JPS60208338A - Production of electrically conductive molded article - Google Patents

Production of electrically conductive molded article

Info

Publication number
JPS60208338A
JPS60208338A JP6342384A JP6342384A JPS60208338A JP S60208338 A JPS60208338 A JP S60208338A JP 6342384 A JP6342384 A JP 6342384A JP 6342384 A JP6342384 A JP 6342384A JP S60208338 A JPS60208338 A JP S60208338A
Authority
JP
Japan
Prior art keywords
copper
sulfur
molded article
acrylic
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6342384A
Other languages
Japanese (ja)
Inventor
Masatoshi Fujikawa
正敏 藤川
Hiroshi Takeda
博 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6342384A priority Critical patent/JPS60208338A/en
Publication of JPS60208338A publication Critical patent/JPS60208338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

PURPOSE:To produce a highly conductive molded article containing and/or coated with copper sulfide, at a low cost, in the wet process for the production of an acrylic molded article, by treating the gelatinous molded article with a solution containing a copper salt and a sulfur-containing compound prior to drying, and drying the gel. CONSTITUTION:An aqueous solution of a copolymer containing >=50(wt)%, preferably >=80% acrylonitrile is extruded into an aqueous coagulation medium, and the extrudate is washed with water and drawn to obtain a fiber or film of hydrated gel. The gel is passed through a solution (preferably in a bath separated from the coagulation bath) containing a copper salt (preferably cupric salt such as cupric chloride, cupric sulfate, etc.) and a sulfur-containing compound (e.g. sodium sulfide, sulfur dioxide, etc.). The amount of the copper salt and the sulfur-containing compound absorbed in the fiber or film depend upon the treatment time and the concentration of the solution. The product is heated in the drying step to obtain the objective molded article containing >=1%, preferably 2-5% copper sulfide based on the weight of the polymer. If the production of copper sulfide is insufficient, the formation is accelerated by heating the article in steam or hot water.

Description

【発明の詳細な説明】 本発明は導電性成型物の製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method for manufacturing a conductive molded article.

例えば導電性繊維及びフィルムの製造方法において堅牢
な高導電性を有するアクリル系導電性繊維及びフィルム
を安価に製造する方法を折供するものである。
For example, the present invention provides a method for manufacturing acrylic conductive fibers and films that are robust and highly conductive at low cost in methods for manufacturing conductive fibers and films.

従来、導電性繊維は繊維の表面にメッキを施す方法、金
属をポリマーに練り込む方法、繊維の細孔に金属粉を沈
着させる方法等によって1lll!l造されていだが、
これらはいずれも種々の欠点を有するものであった。例
えば、繊維の表面に金属メッキを施す方法では、メッキ
の密着を良好にするため予め繊維を収縮させて線維の表
面にひだを作る工程、センシタイジング工程、アクチベ
ー7ヨン工程、メッキ工程等の多くの工程と高度の技術
を必要とし、しかも得られた導電性繊維は元の繊維の風
合と著しく相違し、壕だ、堅牢性も多くを期待できない
。金属をポリマーに練り込む方法では、添加された金属
によって紡糸時に口金づ壕り等のトラブルが発生し易く
、得られた導電性繊維も金属の含有量が相当率いためそ
の機械的性質は元の繊維に比べて弱くなりがちである。
Conventionally, conductive fibers have been manufactured using methods such as plating the surface of the fibers, kneading metals into polymers, and depositing metal powder into the pores of the fibers. Although it was built,
All of these had various drawbacks. For example, in the method of applying metal plating to the surface of fibers, in order to improve the adhesion of plating, the fibers are contracted in advance to create pleats on the surface of the fibers, sensitizing process, activation process, plating process, etc. It requires many processes and advanced technology, and the resulting conductive fibers have a significantly different texture from the original fibers, are rough, and cannot be expected to be very durable. In the method of kneading metals into polymers, the added metals tend to cause problems such as spinnerets jamming during spinning, and the resulting conductive fibers also have a high metal content, so their mechanical properties are not as good as the original. They tend to be weaker than fibers.

繊維の細孔に金属粉を沈着させる方法では、特別に多孔
質の繊維を準備しておく必要があり、製造方法として容
易ではない。
The method of depositing metal powder into the pores of fibers requires the preparation of specially porous fibers, which is not an easy manufacturing method.

まだ、従来の導電性フィルムの製造法としては、ポリエ
ステル等のフィルムの表面上に金、ノミラジウム等の貴
金属、まだは酸化インジウム等の導電性金属酸化物の薄
膜を、真空蒸着法、ス・eツタリング法等により形成さ
せる方法、あるいは界面活性剤を重合体中に練り込む方
法等が知られている。
However, conventional methods for producing conductive films include vacuum deposition methods, S. A method of forming by a tuttering method, a method of kneading a surfactant into a polymer, etc. are known.

しかし前者は高価であること、導電層が基板フィルムか
ら剥離しやすいこと、また後者は導電性が低いため用途
が限定されること、湿度等の条件により導電性が変化し
やすいこと、導電性の長期安定性に難があること等の欠
点を有していた。
However, the former is expensive, the conductive layer easily peels off from the substrate film, and the latter has low conductivity, which limits its use.Conductivity easily changes depending on conditions such as humidity; It had drawbacks such as poor long-term stability.

一方、アクリル系ポリマー成形物に導電性物質である硫
化銅を含有させ、導電性を付与する方法がある。例えば
特開昭56−128311号公報、特開昭57−215
70号公報、特開昭57−159499号公報、特願昭
58−7733号等に開示されている。硫化鋼はアクリ
ル系繊維との密着性が良く、堅牢な導電性繊維を得るこ
とができる、ところが、堅牢性を強化しようとして繊維
内部まで硫化銅を含有させようとするとそのだめの工程
が煩雑となり、必要な試薬も多くなり、安価に製造する
ことは困難であった。
On the other hand, there is a method of incorporating copper sulfide, which is a conductive substance, into an acrylic polymer molding to impart conductivity. For example, JP-A No. 56-128311, JP-A No. 57-215
This method is disclosed in Japanese Patent Application No. 70, Japanese Patent Application Laid-Open No. 159499/1982, Japanese Patent Application No. 7733/1983, and the like. Sulfide steel has good adhesion with acrylic fibers, and it is possible to obtain robust conductive fibers. However, if you try to incorporate copper sulfide into the fibers to strengthen their durability, the process becomes complicated. However, many reagents are required, making it difficult to manufacture at a low cost.

本発明者等は、上記の欠点を解決すべく鋭意研究を重ね
た結果、アクリル系繊維及びフィルムの湿式製造法にお
いて、未乾燥ゲル状物は容易に銅成分および含硫黄化合
物を多量かつ均一に吸収することができることを見出し
、加熱処理するととKよシ、内部にまで均一に硫化銅を
生成することができることという知見を得て、本発明を
完成するに至った。
As a result of extensive research in order to solve the above-mentioned drawbacks, the present inventors have discovered that in wet manufacturing methods for acrylic fibers and films, undried gel-like materials can easily and uniformly contain copper components and sulfur-containing compounds in large quantities. The present invention was completed based on the discovery that copper sulfide can be absorbed evenly within the interior of K when heated.

即ち、本発明はアクリル系成型物の湿式製造方法におい
て、乾燥前のゲル状の成型物を銅塩および含硫黄化合物
を含む同浴あるいけ別浴の溶液で処理することKより硫
化銅付着及び/または含有せしめてなることを特徴とす
るアクリル系導電成型物の製造方法にある。
That is, the present invention provides a wet manufacturing method for an acrylic molded product, in which a gel-like molded product before drying is treated with a solution containing a copper salt and a sulfur-containing compound in the same bath or a separate bath to prevent copper sulfide adhesion and A method for manufacturing an acrylic conductive molded article, characterized in that the acrylic conductive molded article contains:

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明でいうアクリル系繊維及びフィルムの材質はアク
リロニトリルを50重量%以上、好ましくけ85重滑%
以上含有する重合体である。共重合可能な単量体として
は、アクリル酸およびそのエステル類、メタクリル酸お
よびそのエステル類、アクリルアミドおよびN置換アミ
ド類、塩化ビニル等のビニルハライド類、酢酸ビニル等
のビニルエステル類、イタコン酸、マレイン酸等のピニ
ルジカルゼン酸およびそのエステル類、塩化ビニリデン
等のビニリインノ・ライド類、ビニルピリジンおよびそ
のN置換体類、ビニルピロリビン、スチレン、アリルス
ルホン酸、メタリルスルホン酸、スチレンスルホン酸等
のスルホン酸化合物及びその塩類が挙げられ、これらの
2種以上を共重合に用いることもできる。
The material of the acrylic fiber and film referred to in the present invention contains 50% by weight or more of acrylonitrile, preferably 85% by weight.
This is a polymer containing the above. Copolymerizable monomers include acrylic acid and its esters, methacrylic acid and its esters, acrylamide and N-substituted amides, vinyl halides such as vinyl chloride, vinyl esters such as vinyl acetate, itaconic acid, Pinyldicarzenic acid and its esters such as maleic acid, vinylinnorides such as vinylidene chloride, vinylpyridine and its N-substituted derivatives, vinylpyrrolibin, styrene, sulfones such as allylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid, etc. Examples include acid compounds and salts thereof, and two or more of these can also be used in copolymerization.

本発明は湿式製造法であり、含水ゲル状態を経る方法で
あれば、その種類を問わない。例えば、フィルムの場合
には、水系凝固媒体中に重合体溶液をノズルまたはダイ
スのスリットよりシート状に押出す、あるいはげラムま
たはベルト上に流延後浸漬して成膜した後に、水洗し、
延伸する方法などがある。繊維の場合にも例えば水系凝
固媒体 5− 中に重合体溶液を押し出し、水洗、延伸、乾燥する方法
などがある。
The present invention is a wet manufacturing method, and any type of method is applicable as long as it passes through a hydrogel state. For example, in the case of a film, a polymer solution is extruded into a sheet through a nozzle or die slit into an aqueous coagulation medium, or is cast onto a gel ram or belt and then dipped to form a film, and then washed with water.
There are methods such as stretching. In the case of fibers, for example, there is a method in which a polymer solution is extruded into an aqueous coagulation medium, washed with water, stretched, and dried.

重合体溶液を作成すべき溶媒としては、ジメチルホルム
アミド、ジメチルスルホキシ)’、N−ジメチルホルム
アミド、N−メチル−β−クアノエチルホルムアミP1
α−シアノアセトアミP、アセトニトリル、r−ブチロ
ラクトン、硝酸、硫酸、塩化亜鉛やチオシアン酸ナトリ
ウムなどの無機物の水溶液がある。
Solvents for preparing the polymer solution include dimethylformamide, dimethylsulfoxy)', N-dimethylformamide, and N-methyl-β-quanoethylformamide P1.
There are aqueous solutions of inorganic substances such as α-cyanoacetamide P, acetonitrile, r-butyrolactone, nitric acid, sulfuric acid, zinc chloride, and sodium thiocyanate.

アクリル系繊維及びフィルムの湿式製造法において、乾
燥工程に付される前の水洗あるいけ延伸後の糸条及びフ
ィルムは内部に多量の水を含んだゲル状構造を有してい
る。そのため、これらは銅塩および含硫黄化合物を含む
水溶液から室温でも多量の銅塩および含硫黄化合物を容
易に吸収することができる。従ってアクリル系繊維及び
フィルムの製造プロセスに組み込み、連続的に処理する
ことも可能である。
In the wet manufacturing method for acrylic fibers and films, the yarns and films after washing or stretching before being subjected to a drying process have a gel-like structure containing a large amount of water inside. Therefore, these can easily absorb a large amount of copper salts and sulfur-containing compounds even at room temperature from an aqueous solution containing the copper salts and sulfur-containing compounds. Therefore, it is also possible to incorporate it into the manufacturing process of acrylic fibers and films and process them continuously.

本発明に用いる銅塩としては、塩化第二銅・硫酸銅・酢
酸第二銅・ショウ酸銅等の2価の銅塩、 6− 塩化第−銅、ヨウ化第−銅、ンアン化第−銅、チオ/ア
ン酸銅等の1価の銅塩が用いられる。1価の銅塩は溶解
性が悪いために、塩酸、ヨウ化カリウム、アンモニア等
を添加すると良いが、乾燥工程で塩酸、アンモニア等に
よるトラブルが生じる。
Examples of copper salts used in the present invention include divalent copper salts such as cupric chloride, cupric sulfate, cupric acetate, and copper oxalate; 6-cupric chloride; cupric iodide; Monovalent copper salts such as copper and copper thio/anoate are used. Since monovalent copper salts have poor solubility, it is better to add hydrochloric acid, potassium iodide, ammonia, etc., but problems caused by hydrochloric acid, ammonia, etc. occur during the drying process.

そのため、2価の銅イオンが有利である。Therefore, divalent copper ions are advantageous.

含硫黄化合物としては例えば硫化す) 17ウム、二酸
化硫黄、亜硫酸ナトリウム、ピロ亜硫酸ナトリウム、亜
ニチオン酸、亜ニチオン酸ナトリウム、チオ硫酸ナトリ
ウム、二酸化チオ尿素、亜硫酸水素ナトリウム等をあげ
ることができるが、これらに限定されるものではない。
Examples of sulfur-containing compounds include 17um sulfide, sulfur dioxide, sodium sulfite, sodium pyrosulfite, dithionite, sodium dithionite, sodium thiosulfate, thiourea dioxide, and sodium bisulfite. It is not limited to these.

銅塩および含硫黄化合物の付与は種々の従来の方法で行
なわれる。例えば、銅塩および含硫黄化合物を含有する
浴に水洗あるいけ延伸後の糸条及びフィルムを辿すこと
によって行なわれる。また、溶液をスプレー又は類似の
方法で付与することもできる。
Application of copper salts and sulfur-containing compounds can be carried out by various conventional methods. For example, this is carried out by passing the threads and film after washing or stretching into a bath containing a copper salt and a sulfur-containing compound. The solution can also be applied by spraying or similar methods.

銅塩および含硫黄化合物は同浴とする方法が簡単である
が、浴中での反応を防止する必要がある。
A simple method is to place the copper salt and the sulfur-containing compound in the same bath, but it is necessary to prevent reactions in the bath.

例えば銅塩および含硫黄化合物を含む水溶液を別別に用
意しておき、付与する直前に混合する方法があるが、別
浴として付与する方が浴中での反応が無く、有利である
For example, there is a method in which an aqueous solution containing a copper salt and a sulfur-containing compound is prepared separately and mixed immediately before application, but it is more advantageous to apply it as a separate bath because there is no reaction in the bath.

水洗あるいは延伸後の糸条及びフィルムに吸収される銅
塩および含硫黄化合物の量は、処理時間の長さ、溶液の
濃度により変化する。
The amounts of copper salts and sulfur-containing compounds absorbed into the yarn and film after water washing or stretching vary depending on the length of treatment time and the concentration of the solution.

銅塩および含硫黄化合物を吸収した糸条及びフィルムは
続いて、乾燥工程に付される。乾燥は、通常のアクリル
系繊維及びフィルムの湿式製造法における乾燥方法及び
条件が採用される。
The yarns and films that have absorbed the copper salts and sulfur-containing compounds are then subjected to a drying process. For drying, the drying method and conditions used in normal wet manufacturing methods for acrylic fibers and films are employed.

乾燥工程で加熱することにより硫化鋼が繊維及びフィル
ムに生成する。
By heating during the drying process, sulfurized steel is formed into fibers and films.

硫化銅の生成が十分でない場合には、さらに水蒸気ある
いは熱水中で加熱し、硫化銅の生成を完了させる。
If the production of copper sulfide is not sufficient, heating is further carried out in steam or hot water to complete the production of copper sulfide.

まだ、銅塩および含硫黄化合物を吸収した糸条及びフィ
ルムを乾燥工程に付される前に1水蒸気あるいは熱水中
で加熱することKより硫化鋼を繊維及びフィルムに生成
することもできる。
However, sulfurized steel can also be produced into fibers and films by heating the yarns and films that have absorbed copper salts and sulfur-containing compounds in steam or hot water before being subjected to a drying process.

硫化銅のポリマー重量に対する重量と導電性及び均一性
には密接な関係があり、1重量%未満では導電性、均−
性共に満足するものが得られない。
There is a close relationship between the weight of copper sulfide relative to the polymer weight, conductivity and uniformity, and if it is less than 1% by weight, the conductivity and uniformity are
I can't find anything that satisfies me sexually.

少なくとも1重量%以上、好ましくは2〜5重量%であ
り、それ以上では導電性能は飽和し、かつ15重量%以
上になると成形物の機械的強度が著しく低下するため好
ましくない。
The content is at least 1% by weight or more, preferably 2 to 5% by weight. If the content is more than 1% by weight, the conductive performance will be saturated, and if it is more than 15% by weight, the mechanical strength of the molded product will be significantly reduced, which is not preferable.

本発明においてアクリル系繊維またはフィルムに付着す
る硫化銅としては、硫化第1銅(0u2S )、硫化第
2銅(OuS )、ダイジエナイト(Ou9ts)、O
uS (1,86(X(1,96)等が挙げられる。こ
れらのうち、どういうものが付着するかは、銅塩の種類
、含硫黄化合物の種類、 r+Hなどにより決まる。
In the present invention, examples of copper sulfide that adheres to acrylic fibers or films include cuprous sulfide (0u2S), cupric sulfide (OuS), daidienite (Ou9ts),
Examples include uS (1,86(X(1,96)).Which of these adheres depends on the type of copper salt, the type of sulfur-containing compound, r+H, etc.

本発明の方法により得られた導電性繊維及びフィルムけ
、高い導電性を有し、耐洗濯性、耐摩耗性も極めて優れ
ており、しかも安価に製造し得るという工業的に優れた
ものである。特に硫化銅が硫化第2銅である導電性繊維
け■硫化銅含有量が同じ場合の導電性、■硫酸、塩酸、
硝酸などの無 9− 機酸や酢酸、蟻酸、コ・・り酸などの有機酸および一部
の有機溶剤に対する耐性などの点において優れている。
The conductive fibers and films obtained by the method of the present invention have high conductivity, excellent washing resistance and abrasion resistance, and are industrially excellent because they can be manufactured at low cost. . In particular, conductive fibers whose copper sulfide is cupric sulfide ■Conductivity when the copper sulfide content is the same, ■Sulfuric acid, hydrochloric acid,
It has excellent resistance to inorganic acids such as nitric acid, organic acids such as acetic acid, formic acid, and co-phosphoric acid, and some organic solvents.

本発明で得られる導電性繊維は、織物、編物、不織布、
フェルトなどのII維製品とし、静電防止圧、制電圧の
カーペット、カーマット、ランジェリ−などに用いるこ
とができる。また、導電性フィルムは、帯電防止フィル
ム、電子写真用フィルム、透明電極、面発熱体等の用途
に用いることができる。
The conductive fibers obtained in the present invention include woven fabrics, knitted fabrics, nonwoven fabrics,
It can be used in II textile products such as felt, anti-static pressure, anti-static carpets, car mats, lingerie, etc. Further, the conductive film can be used for antistatic films, electrophotographic films, transparent electrodes, surface heating elements, and the like.

以下、実施例により本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお、耐洗濯性テストは、導電性繊維をJIS規格L1
045、人−2法に基づいて10回の繰返し洗濯を行な
い、洗濯前後の比抵抗を比較することにより行なった。
In addition, the washing resistance test was conducted using conductive fibers according to JIS standard L1.
045, washing was repeated 10 times based on the 2-person method, and the specific resistance before and after washing was compared.

実施例1 アクリロニトリル94重量%、アクリル酸メチル6重量
%を含む共重合体を70重重量の硝酸水溶#に溶解し、
濃度15重量%の紡糸原液を得た。
Example 1 A copolymer containing 94% by weight of acrylonitrile and 6% by weight of methyl acrylate was dissolved in 70% by weight of nitric acid aqueous solution #.
A spinning stock solution having a concentration of 15% by weight was obtained.

= 10− この紡糸原液を口径が0.1 m1m 、孔数が100
個である紡糸口金から凝固浴に紡出した後、水洗した。
= 10- This spinning stock solution has a diameter of 0.1 m1m and a number of holes of 100.
After spinning from a separate spinneret into a coagulation bath, it was washed with water.

得られた水洗糸条を続いて100Cの熱水中で7倍に延
伸した。この延伸糸条を水1tに対して硫酸鋼50gを
含む水溶液で温度35Cの浴を通過させ、続いて水1t
に対してチオ硫酸ソーダ100gを含む水溶液で温度2
0Cの浴を通過させ、引続いて150Cの温度で乾燥し
た。得られた繊維は単糸デニールが3デニール、繊維重
量に対して硫化銅を0.8重量%含んでいた。その電気
比抵抗値は8.5X103Ω・釧であった。さらに10
0Cの水蒸気中で10分間加熱し、得られた導電性繊維
は緑色であり、繊維重量に対して4.5重量%の硫化鋼
を含有し、その電気比抵抗値は1、2 X 10−20
’l?F71であった。
The obtained water-washed yarn was then stretched 7 times in hot water at 100C. This drawn yarn was passed through a bath at a temperature of 35C with an aqueous solution containing 50 g of sulfuric acid steel per 1 t of water, and then 1 t of water was passed through a bath at a temperature of 35C.
with an aqueous solution containing 100 g of sodium thiosulfate at a temperature of 2.
It was passed through a bath at 0C and subsequently dried at a temperature of 150C. The obtained fiber had a single yarn denier of 3 denier and contained 0.8% by weight of copper sulfide based on the weight of the fiber. Its electrical specific resistance value was 8.5×10 3 Ω·Kon. 10 more
Heated in steam at 0 C for 10 minutes, the resulting conductive fiber is green in color, contains 4.5% by weight of sulfurized steel based on the weight of the fiber, and its electrical resistivity is 1.2 x 10- 20
'l? It was F71.

この導電性繊維をX線回折で解析したところ、硫化鋼は
少量の0urs、 OugS5を含むが実質的に硫化第
2銅であることがわかった。
When this conductive fiber was analyzed by X-ray diffraction, it was found that the sulfide steel contained a small amount of Ours and OugS5, but was essentially cupric sulfide.

この導電性繊維の耐洗濯性テストを行なったところ、そ
の比抵抗は′2.5 X 10−2Ω・副となり、良好
な耐洗濯性を示した。
When this conductive fiber was tested for washing resistance, its specific resistance was 2.5 x 10 -2 Ω·sub, indicating good washing resistance.

実施例2 実施例1で得られた延伸糸条を水1tに対して硫酸銅を
50g、亜硫酸水素ナトリウムを20g含む水溶液で温
度30Cの浴を通過させ、続いて100Cの水蒸気中で
30分間加熱し、引続いて150Cの温度で乾燥した。
Example 2 The drawn yarn obtained in Example 1 was passed through a bath at a temperature of 30C with an aqueous solution containing 50g of copper sulfate and 20g of sodium bisulfite per 1t of water, and then heated in steam at 100C for 30 minutes. and subsequently dried at a temperature of 150C.

寄られた導電性繊維は茶色であり、嵯維重情に対して4
重量%の硫化銅を含有し、その電気比抵抗値は8.5X
10−2Ω・mであった。この導電性繊維をX線回折で
解析したところ、硫化銅は少量の0u2S 、 OuS
を含むが、実質的にOuS (1,86(X(1,96
)であることが判った。
The conductive fibers are brown in color and are 4
Contains % by weight of copper sulfide, and its electrical resistivity value is 8.5X
It was 10-2 Ω·m. When this conductive fiber was analyzed by X-ray diffraction, it was found that copper sulfide contained a small amount of Ou2S and OuS.
, but substantially OuS (1,86(X(1,96
) was found to be.

この導電性繊維の耐洗濯性テストの結果、その比抵抗は
1.2 X 10−1Ω・mとなり、良好な耐洗濯性能
を示した。
As a result of a washing resistance test of this conductive fiber, its specific resistance was 1.2×10 −1 Ω·m, indicating good washing resistance.

実施例3 実施例1と実施例2で得られた導電性繊維の耐薬品性を
比較した。その結果は第1表に示すようにいずれの薬品
に対しても硫化第2銅を含む導電性#l!維が優れてい
ることが判った。
Example 3 The chemical resistance of the conductive fibers obtained in Example 1 and Example 2 was compared. As shown in Table 1, the results show that conductivity #l containing cupric sulfide for all chemicals! It was found that the fibers were excellent.

第 1 表 但し、1(No 3と1TO4は室温で1日、他は10
日間浸潰した。
Table 1 However, 1 (No. 3 and 1TO4 are kept at room temperature for 1 day, others are kept at room temperature for 10 days.
Soaked for days.

実施例4 アクリロニトリル96重量%、アクリル酸メチル4重岱
%からなるアクリロニトリル系重合体16部を70%硝
酸84部にOCで攪拌溶解し、 13 − 減圧脱泡後、スリット幅300酊、スリット間隙1、5
1111のTダイよりOCの30重量%硝酸凝固浴中に
押し出しl m / minの速度で引き取り、その後
、水洗浴にて溶媒を水洗除去した。得られた厚さ400
μ、含水率200重量%の含水ゲル状重合体シートを硫
酸銅45部、チオ硫酸ソーダ100部、水1000部の
水溶液の浴に通し、引続いて150Cのトンネル式熱風
乾燥炉で乾燥した。含水率は32重量%であった。続い
てテンター延伸しく温度130C)、次にロール縦延伸
(温度100p)を行なった。延伸倍率は横3.0倍、
縦25倍であり、得られたフィルムの厚みは18μであ
った。得られたフィルムは緑色で、その表面抵抗は32
0Ω/口であった。
Example 4 16 parts of an acrylonitrile polymer consisting of 96% by weight of acrylonitrile and 4% by weight of methyl acrylate was stirred and dissolved in 84 parts of 70% nitric acid using OC. 1, 5
It was extruded into a 30 wt % nitric acid coagulation bath of OC through a T-die of No. 1111 and taken out at a speed of 1 m/min, and then the solvent was removed by water washing in a water washing bath. Obtained thickness 400
A hydrogel-like polymer sheet with a water content of 200% by weight was passed through a bath of an aqueous solution of 45 parts of copper sulfate, 100 parts of sodium thiosulfate, and 1000 parts of water, and then dried in a tunnel hot air drying oven at 150C. The water content was 32% by weight. This was followed by tenter stretching (temperature 130C) and then longitudinal roll stretching (temperature 100p). Stretching ratio is 3.0x horizontally,
The vertical dimension was 25 times larger, and the thickness of the obtained film was 18 μm. The obtained film is green in color and its surface resistance is 32
It was 0Ω/mouth.

また、硫化鋼とフィルムとの密着力はスコッチテープビ
ーリング試験に十分耐えるものであった。
Furthermore, the adhesion between the sulfurized steel and the film was sufficient to withstand the Scotch tape beer test.

実施例5 アクリロニトリル96重量%、メチルアクリレート4重
量%を含有するアクリロニトリル共重合体300gをジ
メチルホルムアミl’700rtttニ溶 14− 解し、減圧脱泡後、ガラス板上に700ミクロンの厚さ
に流延し、OCの40重量%ジメチルホルムアミP水溶
液中で凝固させ透明な厚み600ミクロンの含水ゲル状
重合体シートを得た。水洗後30Cの温水を攪拌させな
がら脱溶媒を行ない、赤外分光スペクトルにて含水ゲル
状重合体シート中の残存ジメチルホルムアミド量が1.
5重量%となったことを確認した。このシートを硫酸鋼
45部、チオ硫酸ソーダ120部、水1000部の水溶
液の浴に浸し、引続いて150cの熱風乾燥機で乾燥し
た。含水率は23重量%であった。続いて延伸部[1t
 6 oCでテンター2軸延伸した。得られたフィルム
の厚みは21μであった。
Example 5 300 g of an acrylonitrile copolymer containing 96% by weight of acrylonitrile and 4% by weight of methyl acrylate was dissolved in dimethylformamyl'700rttt, and after degassing under reduced pressure, it was spread on a glass plate to a thickness of 700 microns. It was cast and coagulated in a 40% by weight OC aqueous dimethylformamide P solution to obtain a transparent hydrogel-like polymer sheet with a thickness of 600 microns. After washing with water, the solvent was removed while stirring with 30C warm water, and the amount of residual dimethylformamide in the hydrogel polymer sheet was determined by infrared spectroscopy.
It was confirmed that the content was 5% by weight. The sheet was immersed in a bath of an aqueous solution of 45 parts of steel sulfate, 120 parts of sodium thiosulfate, and 1000 parts of water and subsequently dried in a 150 c hot air dryer. The water content was 23% by weight. Next, the stretching part [1t
Biaxial tenter stretching was carried out at 6 oC. The thickness of the obtained film was 21μ.

このフィルムを90Cの熱水中で50分間加熱処理した
This film was heat-treated in 90C hot water for 50 minutes.

得られたフィルムは緑色でその表面抵抗は210Ω/口
であった。
The obtained film was green in color and had a surface resistance of 210Ω/hole.

壕だ、硫化鋼とフィルムとの密着力はスコッチテープビ
ーリング試験に十分耐えるものであった。
However, the adhesion between the sulfurized steel and the film was sufficient to withstand the Scotch tape beer test.

特許出願人 旭化成工業株式会社  15− 手続補正帯(自発) 昭和59年 5月7y日 特許庁長官 若 杉 和 夫 殿 l。事件の表示 昭和59年特許願第 63423 号
2 発明の名称 導電性成型物の製造方法 a 補正をする者 事件との関係 特許出願人 大阪府大阪市北区堂島浜1丁目2番6号生 補正の対象 明細書の「特許請求の範囲」及び「発明の詳細な説明」
の欄 補正の内容 (1)明細書「特許請求の範囲」の欄を別紙のとおり訂
正する。
Patent Applicant: Asahi Kasei Industries, Ltd. 15- Procedural Amendment Band (Voluntary) May 7th, 1980 Kazuo Wakasugi, Commissioner of the Patent Office. Indication of the case Patent Application No. 63423 No. 2 of 1980 Title of the invention Method for manufacturing conductive molded product a Person making the amendment Relationship to the case Patent applicant 1-2-6 Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture Amendment "Claims" and "Detailed Description of the Invention" of the subject specification
Contents of amendment in column (1) The column of “Claims” in the specification is corrected as shown in the attached sheet.

(2)明細書第12頁第12行「CuS Jを「cux
s」と訂正する。
(2) Page 12, line 12 of the specification “CuS J”
s” and correct it.

以上 特許請求の範囲 tl+ アクリル系成型物の湿式製造方法において、乾
燥前のデル状の成型物を銅塩および含硫黄化合物を含む
同浴あるいは別浴の溶液で処理することにより硫化銅付
着及び/または含有せしめてなることを特徴とするアク
リル系導電性成型物の製造方法 (2) アクリル系成型物がアクリル系繊維であること
を特徴とする特許請求の範囲第1項記載の導電性成型物
の製造方法 (3) アクリル系成型物がアクリル系フィルムである
ことを特徴とする特許請求の範囲第1項記載の導電性成
型物の製造方法
Claims tl+ In a wet manufacturing method for an acrylic molded product, a del-shaped molded product before drying is treated with a solution in the same bath or a separate bath containing a copper salt and a sulfur-containing compound to prevent copper sulfide adhesion and/or (2) A method for producing an acrylic conductive molded article characterized in that the acrylic molded article is an acrylic fiber. Manufacturing method (3) The method for manufacturing a conductive molded product according to claim 1, wherein the acrylic molded product is an acrylic film.

Claims (3)

【特許請求の範囲】[Claims] (1) アクリル系成型物の湿式製造方法において、乾
燥前のゲル状の成型物を銅塩および含硫黄化合物を含む
同浴あるいは別浴の溶液で処理することKより硫化銅付
着及び/または含有せしめてなることを特徴とするアク
リル系導電成型物の製造方法
(1) In the wet manufacturing method for acrylic moldings, the gel-like moldings before drying are treated with a solution containing copper salts and sulfur-containing compounds in the same bath or in a separate bath. A method for producing an acrylic conductive molded product characterized by:
(2) アクリル系成型物がアクリル系繊維であること
を特徴とする特許請求の範囲第1項記載の導電性成型物
の製造方法
(2) The method for producing a conductive molded product according to claim 1, wherein the acrylic molded product is an acrylic fiber.
(3) アクリル系成型物がアクリル系フィルムである
ことを特徴とする特許請求の範囲第1項記載の導電性成
型物の製造方法
(3) The method for producing a conductive molded product according to claim 1, wherein the acrylic molded product is an acrylic film.
JP6342384A 1984-04-02 1984-04-02 Production of electrically conductive molded article Pending JPS60208338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6342384A JPS60208338A (en) 1984-04-02 1984-04-02 Production of electrically conductive molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6342384A JPS60208338A (en) 1984-04-02 1984-04-02 Production of electrically conductive molded article

Publications (1)

Publication Number Publication Date
JPS60208338A true JPS60208338A (en) 1985-10-19

Family

ID=13228861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6342384A Pending JPS60208338A (en) 1984-04-02 1984-04-02 Production of electrically conductive molded article

Country Status (1)

Country Link
JP (1) JPS60208338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305835A (en) * 1987-06-05 1988-12-13 株式会社日立製作所 Electric machinery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305835A (en) * 1987-06-05 1988-12-13 株式会社日立製作所 Electric machinery
JPH0576845B2 (en) * 1987-06-05 1993-10-25 Hitachi Ltd

Similar Documents

Publication Publication Date Title
DE2743768C3 (en) Metallized textile material
US2404717A (en) Preparation of solutions
US3833457A (en) Polymeric complex composite
DE68914485T2 (en) Process for the metallization of fiber objects.
US3058845A (en) Process for metallizing polyacrylonitrile shaped article by treating with a water soluble metal salt and reducing the salt to the free metal
JPS6227192B2 (en)
JPS60208338A (en) Production of electrically conductive molded article
JPS60173024A (en) Production of electroconductive molding
DE2420255A1 (en) SHAPED ARTICLE OF SOLID POLYMERIC MATERIAL WITH MICROCELLIC STRUCTURE AND METHOD FOR MANUFACTURING THIS ARTICLE
JPS61119707A (en) Acrylic fiber having excellent durability and color-developability and production thereof
US2562373A (en) Method of forming thin flexible polyamide articles
US5431856A (en) Conductive fibres
JPS6241266A (en) Electrically conductive high-molecular material
JPH04257313A (en) Production of precursor fiber for carbon fiber
JPS60198004A (en) Method of producing conductive polymer material
CH374633A (en) Process for manufacturing a fibrous product with ion exchange properties
JPS59132508A (en) Conductive highly molecular material and method of producingsame
JPS60254515A (en) Conductive polymer material
Hnizdiukh et al. Surface Modification of Polymeric Materials by Poiyaniline and Application of Polyaniline/Polymeric Composites
JPS63249719A (en) Electrically conductive yarn and production thereof
US2914808A (en) Process for forming films from nonelastic polymer latexes
JPS6155803A (en) Conductive polyer material having durability
JPS6211742A (en) Polymeric material containing lead sulfide and production thereof
JPS6297911A (en) Electrically conductive cellulosic fiber
JPS61138710A (en) Production of acrylic yarn having improved durability