素線は、さらに機械的強度を増強するた
め、合成樹脂などによって2次被覆され光フアイバ心線
とされる。
In order to further increase the mechanical strength, the optical fiber is secondarily coated with a synthetic resin or the like to form a cored optical fiber.

ところで、この2次被覆の一種どして、ガラス等の補強
11維を合成樹脂でもって一体的に結看した、いわゆる
繊維強化プラスチックス(以−ト[。
By the way, one type of this secondary coating is so-called fiber-reinforced plastics (hereinafter referred to as "fiber-reinforced plastics"), which are made by integrally binding 11 reinforcing fibers such as glass with synthetic resin.

R,Pと略す)を用いたものがある。(abbreviated as R, P).

この種の光ファイバは、高抗張力、耐側圧性。This kind of optical fiber has high tensile strength and lateral pressure resistance.

温度変化に対する寸法安定性などの種々の優れた特性を
備えている。
It has various excellent properties such as dimensional stability against temperature changes.

一方、上記コーテイング材としては、温度特性がすぐれ
、ガラス素材との相互作用および耐久性が良いなどの理
由からシリコーンが多用されており、また、F、R,P
の合成樹脂としては、経抗性、補強繊維との密着性から
スチレン系の重合性’Il1体を含有した熱硬化性樹脂
が多用されている。
On the other hand, silicone is often used as the coating material due to its excellent temperature characteristics, good interaction with glass materials, and good durability.
As the synthetic resin, a thermosetting resin containing a styrene-based polymerizable 'Il1 substance is often used because of its durability and adhesion to reinforcing fibers.

しかし、このような樹脂の組合せを採用した光ファイバ
においては、本発明者等の知得によれば、以下の問題が
あった。
However, according to the knowledge of the present inventors, optical fibers employing such a combination of resins have the following problems.

すなわら、光フアイバ素線のバッファコーティングとし
てシリコーンを使用している場合には、この層が白濁、
脆化して変質を来たすことがあって、その結果、柔軟性
を失い外部からの応力を緩和できなくなり、マイクロベ
ンディングに基づく伝送特性の低下を防止するという本
質的機能が低下することとなる。
In other words, when silicone is used as a buffer coating for optical fibers, this layer becomes cloudy and cloudy.
It may become brittle and change in quality, and as a result, it loses its flexibility and becomes unable to relieve stress from the outside, resulting in a decline in its essential function of preventing deterioration in transmission characteristics due to microbending.

また、プライマリ−コーディングは、光フ7/イバの強
度補強による信頼性向上と、漏光の再侵入防止による伝
送特性の向上を目的として施されているが、このコーテ
ィングにシリコーンを使用していると、上記バッファコ
ーティングに白濁、脆化を生起させた物質がプライマリ
−コーディング内あるいは境界面まで移行して、その機
能を低下させる惧れもある。
In addition, primary coating is applied to improve reliability by reinforcing the strength of the optical fiber 7/river and to improve transmission characteristics by preventing light leakage from re-entering. However, if silicone is used for this coating, There is also a risk that the substance that has caused cloudiness and embrittlement in the buffer coating may migrate into the primary coating or to the interface, reducing its functionality.

さらに、クラッド部を有機ポリマーで形成したポリ−マ
クラッド型の光ファイバも提供されているが、このクラ
ッド部としてシリコーンを用いたものでは、上述した白
濁、脆化の現象がこの部分に生じると、屈折率の変化、
透明性の喪失、コア部との密着性の毀損を来し、光ファ
イバの本質的機能を喪失あるいは低下させる。
Furthermore, a poly-macrad type optical fiber in which the cladding part is formed of an organic polymer is also available, but in the case of using silicone as the cladding part, if the above-mentioned clouding and embrittlement phenomena occur in this part. change in refractive index,
This results in loss of transparency and damage to adhesion to the core, resulting in loss or deterioration of the essential functions of the optical fiber.

本発明は、上述した問題点に鑑みてなされたものであっ
て、その目的は、シリコーンによるクラッドコーティン
グ、プライマリ−コート、バッファコートが白濁、脆化
などの変質を来たすことのない光フファイバの提供にあ
る。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide an optical fiber whose silicone clad coating, primary coat, and buffer coat do not undergo deterioration such as clouding or embrittlement. It is in.

本発明者らは、上述した問題点の発生原因を鋭意検討し
た結果、この原因が次の理由によることを知得し、本願
発明の完成に至った。
As a result of intensive investigation into the causes of the above-mentioned problems, the inventors of the present invention have found that the causes are as follows, and have completed the present invention.

すなわち、F、R,Pに使用される熱硬化11樹脂は、
例えば不飽和アルキド樹脂1重合性単■体および硬化反
応開始剤としての触媒とからなるが、この重合性単量体
成分として一般的に多用されているスチレンが、シリコ
ーン樹脂を変質させやすいことを突き止めた。
That is, the thermosetting 11 resin used for F, R, and P is
For example, unsaturated alkyd resin consists of a single polymerizable monomer and a catalyst as a curing reaction initiator, but it has been found that styrene, which is commonly used as a polymerizable monomer component, tends to alter the quality of silicone resin. I figured it out.

この結論は次の実験によって確認された。This conclusion was confirmed by the following experiment.

不飽和ポリエステル樹脂用重合性単量体としては、一般
的にスチレン、αメチルスチレンなどのスチレン系、ビ
ニルベンゼン、ジビニルベンゼンなどのビニル系、ジア
リルフタレート、トリアリルフタレートなどのアリル系
、メタクリル酸、メタクリル酸ブチル、メタクリル酸メ
チル、メタクリル酸シクロヘキシル、ジメタクリル酸エ
チレン。
Polymerizable monomers for unsaturated polyester resins generally include styrene-based monomers such as styrene and α-methylstyrene, vinyl-based monomers such as vinylbenzene and divinylbenzene, allyl-based monomers such as diallyl phthalate and triallyl phthalate, methacrylic acid, Butyl methacrylate, methyl methacrylate, cyclohexyl methacrylate, ethylene dimethacrylate.

メタクリル酸2−ヒドロギシエチル、メタクリル酸グリ
シジルなどのメタクリル酸系の4種に大別される。
It is roughly divided into four types of methacrylic acids, such as 2-hydroxyethyl methacrylate and glycidyl methacrylate.

これらの各県のうち、スチレン、ジビニルベンゼン、ジ
アリルフタレート、メタクリル酸グリシジルを選択し、
これらの重合性単量体と不飽和アルキドおよび触媒を混
合した4種の不飽和ポリエステル樹脂を作り、樹脂中に
シリコーンゴムシートを浸漬し、シリコーンゴムシート
の変質状態を調べた。
Among these prefectures, styrene, divinylbenzene, diallyl phthalate, and glycidyl methacrylate were selected,
Four types of unsaturated polyester resins were prepared by mixing these polymerizable monomers with an unsaturated alkyd and a catalyst, and a silicone rubber sheet was immersed in the resin to examine the state of deterioration of the silicone rubber sheet.

試験に用いたシリコーンゴムシー1〜は、1mm厚のA
社のバッファコーティング材として使用されている透明
なポリシロキサン系のものである。
The silicone rubber seals 1 to 1 used in the test were 1 mm thick A
It is a transparent polysiloxane-based material used as a buffer coating material by the company.

下記の表1は、上述した各種単量体を用いた樹脂のシリ
コーンゴムシートに対づる膨潤イ′[用を、樹脂に浸漬
する前後の重■増加率でめた結果である。
Table 1 below shows the swelling effect of resins using the various monomers mentioned above on silicone rubber sheets, determined by the rate of increase in weight before and after immersion in the resin.

表 1 結果からも明らかなように、重合性単量体としてスチレ
ンを用いたものでは、重量増加率が90%と極めて大き
く、膨潤が著しい。
As is clear from the results in Table 1, in the case of using styrene as the polymerizable monomer, the weight increase rate was extremely large at 90%, and the swelling was significant.

一方、ジアリル酸フタレート、メタクリル酸グリシジル
の場合は、重凶増加率が10%ど低かった。
On the other hand, in the case of diallylic acid phthalate and glycidyl methacrylate, the rate of increase in serious injuries was as low as 10%.

次に、上記4種の樹脂中に上記シリコーンゴムシートを
浸漬し、95℃で樹脂を硬化さゼた後これを剥離し、シ
リコーンゴムシートの全光線通過率およびくもり価をそ
れぞれ測定した。
Next, the silicone rubber sheet was immersed in the four types of resin, and after the resin was cured at 95° C., it was peeled off, and the total light transmittance and haze value of the silicone rubber sheet were measured.

全光線透過率は、積分球式光線透過率測定装置で測定し
、くもり価は同じ装置で拡散光線を測定して、次式によ
り計算した。
The total light transmittance was measured with an integrating sphere type light transmittance measuring device, and the haze value was calculated using the following formula by measuring the diffused light beam with the same device.

表2は上記測定結果を示してa3す、同人では基準とし
て未処理のシリコーンゴムシートの全光線透過率とくも
り価とを併記した。
Table 2 shows the above measurement results, and also shows the total light transmittance and haze value of the untreated silicone rubber sheet as a reference.

表2 上記結果より、全光線透過率の減少率およびくもり価の
増加率は、スチレンを重合性単量体とJ゛る場合、格段
に大きくなることが判明した。
Table 2 From the above results, it was found that the rate of decrease in total light transmittance and rate of increase in haze value were significantly greater when styrene was used as the polymerizable monomer.

また、目視判定でもスチレン使用のゴムシー1−試片は
、完全に白濁を呈していた。
Further, the styrene-used Rubber Sheet 1 sample was also visually judged to be completely cloudy.

一方他の試片では、全光線透過率の減少率、くもり価の
増加率は、実用上支障がない程度に小ざく、目視判定で
も白濁は認められなかった。
On the other hand, in other specimens, the rate of decrease in total light transmittance and the rate of increase in haze value were small enough to cause no practical problems, and no clouding was observed by visual inspection.

次に、上記白濁化したシリコーンゴムシー1〜試片を、
クロロフォルムに浸漬し、白濁化したものの抽出を試み
、その物質を赤外線吸光分析を行った。
Next, the cloudy silicone rubber seal 1~sample was
After immersing it in chloroform, we attempted to extract the cloudy substance and conducted infrared absorption analysis on the substance.

その結果、シリコーンゴムシートを白濁化させた物質は
、白色の微細粒状固形物であって、スチレンが界橋硬化
したものであることを突き止めた。
As a result, it was determined that the substance that caused the silicone rubber sheet to become cloudy was a white, finely granular solid substance, which was styrene cured by interlinkage.

以上の実験結果から、本願発明者らは、シリコーンのコ
ーティング層が形成されlこ光ノ1イバ累線を、熱硬化
性樹脂で被覆する際に、この樹脂の重合性単量体として
スチレン系の物質を使用りると、熱硬化性樹脂を硬化さ
せた後に、]−ナイング層が白濁化する等の性状変化が
生起されることを知得した。
Based on the above experimental results, the inventors of the present application have discovered that when a silicone coating layer is formed and the photonic line is coated with a thermosetting resin, styrene is used as the polymerizable monomer of the resin. It has been found that when the above substance is used, after the thermosetting resin is cured, property changes such as clouding of the ]-ning layer occur.

この知得に基づき、本発明者らはコーティング層の性状
変化を防止する合成樹脂、例えば、熱硬化性樹脂の2次
被覆を2重層とし、この内殻部または2次被覆の全部を
、例えばビニル系、アリル系、メタクリル酸系等の非ス
チレン系の重合性単量体を混入した熱硬化性樹脂を用い
ることが有効であるとの結論に達し、本願発明の完成に
至った。
Based on this knowledge, the present inventors made the secondary coating of a synthetic resin, such as a thermosetting resin, to prevent changes in the properties of the coating layer as a double layer, and the inner shell or the entire secondary coating, for example, It was concluded that it is effective to use a thermosetting resin mixed with a non-styrene polymerizable monomer such as vinyl, allyl, or methacrylic acid, and the present invention was completed.

以下に本発明の具体的実施例を説明する。Specific examples of the present invention will be described below.

(実施例1) 第1図に示す如く石英ガラスで同心状にコア部1とクラ
ッド部2を外径125Bで形成し、クラッド部2の外周
にシリコーンゴムでバッファ層3を形成し、その外径を
0.4mm”とした光フアイバ素線4を用い、素線の外
周に以下に示覆方法で、F、R,P層5を施した。
(Example 1) As shown in FIG. 1, a core part 1 and a cladding part 2 are formed concentrically from quartz glass with an outer diameter of 125B, a buffer layer 3 is formed from silicone rubber on the outer periphery of the cladding part 2, and a buffer layer 3 is formed from silicone rubber on the outer circumference of the cladding part 2. Using an optical fiber wire 4 having a diameter of 0.4 mm, F, R, and P layers 5 were applied to the outer periphery of the wire by the coating method shown below.

F、R,P層5は、補強繊維束としてガラスロービング
を使用し、不飽和アルキドと重合性単量体としてメタク
リル酸グリシジル、おJ:び硬化用触媒を混入した不飽
和ポリエステル樹脂中に、これを浸漬して含浸させ、上
記索線4の外周に縦添えし、成形ノズルにより賦形した
後、未硬化状態のF、R,P層を、クロスへラドダイよ
り押出した後、最外周に熱可塑性樹脂6(直鎖状低密度
ポリエチレン)により被覆を行って、これを冷却し、さ
らに140℃の蒸気加熱槽中で硬化さ一μだ後、外被の
ポリエチレンを整形して光フアイバ心線を製造した。
The F, R, and P layers 5 are made of unsaturated polyester resin mixed with unsaturated alkyd, glycidyl methacrylate as a polymerizable monomer, and a curing catalyst, using glass roving as a reinforcing fiber bundle. This is soaked and impregnated, attached longitudinally to the outer periphery of the cable wire 4, and shaped by a molding nozzle. After extruding the uncured F, R, and P layers into a cloth using a rad die, the outermost periphery is It is coated with thermoplastic resin 6 (linear low-density polyethylene), cooled, and cured for 1μ in a steam heating bath at 140°C.The polyethylene jacket is then shaped to form an optical fiber core. manufactured the wire.

光フアイバ心線の寸法は、最外径1.13111111
. [、R,P層5の外径1 、2mm、 ハラl?F
J3)外径0.4mmとした。
The dimensions of the optical fiber core are the outermost diameter of 1.13111111
.. [, R, P layer 5 outer diameter 1, 2 mm, hall l? F
J3) The outer diameter was 0.4 mm.

製造後に、光フアイバ心線の熱可塑性樹脂6゜F、R,
P層5を剥離して、バラノア層3の状態を観察したとこ
ろ、従来重合性単量体にスチレンを使用した場合に認め
られた白濁化、脆化などの変質は認められなかった。
After manufacturing, the thermoplastic resin of the optical fiber core is heated to 6°F, R,
When the P layer 5 was peeled off and the state of the Balanoa layer 3 was observed, no changes in quality such as clouding or embrittlement that were conventionally observed when styrene was used as the polymerizable monomer were observed.

(実施例2) 第2図に示すように実施例1と同じ光フッ2イバ素線4
を使用し、その外周に重合性単鎖体とじてメタクリル酸
グリシジル、硬化用触媒を混入した熱硬化性樹脂の内殻
部7をコーティングした後、重合性単量体としてスチレ
ンを用いた熱硬化性樹脂を含浸させたガラスロービング
を縦添えした後、上記実施例1と同じ方法で、光フアイ
バ心線を最外径1.8mm、F、R,P層5の外径1.
2mm。
(Example 2) As shown in FIG. 2, the same optical fiber wire 4 as in Example 1
After coating the inner shell part 7 of a thermosetting resin containing glycidyl methacrylate and a curing catalyst as a polymerizable monochain on the outer periphery, thermosetting using styrene as a polymerizable monomer is performed. After vertically attaching glass rovings impregnated with a synthetic resin, the optical fiber core wire was coated with the outermost diameter of 1.8 mm and the outer diameters of the F, R, and P layers 5 were 1.8 mm and 1.8 mm, respectively, in the same manner as in Example 1 above.
2mm.

内殻部7の外径0.4.5n+n+として製造した。The inner shell portion 7 was manufactured with an outer diameter of 0.4.5n+n+.

この光フアイバ心線についても同様に被覆を剥離して、
バッファ層3の性状を観察したが、白濁などの性状変化
は認められなかった。
The coating of this optical fiber core wire is also peeled off in the same way,
The properties of the buffer layer 3 were observed, but no changes in properties such as cloudiness were observed.

なお、上記実施例1.2で示した光フアイバ心線は、伝
送損失は許容値以下であって、J、[壊強度も大きく、
実用上支障のないものであった。
The optical fiber shown in Example 1.2 has transmission loss below the allowable value, J, [breaking strength is high,
There was no problem in practical use.

以上詳細に説明したように、本発明にJ:れば、熱硬化
性樹脂の2次被覆に接しているバッフ7コートの白濁、
脆化が効果的に防止されるため、シリコーンをバッファ
コートのみならずプライマリ−コートあるいはクラッド
部に用いた光ファイバにおいても、白濁、脆化のこれら
の部分への移行も防止される。
As explained in detail above, in the present invention, J: cloudiness of the buff 7 coat in contact with the secondary coating of the thermosetting resin;
Since embrittlement is effectively prevented, even in optical fibers in which silicone is used not only in the buffer coat but also in the primary coat or cladding portion, cloudiness and embrittlement are prevented from transferring to these portions.

従って、これらの層の本質的な(残脂、例えばバッファ
コートのマイクロベンディングにJ、る伝送特性の低下
防止の緩衝機能、あるいはクラッド部としての高透明性
、屈折率の安定性、:]コアとの密着性が確保され、信
頼性の高い光ファイバの提供が可能となる。
Therefore, the essential functions of these layers (residual resin, for example, microbending of the buffer coat, buffering function to prevent transmission characteristics from deteriorating, high transparency as a cladding part, stability of refractive index, etc.) are the core. This ensures close adhesion to the fiber, making it possible to provide a highly reliable optical fiber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の断面図、第2図は第2実
施例の断面図である。 1・・・・・・・・・コア部 2・・・・・・・・・ク
ラッド部3・・・・・・・・rバッファ層 4・・・・
・・・・・光フアイバ素線5・・・・・・・・・F、R
,’l)層 6・・・・・・・・・熱可t!i!f1樹
脂7・・・・・・・・・内殻部 特許出願人 宇部日東化成株j(会ネJ代 理 人 弁
理士 −色叶輔 第1図 第2図
FIG. 1 is a sectional view of a first embodiment of the present invention, and FIG. 2 is a sectional view of a second embodiment. 1... Core part 2... Clad part 3... r Buffer layer 4...
......Optical fiber wire 5...F, R
,'l) Layer 6......Thermopossible t! i! f1 Resin 7・・・・・・Inner shell patent applicant Ube Nitto Kasei Co., Ltd. J (Kai Ne J Agent Patent attorney - Irokanosuke Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)シリコーンのコーティング層が形成された光フア
イバ素線の外周を繊維強化熱硬化性樹脂で2次被覆した
光ファイバであって、該2次被覆の該コーティング層の
少くとも界面には重合性単量体が非スチレン系化合物か
らなる熱硬化性樹脂が当接していることを特徴とする光
ファイバ。
(1) An optical fiber in which the outer periphery of an optical fiber wire on which a silicone coating layer is formed is secondarily coated with a fiber-reinforced thermosetting resin, and at least the interface of the coating layer of the second coating is polymerized. 1. An optical fiber characterized in that a thermosetting resin made of a non-styrene compound is in contact with a thermosetting monomer.
(2)上記2次被覆の熱硬化性樹脂の重合性単量体が非
スチレン系であることを特徴とづる1ζ7Fl請求の範
囲第1項記載の光ファイバ。
(2) The optical fiber according to claim 1, wherein the polymerizable monomer of the thermosetting resin of the secondary coating is a non-styrene type.
(3)上記2次被覆の熱硬化性樹脂は、上記コーティン
グ層と接する、重合性単量体が非スチレン系化合物から
なる熱硬化性樹脂で形成された内殻部と、重合性単量体
がスチレン系化合物からなる熱硬化性樹脂で形成された
外殻部とからなることを特徴とする特許請求の範囲第1
項記載の光ファイバ。
(3) The thermosetting resin of the secondary coating includes an inner shell portion formed of a thermosetting resin in which the polymerizable monomer is a non-styrene compound, and which is in contact with the coating layer; Claim 1, characterized in that the outer shell is made of a thermosetting resin made of a styrene compound.
Optical fiber described in section.
(4)上記非スチレン系重合性用■体は、アクリル酸系
、アリル系のいずれかであることを特徴とする特許請求
の範囲第1項、第2項または第3項記載の光ファイバ。
(4) The optical fiber according to claim 1, 2, or 3, wherein the non-styrenic polymerizable material is either acrylic acid-based or allyl-based.
JP59063205A 1984-04-02 1984-04-02 Optical fiber Granted JPS60208716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59063205A JPS60208716A (en) 1984-04-02 1984-04-02 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59063205A JPS60208716A (en) 1984-04-02 1984-04-02 Optical fiber

Publications (2)

Publication Number Publication Date
JPS60208716A true JPS60208716A (en) 1985-10-21
JPH0422242B2 JPH0422242B2 (en) 1992-04-16

Family

ID=13222468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59063205A Granted JPS60208716A (en) 1984-04-02 1984-04-02 Optical fiber

Country Status (1)

Country Link
JP (1) JPS60208716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211642A (en) * 2018-06-05 2019-12-12 宇部エクシモ株式会社 Filament for optical fiber cable, fiber-reinforced optical fiber cable, and optical fiber sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060072890A1 (en) * 2002-08-22 2006-04-06 Shiraishi Keiko Optical fiber core wire, method of removing coating from optical fiver core wire and process for producing optical fiber part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164706U (en) * 1981-04-13 1982-10-18
JPS57186708A (en) * 1981-05-13 1982-11-17 Furukawa Electric Co Ltd:The Frp optical cord

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164706U (en) * 1981-04-13 1982-10-18
JPS57186708A (en) * 1981-05-13 1982-11-17 Furukawa Electric Co Ltd:The Frp optical cord

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211642A (en) * 2018-06-05 2019-12-12 宇部エクシモ株式会社 Filament for optical fiber cable, fiber-reinforced optical fiber cable, and optical fiber sensor

Also Published As

Publication number Publication date
JPH0422242B2 (en) 1992-04-16

Similar Documents

Publication Publication Date Title
CN103777291B (en) Optical fiber cable
EP0114345B1 (en) Radiation curable multifilament composite
CA2704241C (en) Process for manufacturing an optical fiber and an optical fiber so obtained
CA1269552A (en) Reinforced optical fiber and production of the same
JPH01133011A (en) Optical fiber with synthetic resin coating and manufacture thereof
WO2003037814A3 (en) Compact, hybrid fiber reinforced rods for optical cable reinforcements and method for making same
CA2093593C (en) Cable with light waveguide tubes in a matrix
KR0171888B1 (en) Optical fiber unit
KR930005927A (en) Coated fiber optic
EP0530715A1 (en) Optical glass fiber
JP5521480B2 (en) Plastic clad optical fiber core and optical fiber cable
EP1350131A2 (en) Optical fiber ribbon cables with controlled bending behavior
US8634687B2 (en) Coated plastic cladding optical fiber and optical fiber cable
GB2026716A (en) A Glass Optical Fiber Coated with Organopolysiloxane Layers
JPS60208716A (en) Optical fiber
CN1033883A (en) Produce the method for optical coupler for polymer optical waveguides
JPS5666812A (en) Connecting method of optical fiber
JPS6027363Y2 (en) optical communication cable
CN212781410U (en) Anti-radiation optical cable for nuclear power station
JPH0610692B2 (en) Plastic fiber optic fiber
JPS6014208A (en) Coated optical fiber
EP2538249A1 (en) Plastic-clad optical fiber core and optical fiber cable
JPS6016837A (en) Optical fiber coated with plastic
JPH1096840A (en) Plastic optical fiber code and its production
JPH08304635A (en) Plastic optical fiber code and bundle fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term